
 

 
 

 

I n t e r n a t i o n a l  T e l e c o m m u n i c a t i o n  U n i o n  

 
 

ITU-T  H.265 
TELECOMMUNICATION 
STANDARDIZATION SECTOR 
OF ITU 

(08/2021)    

 

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS 

Infrastructure of audiovisual services ï Coding of moving 
video 

 

 High efficiency video coding 

 

Recommendation  ITU-T  H.265 

 

 



 

ITU-T H-SERIES RECOMMENDATIONS 

AUDIOVISUAL AND MULTIMEDIA SYSTEMS  

  

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100ïH.199 

INFRASTRUCTURE OF AUDIOVISUAL SERVICES  

General H.200ïH.219 

Transmission multiplexing and synchronization H.220ïH.229 

Systems aspects H.230ïH.239 

Communication procedures H.240ïH.259 

Coding of moving video H.260ïH.279 

Related systems aspects H.280ïH.299 

Systems and terminal equipment for audiovisual services H.300ïH.349 

Directory services architecture for audiovisual and multimedia services H.350ïH.359 

Quality of service architecture for audiovisual and multimedia services H.360ïH.369 

Telepresence, immersive environments, virtual and extended reality H.420ïH.439 

Supplementary services for multimedia H.450ïH.499 

MOBILITY AND COLLABORATION PROCEDURES  

Overview of Mobility and Collaboration, definitions, protocols and procedures H.500ïH.509 

Mobility for H-Series multimedia systems and services H.510ïH.519 

Mobile multimedia collaboration applications and services H.520ïH.529 

Security for mobile multimedia systems and services H.530ïH.539 

Security for mobile multimedia collaboration applications and services H.540ïH.549 

VEHICULAR GATEWAYS AND INTELLIGENT TRANSPORTATION SYSTEMS (ITS)  

Architecture for vehicular gateways H.550ïH.559 

Vehicular gateway interfaces H.560ïH.569 

BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES  

Broadband multimedia services over VDSL H.610ïH.619 

Advanced multimedia services and applications H.620ïH.629 

Content delivery and ubiquitous sensor network applications H.640ïH.649 

IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV  

General aspects H.700ïH.719 

IPTV terminal devices H.720ïH.729 

IPTV middleware H.730ïH.739 

IPTV application event handling H.740ïH.749 

IPTV metadata H.750ïH.759 

IPTV multimedia application frameworks H.760ïH.769 

IPTV service discovery up to consumption H.770ïH.779 

Digital Signage H.780ïH.789 

E-HEALTH MULTIMEDIA SYSTEMS, SERVICES AND APPLICATIONS  

Personal health systems H.810ïH.819 

Interoperability compliance testing of personal health systems (HRN, PAN, LAN, TAN and 
WAN) 

H.820ïH.859 

Multimedia e-health data exchange services H.860ïH.869 

Safe listening H.870ïH.879 

  

For further details, please refer to the list of ITU-T Recommendations. 

 



 

  Rec. ITU-T H.265 v8 (08/2021) i 

Recommendation ITU-T H.265 

High efficiency video coding 

 

 

 

Summary 

Recommendation ITU-T H.265 | International Standard ISO/IEC 23008-2 represents an evolution of the existing video 

coding Recommendations (ITU-T H.261, ITU-T H.262, ITU-T H.263 and ITU-T H.264) and was developed in response 

to the growing need for higher compression of moving pictures for various applications such as Internet streaming, 

communication, videoconferencing, digital storage media and television broadcasting. It is also designed to enable the use 

of the coded video representation in a flexible manner for a wide variety of network environments.  The use of this 

Recommendation | International Standard allows motion video to be manipulated as a form of computer data and to be 

stored on various storage media, transmitted and received over existing and future networks and distributed on existing 

and future broadcasting channels. 

This revision adds an additional SEI message for shutter interval information, and also includes corrections to various 

minor defects in the prior content of the Specification. 

This Recommendation | International Standard was developed jointly with ISO/IEC JTC 1/SC 29 and corresponds in a 

technically aligned manner to ISO/IEC 23008-2. 

 

 

History 

Edition Recommendation Approval Study Group Unique ID*  

1.0 ITU-T H.265 2013-04-13 16 11.1002/1000/11885 

2.0 ITU-T H.265 (V2) 2014-10-29 16 11.1002/1000/12296 

3.0 ITU-T H.265 (V3) 2015-04-29 16 11.1002/1000/12455 

4.0 ITU-T H.265 (V4) 2016-12-22 16 11.1002/1000/12905 

5.0 ITU-T H.265 (V5) 2018-02-13 16 11.1002/1000/13433 

6.0 ITU-T H.265 (V6) 2019-06-29 16 11.1002/1000/13904 

7.0 ITU-T H.265 (V7) 2019-11-29 16 11.1002/1000/14107 

8.0 ITU-T H.265 (V8) 2021-08-22 16 11.1002/1000/14660 
 

 

 

Keywords 

Compression coding, digital video, image coding, supplemental enhancement information, video coding, video 

compression, visual coding. 

 

____________________ 

*  To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the 

Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en. 

http://handle.itu.int/11.1002/1000/11885
http://handle.itu.int/11.1002/1000/12296
http://handle.itu.int/11.1002/1000/12455
http://handle.itu.int/11.1002/1000/12905
http://handle.itu.int/11.1002/1000/13433
http://handle.itu.int/11.1002/1000/13904
http://handle.itu.int/11.1002/1000/14107
http://handle.itu.int/11.1002/1000/14660
http://handle.itu.int/11.1002/1000/11830-en


 

ii  Rec. ITU-T H.265 v8 (08/2021) 

FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 

telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the 

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other 

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of 

such words does not suggest that compliance with the Recommendation is required of any party. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS 

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve 

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or 

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of 

the Recommendation development process. 

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected 

by patents/software copyrights, which may be required to implement this Recommendation. However, 

implementers are cautioned that this may not represent the latest information and are therefore strongly urged 

to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/. 

 

 

 

â ITU 2021 

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior 

written permission of ITU. 

http://www.itu.int/ITU-T/ipr/


 

  Rec. ITU-T H.265 v8 (08/2021) iii  

TABLE OF CONTENTS 

 Page 

0 Introduction .................................................................................................................................................. 1 
0.1 General .............................................................................................................................................. 1 
0.2 Prologue ............................................................................................................................................ 1 
0.3 Purpose .............................................................................................................................................. 1 
0.4 Applications ...................................................................................................................................... 1 
0.5 Publication and versions of this Specification .................................................................................. 2 
0.6 Profiles, tiers and levels .................................................................................................................... 2 
0.7 Overview of the design characteristics .............................................................................................. 3 
0.8 How to read this Specification .......................................................................................................... 3 

1 Scope ............................................................................................................................................................ 3 

2 Normative references ................................................................................................................................... 3 
2.1 General .............................................................................................................................................. 3 
2.2 Identical Recommendations | International Standards ...................................................................... 4 
2.3 Paired Recommendations | International Standards equivalent in technical content ........................ 4 
2.4 Additional references ........................................................................................................................ 4 

3 Definitions .................................................................................................................................................... 4 

4 Abbreviations and acronyms ...................................................................................................................... 13 

5 Conventions ................................................................................................................................................ 16 
5.1 General ............................................................................................................................................ 16 
5.2 Arithmetic operators ....................................................................................................................... 16 
5.3 Logical operators ............................................................................................................................ 16 
5.4 Relational operators ........................................................................................................................ 16 
5.5 Bit-wise operators ........................................................................................................................... 16 
5.6 Assignment operators ...................................................................................................................... 17 
5.7 Range notation ................................................................................................................................ 17 
5.8 Mathematical functions ................................................................................................................... 17 
5.9 Order of operation precedence ........................................................................................................ 18 
5.10 Variables, syntax elements and tables ............................................................................................. 19 
5.11 Text description of logical operations ............................................................................................. 20 
5.12 Processes ......................................................................................................................................... 21 

6 Bitstream and picture formats, partitionings, scanning processes and neighbouring relationships ............ 21 
6.1 Bitstream formats ............................................................................................................................ 21 
6.2 Source, decoded and output picture formats ................................................................................... 21 
6.3 Partitioning of pictures, slices, slice segments, tiles, CTUs and CTBs ........................................... 23 

6.3.1 Partitioning of pictures into slices, slice segments and tiles ............................................. 23 
6.3.2 Block and quadtree structures ........................................................................................... 24 
6.3.3 Spatial or component-wise partitionings ........................................................................... 25 

6.4 Availability processes ..................................................................................................................... 26 
6.4.1 Derivation process for z-scan order block availability ...................................................... 26 
6.4.2 Derivation process for prediction block availability ......................................................... 26 

6.5 Scanning processes ......................................................................................................................... 27 
6.5.1 CTB raster and tile scanning conversion process .............................................................. 27 
6.5.2 Z-scan order array initialization process ........................................................................... 29 
6.5.3 Up-right diagonal scan order array initialization process.................................................. 29 
6.5.4 Horizontal scan order array initialization process ............................................................. 29 
6.5.5 Vertical scan order array initialization process ................................................................. 30 
6.5.6 Traverse scan order array initialization process ................................................................ 30 

7 Syntax and semantics ................................................................................................................................. 30 
7.1 Method of specifying syntax in tabular form .................................................................................. 30 
7.2 Specification of syntax functions and descriptors ........................................................................... 31 
7.3 Syntax in tabular form ..................................................................................................................... 33 

7.3.1 NAL unit syntax ................................................................................................................ 33 
7.3.2 Raw byte sequence payloads, trailing bits and byte alignment syntax .............................. 34 



 

iv Rec. ITU-T H.265 v8 (08/2021) 

7.3.3 Profile, tier and level syntax ............................................................................................. 42 
7.3.4 Scaling list data syntax ...................................................................................................... 45 
7.3.5 Supplemental enhancement information message syntax ................................................. 45 
7.3.6 Slice segment header syntax ............................................................................................. 46 
7.3.7 Short-term reference picture set syntax ............................................................................. 50 
7.3.8 Slice segment data syntax ................................................................................................. 51 

7.4 Semantics ........................................................................................................................................ 64 
7.4.1 General .............................................................................................................................. 64 
7.4.2 NAL unit semantics .......................................................................................................... 64 
7.4.3 Raw byte sequence payloads, trailing bits and byte alignment semantics ........................ 72 
7.4.4 Profile, tier and level semantics ........................................................................................ 89 
7.4.5 Scaling list data semantics ................................................................................................ 92 
7.4.6 Supplemental enhancement information message semantics ............................................ 95 
7.4.7 Slice segment header semantics ........................................................................................ 95 
7.4.8 Short-term reference picture set semantics ..................................................................... 102 
7.4.9 Slice segment data semantics .......................................................................................... 104 

8 Decoding process ..................................................................................................................................... 117 
8.1 General decoding process ............................................................................................................. 117 

8.1.1 General ............................................................................................................................ 117 
8.1.2 CVSG decoding process ................................................................................................. 117 
8.1.3 Decoding process for a coded picture with nuh_layer_id equal to 0............................... 117 

8.2 NAL unit decoding process ........................................................................................................... 119 
8.3 Slice decoding process .................................................................................................................. 119 

8.3.1 Decoding process for picture order count ....................................................................... 119 
8.3.2 Decoding process for reference picture set ..................................................................... 120 
8.3.3 Decoding process for generating unavailable reference pictures .................................... 124 
8.3.4 Decoding process for reference picture lists construction ............................................... 125 
8.3.5 Decoding process for collocated picture and no backward prediction flag ..................... 126 

8.4 Decoding process for coding units coded in intra prediction mode .............................................. 126 
8.4.1 General decoding process for coding units coded in intra prediction mode.................... 126 
8.4.2 Derivation process for luma intra prediction mode ......................................................... 130 
8.4.3 Derivation process for chroma intra prediction mode ..................................................... 132 
8.4.4 Decoding process for intra blocks ................................................................................... 133 

8.5 Decoding process for coding units coded in inter prediction mode .............................................. 143 
8.5.1 General decoding process for coding units coded in inter prediction mode.................... 143 
8.5.2 Inter prediction process ................................................................................................... 143 
8.5.3 Decoding process for prediction units in inter prediction mode ..................................... 146 
8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode

 ........................................................................................................................................ 171 
8.6 Scaling, transformation and array construction process prior to deblocking filter process ........... 175 

8.6.1 Derivation process for quantization parameters .............................................................. 175 
8.6.2 Scaling and transformation process ................................................................................ 176 
8.6.3 Scaling process for transform coefficients ...................................................................... 178 
8.6.4 Transformation process for scaled transform coefficients .............................................. 179 
8.6.5 Residual modification process for blocks using a transform bypass ............................... 181 
8.6.6 Residual modification process for transform blocks using cross-component prediction 181 
8.6.7 Picture construction process prior to in-loop filter process ............................................. 182 
8.6.8 Residual modification process for blocks using adaptive colour transform .................... 182 

8.7 In-loop filter process ..................................................................................................................... 184 
8.7.1 General ............................................................................................................................ 184 
8.7.2 Deblocking filter process ................................................................................................ 185 
8.7.3 Sample adaptive offset process ....................................................................................... 198 

9 Parsing process ......................................................................................................................................... 200 
9.1 General .......................................................................................................................................... 200 
9.2 Parsing process for 0-th order Exp-Golomb codes ....................................................................... 201 

9.2.1 General ............................................................................................................................ 201 
9.2.2 Mapping process for signed Exp-Golomb codes ............................................................ 202 

9.3 CABAC parsing process for slice segment data ........................................................................... 203 
9.3.1 General ............................................................................................................................ 203 
9.3.2 Initialization process ....................................................................................................... 205 
9.3.3 Binarization process ........................................................................................................ 218 



 

  Rec. ITU-T H.265 v8 (08/2021) v 

9.3.4 Decoding process flow .................................................................................................... 227 
9.3.5 Arithmetic encoding process (informative) ..................................................................... 241 

10 Sub-bitstream extraction process .............................................................................................................. 247 

 Annex A  Profiles, tiers and levels ..................................................................................................................... 248 
A.1 Overview of profiles, tiers and levels ............................................................................................ 248 
A.2 Requirements on video decoder capability ................................................................................... 248 
A.3 Profiles .......................................................................................................................................... 248 

A.3.1 General ............................................................................................................................ 248 
A.3.2 Main profile .................................................................................................................... 248 
A.3.3 Main 10 and Main 10 Still Picture profiles ..................................................................... 249 
A.3.4 Main Still Picture profile................................................................................................. 250 
A.3.5 Format range extensions profiles .................................................................................... 251 
A.3.6 High throughput profiles ................................................................................................. 255 
A.3.7 Screen content coding extensions profiles ...................................................................... 257 
A.3.8 High throughput screen content coding extensions profiles............................................ 260 

A.4 Tiers and levels ............................................................................................................................. 263 
A.4.1 General tier and level limits ............................................................................................ 263 
A.4.2 Profile-specific level limits for the video profiles ........................................................... 264 
A.4.3 Effect of level limits on picture rate for the video profiles (informative) ....................... 268 

 Annex B  Byte stream format ............................................................................................................................. 272 
B.1 General .......................................................................................................................................... 272 
B.2 Byte stream NAL unit syntax and semantics ................................................................................ 272 

B.2.1 Byte stream NAL unit syntax .......................................................................................... 272 
B.2.2 Byte stream NAL unit semantics .................................................................................... 272 

B.3 Byte stream NAL unit decoding process ....................................................................................... 273 
B.4 Decoder byte-alignment recovery (informative) ........................................................................... 273 

 Annex C  Hypothetical reference decoder .......................................................................................................... 274 
C.1 General .......................................................................................................................................... 274 
C.2 Operation of coded picture buffer ................................................................................................. 278 

C.2.1 General ............................................................................................................................ 278 
C.2.2 Timing of decoding unit arrival ...................................................................................... 278 
C.2.3 Timing of decoding unit removal and decoding of decoding unit .................................. 280 

C.3 Operation of the decoded picture buffer ....................................................................................... 283 
C.3.1 General ............................................................................................................................ 283 
C.3.2 Removal of pictures from the DPB before decoding of the current picture .................... 283 
C.3.3 Picture output .................................................................................................................. 284 
C.3.4 Current decoded picture marking and storage ................................................................. 284 
C.3.5 Removal of pictures from the DPB after decoding of the current picture ....................... 285 

C.4 Bitstream conformance ................................................................................................................. 285 
C.5 Decoder conformance ................................................................................................................... 286 

C.5.1 General ............................................................................................................................ 286 
C.5.2 Operation of the output order DPB ................................................................................. 287 

 Annex D  Supplemental enhancement information ............................................................................................ 290 
D.1 General .......................................................................................................................................... 290 
D.2 SEI payload syntax........................................................................................................................ 290 

D.2.1 General SEI message syntax ........................................................................................... 290 
D.2.2 Buffering period SEI message syntax ............................................................................. 294 
D.2.3 Picture timing SEI message syntax ................................................................................. 295 
D.2.4 Pan-scan rectangle SEI message syntax .......................................................................... 295 
D.2.5 Filler payload SEI message syntax ................................................................................. 296 
D.2.6 User data registered by Recommendation ITU-T T.35 SEI message syntax .................. 296 
D.2.7 User data unregistered SEI message syntax .................................................................... 296 
D.2.8 Recovery point SEI message syntax ............................................................................... 296 
D.2.9 Scene information SEI message syntax .......................................................................... 297 
D.2.10 Picture snapshot SEI message syntax ............................................................................. 297 
D.2.11 Progressive refinement segment start SEI message syntax ............................................. 297 
D.2.12 Progressive refinement segment end SEI message syntax .............................................. 297 
D.2.13 Film grain characteristics SEI message syntax ............................................................... 298 
D.2.14 Post-filter hint SEI message syntax ................................................................................. 298 



 

vi Rec. ITU-T H.265 v8 (08/2021) 

D.2.15 Tone mapping information SEI message syntax ............................................................. 299 
D.2.16 Frame packing arrangement SEI message syntax ........................................................... 300 
D.2.17 Display orientation SEI message syntax ......................................................................... 300 
D.2.18 Green metadata SEI message syntax ............................................................................... 300 
D.2.19 Structure of pictures information SEI message syntax ................................................... 301 
D.2.20 Decoded picture hash SEI message syntax ..................................................................... 301 
D.2.21 Active parameter sets SEI message syntax ..................................................................... 301 
D.2.22 Decoding unit information SEI message syntax ............................................................. 302 
D.2.23 Temporal sub-layer zero index SEI message syntax ....................................................... 302 
D.2.24 Scalable nesting SEI message syntax .............................................................................. 302 
D.2.25 Region refresh information SEI message syntax ............................................................ 303 
D.2.26 No display SEI message syntax ...................................................................................... 303 
D.2.27 Time code SEI message syntax ....................................................................................... 303 
D.2.28 Mastering display colour volume SEI message syntax ................................................... 304 
D.2.29 Segmented rectangular frame packing arrangement SEI message syntax ...................... 304 
D.2.30 Temporal motion-constrained tile sets SEI message syntax ........................................... 305 
D.2.31 Chroma resampling filter hint SEI message syntax ........................................................ 306 
D.2.32 Knee function information SEI message syntax ............................................................. 306 
D.2.33 Colour remapping information SEI message syntax ....................................................... 307 
D.2.34 Deinterlaced field identification SEI message syntax ..................................................... 308 
D.2.35 Content light level information SEI message syntax ...................................................... 308 
D.2.36 Dependent random access point indication SEI message syntax .................................... 308 
D.2.37 Coded region completion SEI message syntax ............................................................... 308 
D.2.38 Alternative transfer characteristics information SEI message syntax ............................. 308 
D.2.39 Ambient viewing environment SEI message syntax ....................................................... 308 
D.2.40 Content colour volume SEI message syntax ................................................................... 309 
D.2.41 Syntax of omnidirectional video specific SEI messages ................................................. 309 
D.2.42 Regional nesting SEI message syntax ............................................................................. 313 
D.2.43 Motion-constrained tile sets extraction information sets SEI message syntax ................ 314 
D.2.44 Motion-constrained tile sets extraction information nesting SEI message syntax .......... 315 
D.2.45 SEI manifest SEI message syntax ................................................................................... 315 
D.2.46 SEI prefix indication SEI message syntax ...................................................................... 315 
D.2.47 Annotated regions SEI message syntax .......................................................................... 316 
D.2.48 Shutter interval information SEI message syntax ........................................................... 317 
D.2.49 Reserved SEI message syntax ......................................................................................... 317 

D.3 SEI payload semantics .................................................................................................................. 317 
D.3.1 General SEI payload semantics ....................................................................................... 317 
D.3.2 Buffering period SEI message semantics ........................................................................ 322 
D.3.3 Picture timing SEI message semantics ............................................................................ 324 
D.3.4 Pan-scan rectangle SEI message semantics .................................................................... 329 
D.3.5 Filler payload SEI message semantics ............................................................................ 330 
D.3.6 User data registered by Recommendation ITU-T T.35 SEI message semantics ............. 330 
D.3.7 User data unregistered SEI message semantics ............................................................... 331 
D.3.8 Recovery point SEI message semantics .......................................................................... 331 
D.3.9 Scene information SEI message semantics ..................................................................... 332 
D.3.10 Picture snapshot SEI message semantics ........................................................................ 334 
D.3.11 Progressive refinement segment start SEI message semantics ........................................ 334 
D.3.12 Progressive refinement segment end SEI message semantics ......................................... 335 
D.3.13 Film grain characteristics SEI message semantics .......................................................... 335 
D.3.14 Post-filter hint SEI message semantics ........................................................................... 341 
D.3.15 Tone mapping information SEI message semantics........................................................ 342 
D.3.16 Frame packing arrangement SEI message semantics ...................................................... 346 
D.3.17 Display orientation SEI message semantics .................................................................... 353 
D.3.18 Green metadata SEI message semantics ......................................................................... 354 
D.3.19 Structure of pictures information SEI message semantics .............................................. 354 
D.3.20 Decoded picture hash SEI message semantics ................................................................ 355 
D.3.21 Active parameter sets SEI message semantics ................................................................ 356 
D.3.22 Decoding unit information SEI message semantics ........................................................ 357 
D.3.23 Temporal sub-layer zero index SEI message semantics ................................................. 358 
D.3.24 Scalable nesting SEI message semantics ........................................................................ 359 
D.3.25 Region refresh information SEI message semantics ....................................................... 360 
D.3.26 No display SEI message semantics ................................................................................. 361 
D.3.27 Time code SEI message semantics ................................................................................. 362 



 

  Rec. ITU-T H.265 v8 (08/2021) vii  

D.3.28 Mastering display colour volume SEI message semantics .............................................. 364 
D.3.29 Segmented rectangular frame packing arrangement SEI message semantics ................. 365 
D.3.30 Temporal motion-constrained tile sets SEI message semantics ...................................... 368 
D.3.31 Chroma resampling filter hint SEI message semantics ................................................... 372 
D.3.32 Knee function information SEI message semantics ........................................................ 381 
D.3.33 Colour remapping information SEI message semantics .................................................. 382 
D.3.34 Deinterlaced field identification SEI message semantics ................................................ 385 
D.3.35 Content light level information SEI message semantics ................................................. 385 
D.3.36 Dependent random access point indication SEI message semantics ............................... 385 
D.3.37 Coded region completion SEI message semantics .......................................................... 386 
D.3.38 Alternative transfer characteristics SEI message semantics ............................................ 386 
D.3.39 Ambient viewing environment SEI message semantics .................................................. 386 
D.3.40 Content colour volume SEI message semantics .............................................................. 387 
D.3.41 Semantics of omnidirectional video specific SEI messages ........................................... 389 
D.3.42 Regional nesting SEI message semantics ....................................................................... 406 
D.3.43 Motion-constrained tile sets extraction information sets SEI message semantics .......... 408 
D.3.44 Motion-constrained tile sets extraction information nesting SEI message semantics ..... 410 
D.3.45 SEI manifest SEI message semantics .............................................................................. 411 
D.3.46 SEI prefix indication SEI message semantics ................................................................. 412 
D.3.47 Annotated regions SEI message semantics ..................................................................... 413 
D.3.48 Shutter interval information SEI message semantics ...................................................... 415 
D.3.49 Reserved SEI message semantics.................................................................................... 416 

 Annex E  Video usability information ................................................................................................................ 417 
E.1 General .......................................................................................................................................... 417 
E.2 VUI syntax .................................................................................................................................... 417 

E.2.1 VUI parameters syntax ................................................................................................... 417 
E.2.2 HRD parameters syntax .................................................................................................. 419 
E.2.3 Sub-layer HRD parameters syntax .................................................................................. 420 

E.3 VUI semantics ............................................................................................................................... 420 
E.3.1 VUI parameters semantics .............................................................................................. 420 
E.3.2 HRD parameters semantics ............................................................................................. 437 
E.3.3 Sub-layer HRD parameters semantics ............................................................................ 440 

 Annex F  Common specifications for multi-layer extensions ............................................................................. 441 
F.1 Scope ............................................................................................................................................. 441 
F.2 Normative references .................................................................................................................... 441 
F.3 Definitions..................................................................................................................................... 441 
F.4 Abbreviations ................................................................................................................................ 443 
F.5 Conventions .................................................................................................................................. 444 
F.6 Bitstream and picture formats, partitionings, scanning processes and neighbouring relationships444 
F.7 Syntax and semantics .................................................................................................................... 444 

F.7.1 Method of specifying syntax in tabular form .................................................................. 444 
F.7.2 Specification of syntax functions, categories and descriptors ......................................... 444 
F.7.3 Syntax in tabular form .................................................................................................... 444 
F.7.4 Semantics ........................................................................................................................ 461 

F.8 Decoding process .......................................................................................................................... 498 
F.8.1 General decoding process ............................................................................................... 498 
F.8.2 NAL unit decoding process ............................................................................................. 506 
F.8.3 Slice decoding processes ................................................................................................. 506 
F.8.4 Decoding process for coding units coded in intra prediction mode ................................ 510 
F.8.5 Decoding process for coding units coded in inter prediction mode ................................ 510 
F.8.6 Scaling, transformation and array construction process prior to deblocking filter process

 ........................................................................................................................................ 510 
F.8.7 In-loop filter process ....................................................................................................... 510 

F.9 Parsing process .............................................................................................................................. 510 
F.10 Specification of bitstream subsets ................................................................................................. 511 

F.10.1 Sub-bitstream extraction process .................................................................................... 511 
F.10.2 Independent non-base layer rewriting process ................................................................ 511 
F.10.3 Sub-bitstream extraction process for additional layer sets .............................................. 512 

F.11 Profiles, tiers and levels ................................................................................................................ 512 
F.11.1 Independent non-base layer decoding capability ............................................................ 512 



 

viii  Rec. ITU-T H.265 v8 (08/2021) 

F.11.2 Decoder capabilities ........................................................................................................ 513 
F.11.3 Derivation of sub-bitstreams subBitstream and baseBitstream ....................................... 514 

F.12 Byte stream format ........................................................................................................................ 514 
F.13 Hypothetical reference decoder ..................................................................................................... 514 

F.13.1 General ............................................................................................................................ 514 
F.13.2 Operation of bitstream partition buffer ........................................................................... 519 
F.13.3 Operation of decoded picture buffer ............................................................................... 525 
F.13.4 Bitstream conformance ................................................................................................... 527 
F.13.5 Decoder conformance ..................................................................................................... 529 
F.13.6 Demultiplexing process for deriving a bitstream partition .............................................. 532 

F.14 Supplemental enhancement information ....................................................................................... 533 
F.14.1 General ............................................................................................................................ 533 
F.14.2 SEI payload syntax ......................................................................................................... 533 
F.14.3 SEI payload semantics .................................................................................................... 537 

F.15 Video usability information .......................................................................................................... 555 
F.15.1 General ............................................................................................................................ 555 
F.15.2 VUI syntax ...................................................................................................................... 555 
F.15.3 VUI semantics ................................................................................................................. 555 

 Annex G  Multiview high efficiency video coding ............................................................................................ 557 
G.1 Scope ............................................................................................................................................. 557 
G.2 Normative references .................................................................................................................... 557 
G.3 Definitions..................................................................................................................................... 557 
G.4 Abbreviations ................................................................................................................................ 557 
G.5 Conventions .................................................................................................................................. 557 
G.6 Bitstream and picture formats, partitionings, scanning processes, and neighbouring relationships

 ...................................................................................................................................................... 557 
G.7 Syntax and semantics .................................................................................................................... 557 
G.8 Decoding processes ....................................................................................................................... 557 

G.8.1 General decoding process ............................................................................................... 557 
G.8.2 NAL unit decoding process ............................................................................................. 558 
G.8.3 Slice decoding processes ................................................................................................. 558 
G.8.4 Decoding process for coding units coded in intra prediction mode ................................ 558 
G.8.5 Decoding process for coding units coded in inter prediction mode ................................ 558 
G.8.6 Scaling, transformation and array construction process prior to deblocking filter process

 ........................................................................................................................................ 558 
G.8.7 In-loop filter process ....................................................................................................... 558 

G.9 Parsing process .............................................................................................................................. 559 
G.10 Specification of bitstream subsets ................................................................................................. 559 
G.11 Profiles, tiers and levels ................................................................................................................ 559 

G.11.1 Profiles ............................................................................................................................ 559 
G.11.2 Tiers and levels ............................................................................................................... 560 
G.11.3 Decoder capabilities ........................................................................................................ 563 

G.12 Byte stream format ........................................................................................................................ 563 
G.13 Hypothetical reference decoder ..................................................................................................... 563 
G.14 Supplemental enhancement information ....................................................................................... 563 

G.14.1 General ............................................................................................................................ 563 
G.14.2 SEI payload syntax ......................................................................................................... 563 
G.14.3 SEI payload semantics .................................................................................................... 567 

G.15 Video usability information .......................................................................................................... 576 

 Annex H  Scalable high efficiency video coding................................................................................................ 577 
H.1 Scope ............................................................................................................................................. 577 
H.2 Normative references .................................................................................................................... 577 
H.3 Definitions..................................................................................................................................... 577 
H.4 Abbreviations ................................................................................................................................ 577 
H.5 Conventions .................................................................................................................................. 577 
H.6 Bitstream and picture formats, partitionings, scanning processes, and neighbouring relationships

 ...................................................................................................................................................... 577 
H.7 Syntax and semantics .................................................................................................................... 577 
H.8 Decoding processes ....................................................................................................................... 577 



 

  Rec. ITU-T H.265 v8 (08/2021) ix 

H.8.1 General decoding process ............................................................................................... 577 
H.8.2 NAL unit decoding process ............................................................................................. 592 
H.8.3 Slice decoding processes ................................................................................................. 592 
H.8.4 Decoding process for coding units coded in intra prediction mode ................................ 592 
H.8.5 Decoding process for coding units coded in inter prediction mode ................................ 592 
H.8.6 Scaling, transformation and array construction process prior to deblocking filter process

 ........................................................................................................................................ 593 
H.8.7 In-loop filter process ....................................................................................................... 593 

H.9 Parsing process .............................................................................................................................. 593 
H.10 Specification of bitstream subsets ................................................................................................. 593 
H.11 Profiles, tiers and levels ................................................................................................................ 593 

H.11.1 Profiles ............................................................................................................................ 593 
H.11.2 Tiers and levels ............................................................................................................... 597 
H.11.3 Decoder capabilities ........................................................................................................ 600 

H.12 Byte stream format ........................................................................................................................ 600 
H.13 Hypothetical reference decoder ..................................................................................................... 600 
H.14 Supplemental enhancement information ....................................................................................... 600 
H.15 Video usability information .......................................................................................................... 600 

 Annex I  3D high efficiency video coding .......................................................................................................... 601 
I.1 Scope ............................................................................................................................................. 601 
I.2 Normative references .................................................................................................................... 601 
I.3 Definitions..................................................................................................................................... 601 
I.4 Abbreviations ................................................................................................................................ 601 
I.5 Conventions .................................................................................................................................. 601 
I.6 Bitstream and picture formats, partitionings, scanning processes, and neighbouring relationships

 ...................................................................................................................................................... 601 
I.6.1 Bitstream formats ............................................................................................................ 601 
I.6.2 Source, decoded, and output picture formats .................................................................. 602 
I.6.3 Partitioning of pictures, slices, slice segments, tiles, CTUs, and CTBs .......................... 602 
I.6.4 Availability processes ..................................................................................................... 602 
I.6.5 Scanning processes ......................................................................................................... 602 
I.6.6 Derivation process for a wedgelet partition pattern table ................................................ 602 

I.7 Syntax and semantics .................................................................................................................... 604 
I.7.1 Method of specifying syntax in tabular form .................................................................. 604 
I.7.2 Specification of syntax functions, categories, and descriptors ........................................ 604 
I.7.3 Syntax in tabular form .................................................................................................... 604 
I.7.4 Semantics ........................................................................................................................ 617 

I.8 Decoding process .......................................................................................................................... 632 
I.8.1 General decoding process ............................................................................................... 632 
I.8.2 NAL unit decoding process ............................................................................................. 632 
I.8.3 Slice decoding process .................................................................................................... 632 
I.8.4 Decoding process for coding units coded in intra prediction mode ................................ 634 
I.8.5 Decoding process for coding units coded in inter prediction mode ................................ 642 
I.8.6 Scaling, transformation and array construction process prior to deblocking filter process

 ........................................................................................................................................ 675 
I.8.7 In-loop filter process ....................................................................................................... 675 

I.9 Parsing process .............................................................................................................................. 675 
I.9.1 General ............................................................................................................................ 675 
I.9.2 Parsing process for 0-th order Exp-Golomb codes ......................................................... 676 
I.9.3 CABAC parsing process for slice segment data ............................................................. 676 

I.10 Specification of bitstream subsets ................................................................................................. 682 
I.11 Profiles, tiers, and levels ............................................................................................................... 682 

I.11.1 Profiles ............................................................................................................................ 682 
I.11.2 Tiers and levels ............................................................................................................... 684 
I.11.3 Decoder capabilities ........................................................................................................ 684 

I.12 Byte stream format ........................................................................................................................ 684 
I.13 Hypothetical reference decoder ..................................................................................................... 684 
I.14 Supplemental enhancement information ....................................................................................... 684 

I.14.1 General ............................................................................................................................ 684 
I.14.2 SEI payload syntax ......................................................................................................... 684 



 

x Rec. ITU-T H.265 v8 (08/2021) 

I.14.3 SEI payload semantics .................................................................................................... 686 
I.15 Video usability information .......................................................................................................... 692 

Bibliography ........................................................................................................................................................ 693 

 
 



 

  Rec. ITU-T H.265 v8 (08/2021) xi 

LIST OF FIGURES  

Figure 6-1 ï Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture ......................... 22 

Figure 6-2 ï Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture ......................... 23 

Figure 6-3 ï Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture ......................... 23 

Figure 6-4 ï A picture with 11 by 9 luma CTBs that is partitioned into two slices, the first of which is partitioned into 

three slice segments (informative) ............................................................................................................................ 24 

Figure 6-5 ï A picture with 11 by 9 luma CTBs that is partitioned into two tiles and one slice (left) or is partitioned into 

two tiles and three slices (right) (informative) .......................................................................................................... 24 

Figure 7-1 ï Structure of an access unit not containing any NAL units with nal_unit_type equal to FD_NUT, 

SUFFIX_SEI_NUT, VPS_NUT, SPS_NUT, PPS_NUT, RSV_VCL_N10, RSV_VCL_R11, RSV_VCL_N12, 

RSV_VCL_R13, RSV_VCL_N14, RSV_VCL_R15, RSV_IRAP_VCL22 or RSV_IRAP_VCL23, or in the range of 

RSV_VCL24..RSV_VCL31, RSV_NVCL41..RSV_NVCL47 or UNSPEC48..UNSPEC63 .................................. 72 

Figure 8-1 ï Intra prediction mode directions (informative) .......................................................................................... 130 

Figure 8-2 ï Intra prediction angle definition (informative) ........................................................................................... 139 

Figure 8-3 ï Spatial motion vector neighbours (informative) ........................................................................................ 158 

Figure 8-4 ï Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks 

with lower-case letters) for quarter sample luma interpolation ............................................................................... 166 

Figure 8-5 ï Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks 

with lower-case letters) for eighth sample chroma interpolation ............................................................................ 168 

Figure 9-1 ï Illustration of CABAC parsing process for a syntax element synEl (informative) .................................... 204 

Figure 9-2 ï Spatial neighbour T that is used to invoke the CTB availability derivation process relative to the current CTB 

(informative) ........................................................................................................................................................... 205 

Figure 9-3 ï Illustration of CABAC initialization process (informative) ....................................................................... 206 

Figure 9-4 ï Illustration of CABAC storage process (informative)................................................................................ 217 

Figure 9-5 ï Overview of the arithmetic decoding process for a single bin (informative) ............................................. 235 

Figure 9-6 ï Flowchart for decoding a decision ............................................................................................................. 237 

Figure 9-7 ï Flowchart of renormalization ..................................................................................................................... 239 

Figure 9-8 ï Flowchart of bypass decoding process ....................................................................................................... 240 

Figure 9-9 ï Flowchart of decoding a decision before termination ................................................................................ 241 

Figure 9-10 ï Flowchart for encoding a decision ........................................................................................................... 243 

Figure 9-11 ï Flowchart of renormalization in the encoder ........................................................................................... 244 

Figure 9-12 ï Flowchart of PutBit(B) ............................................................................................................................. 244 

Figure 9-13 ï Flowchart of encoding bypass .................................................................................................................. 245 

Figure 9-14 ï Flowchart of encoding a decision before termination .............................................................................. 246 

Figure 9-15 ï Flowchart of flushing at termination ........................................................................................................ 246 

Figure C.1 ï Structure of byte streams and NAL unit streams for HRD conformance checks ....................................... 274 

Figure C.2 ï HRD buffer model ..................................................................................................................................... 277 

Figure D.1 ï Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields ............... 327 

Figure D.2 ï Nominal vertical and horizontal sampling locations of 4:2:2 samples in top and bottom fields ............... 327 

Figure D.3 ï Nominal vertical and horizontal sampling locations of 4:4:4 samples in top and bottom fields ............... 327 

Figure D.4 ï Rearrangement and upconversion of side-by-side packing arrangement with 

frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0 and ( x, y ) equal to ( 0, 0 ) or 

( 4, 8 ) for both constituent frames .......................................................................................................................... 350 



 

xii  Rec. ITU-T H.265 v8 (08/2021) 

Figure D.5 ï Rearrangement and upconversion of side-by-side packing arrangement with 

frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, ( x, y ) equal to ( 12, 8 ) for 

constituent frame 0 and ( x, y ) equal to ( 0, 0 ) or ( 4, 8 ) for constituent frame 1 ................................................. 351 

Figure D.6 ï Rearrangement and upconversion of top-bottom packing arrangement with 

frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0 and ( x, y ) equal to ( 0, 0 ) or 

( 8, 4 ) for both constituent frames .......................................................................................................................... 351 

Figure D.7 ï Rearrangement and upconversion of top-bottom packing arrangement with 

frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0, ( x, y ) equal to ( 8, 12 ) for 

constituent frame 0 and ( x, y ) equal to ( 0, 0 ) or ( 8, 4 ) for constituent frame 1 ................................................. 352 

Figure D.8 ï Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling 

(frame_packing_arrangement_type equal to 3 with quincunx_sampling_flag equal to 1) ..................................... 352 

Figure D.9 ï Rearrangement of a temporal interleaving frame arrangement  (frame_packing_arrangement_type equal to 

5) ............................................................................................................................................................................. 353 

Figure D.10 ï Rearrangement of a segmented rectangular frame packing arrangement ................................................ 368 

Figure D.11 ï A knee function with num_knee_points_minus1 equal to 2 .................................................................... 381 

Figure E.1 ï Location of chroma samples for top and bottom fields for chroma_format_idc equal to 1 (4:2:0 chroma 

format) as a function of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field .......... 432 

Figure E.2 ï Location of the top-left chroma sample when chroma_format_idc is equal to 1 (4:2:0 chroma format) as a 

function of ChromaLocType .................................................................................................................................. 433 

Figure E.3 ï Location of the top-left chroma sample when chroma_format_idc is equal to 1 (4:2:0 chroma format) when 

ChromaLocType is equal to 1 ................................................................................................................................. 433 

Figure F.1 ï Bitstream-partition-specific HRD buffer model ......................................................................................... 518 

 

LIST OF TABLES  

Table 5-1 ï Operation precedence from highest (at top of table) to lowest (at bottom of table) ...................................... 19 

Table 6-1 ï SubWidthC and SubHeightC values derived from chroma_format_idc and separate_colour_plane_flag .... 22 

Table 7-1 ï NAL unit type codes and NAL unit type classes ........................................................................................... 66 

Table 7-2 ï Interpretation of pic_type .............................................................................................................................. 88 

Table 7-3 ï Specification of sizeId ................................................................................................................................... 93 

Table 7-4 ï Specification of matrixId according to sizeId, prediction mode and colour component ............................... 93 

Table 7-5 ï Specification of default values of ScalingList[ 0 ][  matrixId ][  i ] with i = 0..15 .......................................... 94 

Table 7-6 ï Specification of default values of ScalingList[ 1..3 ][  matrixId ][  i ] with i = 0..63 ...................................... 94 

Table 7-7 ï Name association to slice_type ..................................................................................................................... 96 

Table 7-8 ï Specification of the SAO type ..................................................................................................................... 105 

Table 7-9 ï Specification of the SAO edge offset class ................................................................................................. 106 

Table 7-10 ï Name association to prediction mode and partitioning type ...................................................................... 108 

Table 7-11 ï Name association to inter prediction mode ............................................................................................... 109 

Table 8-1 ï Specification of intra prediction mode and associated names ..................................................................... 130 

Table 8-2 ï Specification of modeIdx ............................................................................................................................ 132 

Table 8-3 ï Specification of IntraPredModeC when ChromaArrayType is equal to 2 ................................................... 132 

Table 8-4 ï Specification of intraHorVerDistThres[ nTbS ] for various transform block sizes ..................................... 137 

Table 8-5 ï Specification of intraPredAngle .................................................................................................................. 139 

Table 8-6 ï Specification of invAngle ............................................................................................................................ 139 

Table 8-7 ï Specification of l0CandIdx and l1CandIdx ................................................................................................. 155 



 

  Rec. ITU-T H.265 v8 (08/2021) xiii  

Table 8-8 ï Assignment of the luma prediction sample predSampleLXL ....................................................................... 167 

Table 8-9 ï Assignment of the chroma prediction sample predSampleLXC for ( X, Y ) being replaced by ( 1, b ), ( 2, c ), 

( 3, d ), ( 4, e ), ( 5, f ), ( 6, g ) and ( 7, h ), respectively ......................................................................................... 169 

Table 8-10 ï Specification of QpC as a function of qPi for ChromaArrayType equal to 1 ............................................. 176 

Table 8-11 ï Name of association to edgeType .............................................................................................................. 185 

Table 8-12 ï Derivation of threshold variables ƾȹ and tCȹ from input Q ......................................................................... 194 

Table 8-13 ï Specification of hPos and vPos according to the sample adaptive offset class ......................................... 200 

Table 9-1 ï Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative) .................... 201 

Table 9-2 ï Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative) ............................ 202 

Table 9-3 ï Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v) ............ 202 

Table 9-4 ï Association of ctxIdx and syntax elements for each initializationType in the initialization process .......... 207 

Table 9-5 ï Values of initValue for ctxIdx of sao_merge_left_flag and sao_merge_up_flag ........................................ 209 

Table 9-6 ï Values of initValue for ctxIdx of sao_type_idx_luma and sao_type_idx_chroma ...................................... 209 

Table 9-7 ï Values of initValue for ctxIdx of split_cu_flag ........................................................................................... 209 

Table 9-8 ï Values of initValue for ctxIdx of cu_transquant_bypass_flag .................................................................... 209 

Table 9-9 ï Values of initValue for ctxIdx of cu_skip_flag ........................................................................................... 209 

Table 9-10 ï Values of initValue for ctxIdx of pred_mode_flag .................................................................................... 209 

Table 9-11 ï Values of initValue for ctxIdx of part_mode ............................................................................................. 210 

Table 9-12 ï Values of initValue for ctxIdx of prev_intra_luma_pred_flag .................................................................. 210 

Table 9-13 ï Values of initValue for ctxIdx of intra_chroma_pred_mode ..................................................................... 210 

Table 9-14 ï Values of initValue for ctxIdx of rqt_root_cbf .......................................................................................... 210 

Table 9-15 ï Values of initValue for ctxIdx of merge_flag ............................................................................................ 210 

Table 9-16 ï Values of initValue for ctxIdx of merge_idx ............................................................................................. 210 

Table 9-17 ï Values of initValue for ctxIdx of inter_pred_idc ...................................................................................... 211 

Table 9-18 ï Values of initValue for ctxIdx of ref_idx_l0 and ref_idx_l1 ..................................................................... 211 

Table 9-19 ï Values of initValue for ctxIdx of mvp_l0_flag and mvp_l1_flag ............................................................. 211 

Table 9-20 ï Values of initValue for ctxIdx of split_transform_flag ............................................................................. 211 

Table 9-21 ï Values of initValue for ctxIdx of cbf_luma ............................................................................................... 211 

Table 9-22 ï Values of initValue for ctxIdx of cbf_cb and cbf_cr ................................................................................. 211 

Table 9-23 ï Values of initValue for ctxIdx of abs_mvd_greater0_flag and abs_mvd_greater1_flag ........................... 212 

Table 9-24 ï Values of initValue for ctxIdx of cu_qp_delta_abs ................................................................................... 212 

Table 9-25 ï Values of initValue for ctxIdx of transform_skip_flag ............................................................................. 212 

Table 9-26 ï Values of initValue for ctxIdx of last_sig_coeff_x_prefix ........................................................................ 212 

Table 9-27 ï Values of initValue for ctxIdx of last_sig_coeff_y_prefix ........................................................................ 212 

Table 9-28 ï Values of initValue for ctxIdx of coded_sub_block_flag .......................................................................... 213 

Table 9-29 ï Values of initValue for ctxIdx of sig_coeff_flag ....................................................................................... 213 

Table 9-30 ï Values of initValue for ctxIdx of coeff_abs_level_greater1_flag ............................................................. 213 

Table 9-31 ï Values of initValue for ctxIdx of coeff_abs_level_greater2_flag ............................................................. 214 

Table 9-32 ï Values of initValue for ctxIdx of explicit_rdpcm_flag ............................................................................. 214 

Table 9-33 ï Values of initValue for ctxIdx of explicit_rdpcm_dir_flag ....................................................................... 214 



 

xiv Rec. ITU-T H.265 v8 (08/2021) 

Table 9-34 ï Values of initValue for ctxIdx of cu_chroma_qp_offset_flag ................................................................... 214 

Table 9-35 ï Values of initValue for ctxIdx of cu_chroma_qp_offset_idx .................................................................... 214 

Table 9-36 ï Values of initValue for ctxIdx of log2_res_scale_abs_plus1 .................................................................... 215 

Table 9-37 ï Values of initValue for ctxIdx of res_scale_sign_flag .............................................................................. 215 

Table 9-38 ï Values of initValue for ctxIdx of palette_mode_flag ................................................................................ 215 

Table 9-39 ï Values of initValue for ctxIdx of tu_residual_act_flag ............................................................................. 215 

Table 9-40 ï Values of initValue for ctxIdx of palette_run_prefix ................................................................................ 215 

Table 9-41 ï Values of initValue for ctxIdx of copy_above_palette_indices_flag and copy_above_indices_for_

final_run_flag ......................................................................................................................................................... 216 

Table 9-42 ï Values of initValue for ctxIdx of palette_transpose_flag .......................................................................... 216 

Table 9-43 ï Syntax elements and associated binarizations ........................................................................................... 218 

Table 9-44 ï Bin string of the unary binarization (informative) ..................................................................................... 221 

Table 9-45 ï Binarization for part_mode ........................................................................................................................ 223 

Table 9-46 ï Binarization for intra_chroma_pred_mode ................................................................................................ 224 

Table 9-47 ï Binarization for inter_pred_idc ................................................................................................................. 224 

Table 9-48 ï Assignment of ctxInc to syntax elements with context coded bins ........................................................... 228 

Table 9-49 ï Specification of ctxInc using left and above syntax elements ................................................................... 230 

Table 9-50 ï Specification of ctxIdxMap[ i ] ................................................................................................................. 232 

Table 9-51 ï Specification of ctxIdxMap[ copy_above_palette_indices_flag ][  binIdx ] .............................................. 234 

Table 9-52 ï Specification of rangeTabLps depending on the values of pStateIdx and qRangeIdx .............................. 238 

Table 9-53 ï State transition table .................................................................................................................................. 239 

Table A.1 ï Allowed values for syntax elements in the format range extensions profiles ............................................. 253 

Table A.2 ï Bitstream indications for conformance to format range extensions profiles ............................................... 254 

Table A.3 ï Bitstream indications for conformance to high throughput profiles ........................................................... 257 

Table A.4 ï Allowed values for syntax elements in the screen content coding extensions profiles ............................... 258 

Table A.5 ï Bitstream indications for conformance to screen content coding extensions profiles ................................ 259 

Table A.6 ï Allowed values for syntax elements in the high throughput screen content coding extensions profiles .... 261 

Table A.7 ï Bitstream indications for conformance to high throughput screen content coding extensions profiles ...... 262 

Table A.8 ï General tier and level limits ........................................................................................................................ 264 

Table A.9 ï Tier and level limits for the video profiles .................................................................................................. 266 

Table A.10 ï Specification of CpbVclFactor, CpbNalFactor, FormatCapabilityFactor and MinCrScaleFactor ............ 267 

Table A.11 ï Maximum picture rates (pictures per second) at level 1 to 4.1 for some example picture sizes when 

MinCbSizeY is equal to 64 ..................................................................................................................................... 269 

Table A.12 ï Maximum picture rates (pictures per second) at level 5 to 6.2 for some example picture sizes when 

MinCbSizeY is equal to 64 ..................................................................................................................................... 270 

Table D.1 ï Persistence scope of SEI messages (informative) ....................................................................................... 318 

Table D.2 ï Interpretation of pic_struct .......................................................................................................................... 326 

Table D.3 ï scene_transition_type values ...................................................................................................................... 333 

Table D.4 ï film_grain_model_id values ....................................................................................................................... 336 

Table D.5 ï blending_mode_id values ........................................................................................................................... 337 

Table D.6 ï filter_hint_type values ................................................................................................................................ 342 



 

  Rec. ITU-T H.265 v8 (08/2021) xv 

Table D.7 ï Interpretation of camera_iso_speed_idc and exposure_idx_idc ................................................................. 345 

Table D.8 ï Definition of frame_packing_arrangement_type ........................................................................................ 347 

Table D.9 ï Definition of content_interpretation_type ................................................................................................... 348 

Table D.10 ï Interpretation of hash_type ....................................................................................................................... 355 

Table D.11 ï Definition of counting_type[ i ] values ..................................................................................................... 362 

Table D.12 ï Definition of segmented_rect_content_interpretation_type ...................................................................... 366 

Table D.13 ï ver_chroma_filter_idc values .................................................................................................................... 372 

Table D.14 ï hor_chroma_filter_idc values ................................................................................................................... 373 

Table D.15 ï Chroma sampling format indicated by target_format_idc ........................................................................ 373 

Table D.16 ï Constraints on the value of num_vertical_filters ...................................................................................... 374 

Table D.17 ï Constraints on the value of num_horizontal_filters .................................................................................. 374 

Table D.18 ï Values of verFilterCoeff and verTapLength when ver_chroma_filter_idc is equal to 2 ........................... 375 

Table D.19 ï Values of horFilterCoeff and horTapLength when hor_chroma_filter_idc is equal to 2 .......................... 375 

Table D.20 ï Usage of chroma filter in the vertical direction ........................................................................................ 378 

Table D.21 ï Usage of chroma filter in the horizontal direction .................................................................................... 380 

Table D.22 ï rwp_transform_type[ i ] values ................................................................................................................. 396 

Table D.23 ï Interpretation of manifest_sei_description[ i ] .......................................................................................... 411 

Table E.1 ï Interpretation of sample aspect ratio indicator ............................................................................................ 421 

Table E.2 ï Meaning of video_format ............................................................................................................................ 422 

Table E.3 ï Colour primaries interpretation using the colour_primaries syntax element ............................................... 423 

Table E.4 ï Transfer characteristics interpretation using the transfer_characteristics syntax element ........................... 424 

Table E.5 ï Matrix coefficients interpretation using the matrix_coeffs syntax element ................................................. 431 

Table E.6 ï Definition of HorizontalOffsetC and VerticalOffsetC as a function of chroma_format_idc and 

ChromaLocType ..................................................................................................................................................... 433 

Table E.7 ï Divisor for computation of DpbOutputElementalInterval[ n ] .................................................................... 439 

Table F.1 ï Mapping of ScalabiltyId to scalability dimensions ...................................................................................... 465 

Table F.2 ï Mapping of AuxId to the type of auxiliary pictures .................................................................................... 467 

Table F.3 ï Specification of CompatibleProfileList ....................................................................................................... 514 

Table F.4 ï Persistence scope of SEI messages (informative) ........................................................................................ 537 

Table G.1 ï Persistence scope of SEI messages (informative) ....................................................................................... 567 

Table G.2 ï Association between camera parameter variables and syntax elements ..................................................... 569 

Table G.3 ï Definition of depth_representation_type .................................................................................................... 571 

Table G.4 ï Association between depth parameter variables and syntax elements ........................................................ 571 

Table G.5 ï Association between camera parameter variables and syntax elements. .................................................... 576 

Table H.1 ï 16-phase luma resampling filter .................................................................................................................. 583 

Table H.2 ï 16-phase chroma resampling filter .............................................................................................................. 584 

Table H.3 ï Allowed values for syntax elements in the scalable format range extensions profiles ............................... 596 

Table H.4 ï Bitstream indications for conformance to scalable range extensions profiles............................................. 597 

Table I.1 ï Name association to prediction mode and partitioning type ......................................................................... 628 

Table I.2 ï Specification of intra prediction mode and associated names ...................................................................... 635 



 

xvi Rec. ITU-T H.265 v8 (08/2021) 

Table I.3 ï Specification of divCoeff depending on sDenomDiv ................................................................................... 663 

Table I.4 ï Association of ctxIdx and syntax elements for each initializationType in the initialization process ........... 676 

Table I.5 ï Values of initValue for skip_intra_flag ctxIdx ............................................................................................. 677 

Table I.6 ï Values of initValue for no_dim_flag ctxIdx ................................................................................................. 677 

Table I.7 ï Values of initValue for depth_intra_mode_idx_flag ctxIdx ......................................................................... 677 

Table I.8 ï Values of initValue for skip_intra_mode_idx ctxIdx ................................................................................... 677 

Table I.9 ï Values of initValue for dbbp_flag ctxIdx ..................................................................................................... 677 

Table I.10 ï Values of initValue for dc_only_flag ctxIdx .............................................................................................. 677 

Table I.11 ï Values of initValue for iv_res_pred_weight_idx ctxIdx ............................................................................ 677 

Table I.12 ï Values of initValue for illu_comp_flag ctxIdx ........................................................................................... 678 

Table I.13 ï Values of initValue for depth_dc_present_flag ctxIdx ............................................................................... 678 

Table I.14 ï Values of initValue for depth_dc_abs ctxIdx ............................................................................................. 678 

Table I.15 ï Syntax elements and associated binarizations ............................................................................................ 679 

Table I.16 ï Binarization for part_mode ......................................................................................................................... 679 

Table I.17 ï Assignment of ctxInc to syntax elements with context coded bins ............................................................ 681 

Table I.18 ï Specification of ctxInc using left and above syntax elements .................................................................... 681 

Table I.19 ï Persistence scope of SEI messages (informative) ....................................................................................... 686 

Table I.20 ï Interpretation of depth_type ....................................................................................................................... 687 

Table I.21 ï Locations of the top-left luma samples of constituent pictures packed in a picture with ViewIdx greater than 

0 relative to the top-left luma sample of this picture .............................................................................................. 687 

 



 

  Rec. ITU-T H.265 v8 (08/2021) xvii  

Foreword 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T 

is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view 

to standardizing telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly 

(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce 

Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in 

WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards 

are prepared on a collaborative basis with ISO and IEC. 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form 

the specialized system for world-wide standardization. National Bodies that are members of ISO and IEC participate in 

the development of International Standards through technical committees established by the respective organization to 

deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. 

Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the 

work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. 

Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote. 

This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Question 6/16, also known as 

VCEG (Video Coding Experts Group), and by the working groups of ISO/IEC JTC 1/SC 29 known as MPEG (Moving 

Picture Experts Group). VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new 

video coding standard(s) appropriate for a wide range of conversational and non-conversational services. MPEG was 

formed in 1988 to establish standards for coding of moving pictures and associated audio for various applications such as 

digital storage media, distribution, and communication. 

In this Recommendation | International Standard Annexes A through I contain normative requirements and are an integral 

part of this Recommendation | International Standard. 

 

 





 

  Rec. ITU-T H.265 v8 (08/2021) 1 

Recommendation ITU-T H.265 

High efficiency video coding 

0 Introduction  

0.1 General 

This clause and its subclauses do not form an integral part of this Recommendation | International Standard. 

0.2 Prologue 

As the costs for both processing power and memory have reduced, network support for coded video data has diversified, 

and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed 

video representation with substantially increased coding efficiency and enhanced robustness to network environments. 

Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group 

(MPEG) formed a Joint Collaborative Team on Video Coding (JCT-VC) in 2010 and a Joint Collaborative Team on 3D 

Video Coding Extension Development (JCT-3V) in 2012 for development of a new 

Recommendation | International Standard. This Recommendation | International Standard was developed in the JCT-VC 

and the JCT-3V until 2020, when the responsibility for further maintenance and enhancement of the standard was 

transferred to another joint collaborative team of the same organizations called the Joint Video Experts Team (JVET). 

0.3 Purpose 

This Recommendation | International Standard was developed in response to the growing need for higher compression of 

moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting, internet 

streaming, and communications. It is also designed to enable the use of the coded video representation in a flexible manner 

for a wide variety of network environments as well as to enable the use of multi-core parallel encoding and decoding 

devices. The use of this Recommendation | International Standard allows motion video to be manipulated as a form of 

computer data and to be stored on various storage media, transmitted and received over existing and future networks and 

distributed on existing and future broadcasting channels. Supports for higher bit depths and enhanced chroma formats, 

including the use of full-resolution chroma are provided. Support for scalability enables video transmission on networks 

with varying transmission conditions and other scenarios involving multiple bit rate services. Support for multiview 

enables representation of video content with multiple camera views and optional auxiliary information. Support for 3D 

enables joint representation of video content and depth information with multiple camera views. 

0.4 Applications 

This Recommendation | International Standard is designed to cover a broad range of applications for video content 

including but not limited to the following: 

¶ Broadcast (cable TV on optical networks / copper, satellite, terrestrial, etc.) 

¶ Camcorders 

¶ Content production and distribution 

¶ Digital cinema 

¶ Home cinema 

¶ Internet streaming, download and play 

¶ Medical imaging 

¶ Mobile streaming, broadcast and communications 

¶ Real-time conversational services (videoconferencing, videophone, telepresence, etc.) 

¶ Remote video surveillance 

¶ Storage media (optical disks, digital video tape recorder, etc.) 

¶ Wireless display 



 

2 Rec. ITU-T H.265 v8 (08/2021) 

0.5 Publication and versions of this Specification 

This Specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving 

Picture Experts Group (MPEG). It is published as technically-aligned twin text in both ITU-T and ISO/IEC. As the basis 

text has been drafted to become both an ITU-T Recommendation and an ISO/IEC International Standard, the term 

"Specification" (with capitalization to indicate that it refers to the whole of the text) is used herein when the text refers to 

itself. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 1 refers to the first approved version of this Recommendation | International 

Standard. The first edition published by ITU-T as Rec. ITU-T H.265 (04/2013) and by ISO/IEC as ISO/IEC 23008-2:2013 

corresponded to the first version. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 2 refers to the integrated text additionally containing format range 

extensions, scalability extensions, multiview extensions, additional supplement enhancement information, and corrections 

to various minor defects in the prior content of the Specification. The second edition published by ITU-T as Rec. H.265 

(10/2014) and by ISO/IEC as ISO/IEC 23008-2:2015 corresponded to the second version. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 3 refers to the integrated text additionally containing 3D extensions, 

additional supplement enhancement information, and corrections to various minor defects in the prior content of the 

Specification. The third edition published by ITU-T as Rec. H.265 (04/2015) corresponded to the third version. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 4 refers to the integrated text additionally containing screen content coding 

extensions profiles, scalable range extensions profiles, additional high throughput profiles, additional supplement 

enhancement information, additional colour representation identifiers, and corrections to various minor defects in the prior 

content of the Specification. The fourth edition published by ITU-T as Rec. H.265 (12/2016) and by ISO/IEC as ISO/IEC 

23008-2:2017 corresponded to the fourth version. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 5 refers to the integrated text additionally containing additional SEI messages 

that include omnidirectional video SEI messages, a Monochrome 10 profile, a Main 10 Still Picture profile, and corrections 

to various minor defects in the prior content of the Specification. The fifth  edition published by ITU-T as Rec. H.265 

(02/2018) corresponded to the fifth  version. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 6 refers to the integrated text additionally containing additional SEI messages 

for SEI manifest and SEI prefix, along with some corrections to the existing specification text. The sixth edition published 

by ITU-T as Rec. H.265 (06/2019) corresponded to the sixth version. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 7 refers to the integrated text additionally containing the fisheye video 

information SEI message and the annotated regions SEI message, along with some corrections to the existing specification 

text. The seventh edition published by ITU-T as Rec. H.265 (11/2019) corresponded to the seventh version. 

Rec. ITU-T H.265 | ISO/IEC 23008-2 version 8 (the current version) refers to the integrated text additionally containing 

the shutter interval information SEI message, along with some corrections to the existing specification text. 

0.6 Profiles, tiers and levels 

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of 

applications, bit rates, resolutions, qualities and services. Applications should cover, among other things, digital storage 

media, television broadcasting and real-time communications. In the course of creating this Specification, various 

requirements from typical applications have been considered, necessary algorithmic elements have been developed, and 

these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among 

different applications. 

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets of 

the syntax are also stipulated by means of "profiles", "tiers" and "levels". These and other related terms are formally defined 

in clause 3. 

A "profile" is a subset of the entire bitstream syntax that is specified in this Recommendation | International Standard. 

Within the bounds imposed by the syntax of a given profile, it is still possible to require a very large variation in the 

performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the 

specified size of the decoded pictures. In many applications, it is currently neither practical nor economical to implement 

a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile. 

In order to deal with this problem, "tiers" and "levels" are specified within each profile. A level of a tier is a specified set 

of constraints imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values. 

Alternatively they may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied by 

picture height multiplied by number of pictures decoded per second). A level specified for a lower tier is more constrained 

than a level specified for a higher tier. 



 

  Rec. ITU-T H.265 v8 (08/2021) 3 

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to 

achieve a subset of the complete syntax, flags, parameters and other syntax elements are included in the bitstream that 

signal the presence or absence of syntactic elements that occur later in the bitstream. 

0.7 Overview of the design characteristics 

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image 

or video quality. The algorithm is typically not lossless, as the exact source sample values are typically not preserved 

through the encoding and decoding processes. A number of techniques may be used to achieve highly efficient 

compression. Encoding algorithms (not specified in this Recommendation | International Standard) may select between 

inter and intra coding for block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter 

prediction to exploit temporal statistical dependencies between different pictures. Intra coding uses various spatial 

prediction modes to exploit spatial statistical dependencies in the source signal for a single picture. Motion vectors and 

intra prediction modes may be specified for a variety of block sizes in the picture. The prediction residual may then be 

further compressed using a transform to remove spatial correlation inside the transform block before it is quantized, 

producing a possibly irreversible process that typically discards less important visual information while forming a close 

approximation to the source samples. Finally, the motion vectors or intra prediction modes may also be further compressed 

using a variety of prediction mechanisms, and, after prediction, are combined with the quantized transform coefficient 

information and encoded using arithmetic coding. 

0.8 How to read this Specification 

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be read 

for the geometrical relationship of the source, input and output of the decoder. Clause 7 (Syntax and semantics) specifies 

the order to parse syntax elements from the bitstream. See clauses 7.1ï7.3 for syntactical order and see clause 7.4 for 

semantics; e.g., the scope, restrictions and conditions that are imposed on the syntax elements. The actual parsing for most 

syntax elements is specified in clause 9 (Parsing process). Clause 10 (Sub-bitstream extraction process) specifies the sub-

bitstream extraction process. Finally, clause 8 (Decoding process) specifies how the syntax elements are mapped into 

decoded samples. Throughout reading this Specification, the reader should refer to clauses 2 (Normative references), 4 

(Abbreviations), and 5 (Conventions) as needed. Annexes A through I also form an integral part of this Recommendation 

| International Standard. 

Annex A specifies profiles each being tailored to certain application domains, and defines the so-called tiers and levels of 

the profiles. Annex B specifies syntax and semantics of a byte stream format for delivery of coded video as an ordered 

stream of bytes. Annex C specifies the hypothetical reference decoder, bitstream conformance, decoder conformance and 

the use of the hypothetical reference decoder to check bitstream and decoder conformance. Annex D specifies syntax and 

semantics for supplemental enhancement information message payloads. Annex E specifies syntax and semantics of the 

video usability information parameters of the sequence parameter set. Annex F specifies general multi-layer support for 

bitstreams and decoders. Annex G contains support for multiview coding. Annex H contains support for scalability. 

Annex I contains support for 3D coding. 

Throughout this Specification, statements appearing with the preamble "NOTE ï" are informative and are not an integral 

part of this Recommendation | International Standard. 

1 Scope 

This Recommendation | International Standard specifies high efficiency video coding. 

2 Normative references 

2.1 General 

The following Recommendations and International Standards contain provisions which, through reference in this text, 

constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated 

were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this 

Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition 

of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid 

International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid 

ITU-T Recommendations. 



 

4 Rec. ITU-T H.265 v8 (08/2021) 

2.2 Identical Recommendations | International Standards 

ï None 

2.3 Paired Recommendations | International Standards equivalent in technical content 

ï None 

2.4 Additional references 

ï Recommendation ITU-T T.35 (in force), Procedure for the allocation of ITU-T defined codes for 

non-standard facilities. 

ï ISO/IEC 10646: in force, Information technology ï Universal Coded Character Set (UCS). 

ï ISO/IEC 11578: in force, Information technology ï Open Systems Interconnection ï Remote Procedure Call 

(RPC). 

ï ISO 11664-1: in force, Colorimetry ï Part 1: CIE standard colorimetric observers. 

ï ISO 12232: in force, Photography ï Digital still cameras ï Determination of exposure index, ISO speed 

ratings, standard output sensitivity, and recommended exposure index. 

ï IETF RFC 1321 (in force), The MD5 Message-Digest Algorithm. 

ï IETF RFC 5646 (in force), Tags for Identifying Languages. 

ï ISO/IEC 23001-11 (in force), Information Technology ï MPEG Systems technologies ï Part 11: Energy-

efficient media consumption (green metadata). 

3 Definitions 

For the purposes of this Recommendation | International Standard, the following definitions apply: 

3.1 access unit: A set of NAL units that are associated with each other according to a specified classification rule, 

are consecutive in decoding order, and contain exactly one coded picture with nuh_layer_id equal to 0. 

NOTE 1 ï In addition to containing the video coding layer (VCL) NAL units of the coded picture with nuh_layer_id 

equal to 0, an access unit may also contain non-VCL NAL units. The decoding of an access unit with the decoding 

process specified in clause 8 always results in a decoded picture with nuh_layer_id equal to 0. 

NOTE 2 ï An access unit is defined differently in Annex F and does not need to contain a coded picture with 

nuh_layer_id equal to 0. 

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in at least one of the two 

dimensions is non-zero. 

3.3 associated IRAP picture: The previous IRAP picture in decoding order (when present). 

3.4 associated non-VCL NAL unit : A non-VCL NAL unit (when present) for a VCL NAL unit where the VCL NAL 

unit is the associated VCL NAL unit of the non-VCL NAL unit. 

3.5 associated VCL NAL unit: The preceding VCL NAL unit in decoding order for a non-VCL NAL unit with 

nal_unit_type equal to EOS_NUT, EOB_NUT, FD_NUT or SUFFIX_SEI_NUT, or in the ranges of 

RSV_NVCL45..RSV_NVCL47 or UNSPEC56..UNSPEC63; or otherwise the next VCL NAL unit in decoding 

order. 

3.6 azimuth circle: A circle on a sphere connecting all points with the same azimuth value. 

NOTE ï An azimuth circle is always a great circle like a longitude line on the earth. 

3.7 base layer: A layer in which all NAL units have nuh_layer_id equal to 0. 

3.8 bin: One bit of a bin string. 

3.9 binarization : A set of bin strings for all possible values of a syntax element. 

3.10 binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin 

strings. 

3.11 bin string : An intermediate binary representation of values of syntax elements from the binarization of the syntax 

element. 

3.12 bi-predictive (B) slice: A slice that is decoded using intra prediction or using inter prediction with at most two 

motion vectors and reference indices to predict the sample values of each block. 



 

  Rec. ITU-T H.265 v8 (08/2021) 5 

3.13 bitstream: A sequence of bits, in the form of a NAL unit stream or a byte stream, that forms the representation 

of coded pictures and associated data forming one or more coded video sequences (CVSs). 

3.14 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients. 

3.15 broken link : A location in a bitstream at which it is indicated that some subsequent pictures in decoding order 

may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream. 

3.16 broken link access (BLA) access unit: An access unit in which the coded picture with nuh_layer_id equal to 0 

is a BLA picture. 

3.17 broken link access (BLA) picture: An IRAP picture for which each VCL NAL unit has nal_unit_type equal to 

BLA_W_LP, BLA_W_RADL, or BLA_N_LP. 

NOTE ï A BLA picture does not refer to any pictures other than itself for inter prediction in its decoding process, and 

may be the first picture in the bitstream in decoding order, or may appear later in the bitstream. Each BLA picture 

begins a new CVS, and has the same effect on the decoding process as an instantaneous decoding refresh (IDR) picture. 

However, a BLA picture contains syntax elements that specify a non-empty RPS. When a BLA picture for which each 

VCL NAL unit has nal_unit_type equal to BLA_W_LP, it may have associated random access skipped leading (RASL) 

pictures, which are not output by the decoder and may not be decodable, as they may contain references to pictures that 

are not present in the bitstream. When a BLA picture for which each VCL NAL unit has nal_unit_type equal to 

BLA_W_LP, it may also have associated RADL pictures, which are specified to be decoded. When a BLA picture for 

which each VCL NAL unit has nal_unit_type equal to BLA_W_RADL, it does not have associated RASL pictures but 

may have associated random access decodable leading (RADL) pictures. When a BLA picture for which each VCL 

NAL unit has nal_unit_type equal to BLA_N_LP, it does not have any associated leading pictures. 

3.18 buffering period : The set of access units starting with an access unit that contains a buffering period suplemental 

enhancement information (SEI) message and containing all subsequent access units in decoding order up to but 

not including the next access unit (when present) that contains a buffering period SEI message. 

3.19 byte: A sequence of 8 bits, within which, when written or read as a sequence of bit values, the left-most and 

right-most bits represent the most and least significant bits, respectively. 

3.20 byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from 

the position of the first bit in the bitstream, and a bit or byte or syntax element is said to be byte-aligned when 

the position at which it appears in a bitstream is byte-aligned. 

3.21 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified 

in Annex B. 

3.22 can: A term used to refer to behaviour that is allowed, but not necessarily required. 

3.23 chroma: An adjective, represented by the symbols Cb and Cr, specifying that a sample array or single sample is 

representing one of the two colour difference signals related to the primary colours. 

NOTE ï The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear 

light transfer characteristics that is often associated with the term chrominance. 

3.24 clean random access (CRA) access unit: An access unit in which the coded picture with nuh_layer_id equal to 

0 is a CRA picture. 

3.25 clean random access (CRA) picture: An IRAP picture for which each VCL NAL unit has nal_unit_type equal 

to CRA_NUT. 

NOTE ï A CRA picture does not refer to any pictures other than itself for inter prediction in its decoding process, and 

may be the first picture in the bitstream in decoding order, or may appear later in the bitstream. A CRA picture may 

have associated RADL or RASL pictures. As with a BLA picture, a CRA picture may contain syntax elements that 

specify a non-empty RPS. When a CRA picture has NoRaslOutputFlag equal to 1, the associated RASL pictures are 

not output by the decoder, because they may not be decodable, as they may contain references to pictures that are not 

present in the bitstream. 

3.26 coded picture: A coded representation of a picture containing all CTUs of the picture. 

3.27 coded picture buffer (CPB): A first-in first-out buffer containing decoding units in decoding order specified in 

the hypothetical reference decoder in Annex C. 

3.28 coded representation: A data element as represented in its coded form. 

3.29 coded slice segment NAL unit : A NAL unit that has nal_unit_type in the range of TRAIL_N to RASL_R, 

inclusive, or in the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive, which indicates that the NAL unit 

contains a coded slice segment. 

3.30 coded layer-wise video sequence (CLVS): A sequence of pictures and the associated non-VCL NAL units of 

the base layer of a coded video sequence (CVS). 



 

6 Rec. ITU-T H.265 v8 (08/2021) 

3.31 coded video sequence (CVS): A sequence of access units that consists, in decoding order, of an IRAP access 

unit with NoRaslOutputFlag equal to 1, followed by zero or more access units that are not IRAP access units 

with NoRaslOutputFlag equal to 1, including all subsequent access units up to but not including any subsequent 

access unit that is an IRAP access unit with NoRaslOutputFlag equal to 1. 

NOTE ï An IRAP access unit may be an IDR access unit, a BLA access unit, or a CRA access unit. The value of 

NoRaslOutputFlag is equal to 1 for each IDR access unit, each BLA access unit, and each CRA access unit that is the 

first access unit in the bitstream in decoding order, is the first access unit that follows an end of sequence NAL unit in 

decoding order, or has HandleCraAsBlaFlag equal to 1. 

3.32 coded video sequence group (CVSG): One or more consecutive CVSs in decoding order that collectively 

consist of an IRAP access unit that activates a video parameter set (VPS) RBSP firstVpsRbsp that was not already 

active followed by all subsequent access units, in decoding order, for which firstVpsRbsp is the active VPS raw 

byte sequence payload (RBSP) up to the end of the bitstream or up to but excluding the access unit that activates 

a different VPS RBSP than firstVpsRbsp, whichever is earlier in decoding order. 

3.33 coding block: An NxN block of samples for some value of N such that the division of a CTB into coding blocks 

is a partitioning. 

3.34 coding tree block (CTB): An NxN block of samples for some value of N such that the division of a component 

into CTBs is a partitioning. 

3.35 coding tree unit (CTU): A CTB of luma samples, two corresponding CTBs of chroma samples of a picture that 

has three sample arrays, or a CTB of samples of a monochrome picture or a picture that is coded using three 

separate colour planes and syntax structures used to code the samples. 

3.36 coding unit : A coding block of luma samples, two corresponding coding blocks of chroma samples of a picture 

that has three sample arrays, or a coding block of samples of a monochrome picture or a picture that is coded 

using three separate colour planes and syntax structures used to code the samples. 

3.37 component: An array or single sample from one of the three arrays (luma and two chroma) that compose a 

picture in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that compose a picture 

in monochrome format. 

3.38 constituent picture: A part of a spatially frame -packed stereoscopic picture that corresponds to one view, or a 

picture itself when frame packing is not in use or the temporal interleaving frame packing arrangement is in use. 

3.39 context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an 

equation containing recently decoded bins. 

3.40 cropped decoded picture: The result of cropping a decoded picture based on the conformance cropping window 

specified in the sequence parameter set (SPS) that is referred to by the corresponding coded picture. 

3.41 decoded picture: A decoded picture is derived by decoding a coded picture. 

3.42 decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output 

delay specified for the hypothetical reference decoder in Annex C. 

3.43 decoder: An embodiment of a decoding process. 

3.44 decoder under test (DUT): A decoder that is tested for conformance to this Specification by operating the 

hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the hypothetical reference 

decoder and comparing the values and timing or order of the output of the two decoders. 

3.45 decoding order: The order in which syntax elements are processed by the decoding process. 

3.46 decoding process: The process specified in this Specification that reads a bitstream and derives decoded pictures 

from it. 

3.47 decoding unit: An access unit if SubPicHrdFlag is equal to 0 or a subset of an access unit otherwise, consisting 

of one or more VCL NAL units in an access unit and the associated non-VCL NAL units. 

3.48 dependent slice segment: A slice segment for which the values of some syntax elements of the slice segment 

header are inferred from the values for the preceding independent slice segment in decoding order. 

3.49 display process: A process not specified in this Specification having, as its input, the cropped decoded pictures 

that are the output of the decoding process. 

3.50 elementary stream: A sequence of one or more bitstreams. 

NOTE ï An elementary stream that consists of two or more bitstreams would typically have been formed by splicing 

together two or more bitstreams (or parts thereof). 



 

  Rec. ITU-T H.265 v8 (08/2021) 7 

3.51 elevation circle: A circle on a sphere connecting all points with the same elevation value. 

NOTE ï An elevation circle is similar to a lattitude line on the earth. Except when the elevation value is zero, an 

elevation circle is not a great circle like a longitude circle on the earth. 

3.52 emulation prevention byte: A byte equal to 0x03 that is present within a NAL unit when the syntax elements of 

the bitstream form certain patterns of byte values in a manner that ensures that no sequence of consecutive byte-

aligned bytes in the NAL unit can contain a start code prefix. 

3.53 encoder: An embodiment of an encoding process. 

3.54 encoding process: A process not specified in this Specification that produces a bitstream conforming to this 

Specification. 

3.55 field: An assembly of alternative rows of samples of a frame. 

3.56 filler data NAL units : NAL units with nal_unit_type equal to FD_NUT. 

3.57 flag: A variable or single-bit syntax element that can take one of the two possible values: 0 and 1. 

3.58 frame: The composition of a top field and a bottom field, where sample rows 0, 2, 4, ... originate from the top 

field and sample rows 1, 3, 5, ... originate from the bottom field. 

3.59 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to 

the application of a transform in the decoding process. 

3.60 global coordinate axes: The coordinate axes associated with omnidirectional video that are associated with an 

externally referenceable position and orientation. 

NOTE ï The global coordinate axes may correspond to the position and orientation of a device or rig used for 

omnidirectional audio/video acquisition as well as the position of an observer's head in the three-dimensional space of 

the omnidirectional video rendering environment. 

3.61 great circle: The intersection of a sphere and a plane that passes through the centre point of the sphere. 

NOTE ï A great circle is also known as an orthodrome or Riemannian circle. 

3.62 hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the 

variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce. 

3.63 hypothetical stream scheduler (HSS): A hypothetical delivery mechanism used for checking the conformance 

of a bitstream or a decoder with regards to the timing and data flow of the input of a bitstream into the 

hypothetical reference decoder. 

3.64 independent slice segment: A slice segment for which the values of the syntax elements of the slice segment 

header are not inferred from the values for a preceding slice segment. 

3.65 informative : A term used to refer to content provided in this Specification that does not establish any mandatory 

requirements for conformance to this Specification and thus is not considered an integral part of this 

Specification. 

3.66 instantaneous decoding refresh (IDR) access unit: An access unit in which the coded picture with 

nuh_layer_id equal to 0 is an IDR picture. 

3.67 instantaneous decoding refresh (IDR) picture: An IRAP picture for which each VCL NAL unit has 

nal_unit_type equal to IDR_W_RADL or IDR_N_LP. 

NOTE ï An IDR picture does not refer to any pictures other than itself for inter prediction in its decoding process, and 

may be the first picture in the bitstream in decoding order, or may appear later in the bitstream. Each IDR picture is the 

first picture of a CVS in decoding order. When an IDR picture for which each VCL NAL unit has nal_unit_type equal 

to IDR_W_RADL, it may have associated RADL pictures. When an IDR picture for which each VCL NAL unit has 

nal_unit_type equal to IDR_N_LP, it does not have any associated leading pictures. An IDR picture does not have 

associated RASL pictures. 

3.68 inter coding: Coding of a coding block, slice, or picture that uses inter prediction. 

3.69 inter predictio n: A prediction derived in a manner that is dependent on data elements (e.g., sample values or 

motion vectors) of one or more reference pictures. 

NOTE ï A prediction from a reference picture that is the current picture itself is also inter prediction. 

3.70 intra coding: Coding of a coding block, slice, or picture that uses intra prediction. 

3.71 intra prediction : A prediction derived from only data elements (e.g., sample values) of the same decoded slice 

without referring to a reference picture. 



 

8 Rec. ITU-T H.265 v8 (08/2021) 

3.72 intra  random access point (IRAP) access unit: An access unit in which the coded picture with nuh_layer_id 

equal to 0 is an IRAP picture. 

3.73 intra random access point (IRAP) picture: A coded picture for which each VCL NAL unit has nal_unit_type 

in the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive. 

NOTE ï An IRAP picture does not refer to any pictures other than itself for inter prediction in its decoding process, 

and may be a BLA picture, a CRA picture or an IDR picture. The first picture in the bitstream in decoding order must 

be an IRAP picture. Provided the necessary parameter sets are available when they need to be activated, the IRAP 

picture and all subsequent non-RASL pictures in decoding order can be correctly decoded without performing the 

decoding process of any pictures that precede the IRAP picture in decoding order. There may be pictures in a bitstream 

that do not refer to any pictures other than itself for inter prediction in its decoding process that are not IRAP pictures. 

3.74 intra (I) slice: A slice that is decoded using intra prediction only. 

3.75 layer: A set of VCL NAL units that all have a particular value of nuh_layer_id and the associated non-VCL NAL 

units, or one of a set of syntactical structures having a hierarchical relationship. 

NOTE ï Depending on the context, either the first layer concept or the second layer concept applies. The first layer 

concept is also referred to as a scalable layer, wherein a layer may be a spatial scalable layer, a quality scalable layer, a 

view, etc. A temporal true subset of a scalable layer is not referred to as a layer but referred to as a sub-layer or temporal 

sub-layer. The second layer concept is also referred to as a coding layer, wherein higher layers contain lower layers, 

and the coding layers are the CVS, picture, slice, slice segment, and CTU layers. 

3.76 layer identifier list : A list of nuh_layer_id values that is associated with a layer set or an operation point and 

can be used as an input to the sub-bitstream extraction process. 

3.77 layer set: A set of layers represented within a bitstream created from another bitstream by operation of the sub-

bitstream extraction process with the another bitstream, the target highest TemporalId equal to 6, and the target 

layer identifier list equal to the layer identifier list associated with the layer set as inputs. 

3.78 leading picture: A picture that precedes the associated IRAP picture in output order. 

3.79 leaf: A terminating node of a tree that is a root node of a tree of depth 0. 

3.80 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this 

Specification, or the value of a transform coefficient prior to scaling. 

NOTE ï The same set of levels is defined for all profiles, with most aspects of the definition of each level being in 

common across different profiles. Individual implementations may, within the specified constraints, support a different 

level for each supported profile. 

3.81 list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture 

list 0 (list 1). 

3.82 list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into reference 

picture list 0 (list 1). 

3.83 local coordinate axes: The coordinate axes having a specified rotation relationship relative to the global 

coordinate axes. 

3.84 long-term reference picture: A picture that is marked as "used for long-term reference". 

3.85 long-term reference picture set: The two reference picture set (RPS) lists that may contain long-term reference 

pictures. 

3.86 luma: An adjective, represented by the symbol or subscript Y or L, specifying that a sample array or single 

sample is representing the monochrome signal related to the primary colours. 

NOTE ï The term luma is used rather than the term luminance in order to avoid the implication of the use of linear 

light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead 

of the symbol Y to avoid confusion with the symbol y as used for vertical location. 

3.87 may: A term that is used to refer to behaviour that is allowed, but not necessarily required. 

NOTE ï In some places where the optional nature of the described behaviour is intended to be emphasized, the phrase 

"may or may not" is used to provide emphasis. 

3.88 motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates 

in the decoded picture to the coordinates in a reference picture. 

3.89 must: A term that is used in expressing an observation about a requirement or an implication of a requirement 

that is specified elsewhere in this Specification (used exclusively in an informative context). 

3.90 network abstraction layer (NAL) unit : A syntax structure containing an indication of the type of data to follow 

and bytes containing that data in the form of an RBSP interspersed as necessary with emulation prevention bytes. 



 

  Rec. ITU-T H.265 v8 (08/2021) 9 

3.91 network abstraction layer (NAL) unit stream: A sequence of NAL units. 

3.92 non-scalable-nested SEI message: An SEI message that is not contained in a scalable nesting SEI message. 

3.93 non-reference picture: A picture that is marked as "unused for reference". 

NOTE ï A non-reference picture contains samples that cannot be used for inter prediction in the decoding process of 

subsequent pictures in decoding order. In other words, once a picture is marked as "unused for reference", it can never 

be marked back as "used for reference". 

3.94 non-VCL NAL unit : A NAL unit that is not a VCL NAL unit. 

3.95 note: A term that is used to prefix informative remarks (used exclusively in an informative context). 

3.96 omnidirectional video: A video content in a format that enables rendering according to the user's viewing 

orientation, e.g., if viewed using a head-mounted device, or according to a user's desired viewport, reflecting a 

potentially rotated viewing position. 

3.97 operation point: A bitstream created from another bitstream by operation of the sub-bitstream extraction 

process with the another bitstream, a target highest TemporalId, and a target layer identifier list as inputs. 

NOTE ï If the target highest TemporalId of an operation point is equal to the greatest value of TemporalId in the layer 

set associated with the target layer identification list, the operation point is identical to the layer set. Otherwise it is a 

subset of the layer set. 

3.98 output order : The order in which the decoded pictures are output from the decoded picture buffer (for the 

decoded pictures that are to be output from the decoded picture buffer). 

3.99 output time: A time when a decoded picture is to be output as specified by the hypothetical reference decoder 

(HRD) according to the output timing decoded picture buffer (DPB) operation. 

3.100 packed region: A region in a region-wise packed picture that is mapped to a projected region according to a 

region-wise packing. 

3.101 parameter: A syntax element of a video parameter set (VPS), sequence parameter set (SPS) or picture parameter 

set (PPS), or the second word of the defined term quantization parameter. 

3.102 partitioning : The division of a set into subsets such that each element of the set is in exactly one of the subsets. 

3.103 picture: An array of luma samples in monochrome format or an array of luma samples and two corresponding 

arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format. 

NOTE ï A picture may be either a frame or a field. However, in one CVS, either all pictures are frames or all pictures 

are fields. 

3.104 picture parameter set (PPS): A syntax structure containing syntax elements that apply to zero or more entire 

coded pictures as determined by a syntax element found in each slice segment header. 

3.105 picture order count (POC): A variable that is associated with each picture, uniquely identifies the associated 

picture among all pictures in the CVS, and, when the associated picture is to be output from the decoded picture 

buffer, indicates the position of the associated picture in output order relative to the output order positions of the 

other pictures in the same CVS that are to be output from the decoded picture buffer. 

3.106 picture unit : A set of NAL units that contain all VCL NAL units of a coded picture and their associated non-VCL 

NAL units. 

3.107 prediction: An embodiment of the prediction process. 

3.108 prediction block: A rectangular MxN block of samples on which the same prediction is applied. 

3.109 prediction process: The use of a predictor to provide an estimate of the data element (e.g., sample value or 

motion vector) currently being decoded. 

3.110 prediction unit : A prediction block of luma samples, two corresponding prediction blocks of chroma samples 

of a picture that has three sample arrays, or a prediction block of samples of a monochrome picture or a picture 

that is coded using three separate colour planes and syntax structures used to predict the prediction block samples. 

3.111 predictive (P) slice: A slice that is decoded using intra prediction or using inter prediction with at most one 

motion vector and reference index to predict the sample values of each block. 

3.112 predictor : A combination of specified values or previously decoded data elements (e.g., sample value or motion 

vector) used in the decoding process of subsequent data elements. 

3.113 prefix SEI message: An SEI message that is contained in a prefix SEI NAL unit. 

3.114 prefix SEI NAL unit : An SEI NAL unit that has nal_unit_type equal to PREFIX_SEI_NUT. 



 

10 Rec. ITU-T H.265 v8 (08/2021) 

3.115 profile : A specified subset of the syntax of this Specification. 

3.116 projected picture: A picture that uses a projection format for omnidirectional video. 

3.117 projected region: A region in a projected picture that is mapped to a packed region according to a region-wise 

packing. 

3.118 projection: A specified correspondence between the colour samples of a projected picture and azimuth and 

elevation positions on a sphere. 

3.119 pulse code modulation (PCM): Coding of the samples of a block by directly representing the sample values 

without prediction or application of a transform. 

3.120 quadtree: A tree in which a parent node can be split into four child nodes, each of which may become parent 

node for another split into four child nodes. 

3.121 quantization parameter: A variable used by the decoding process for scaling of transform coefficient levels. 

3.122 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of 

the stream. 

3.123 random access decodable leading (RADL) access unit: An access unit in which the coded picture with 

nuh_layer_id equal to 0 is a RADL picture. 

3.124 random access decodable leading (RADL) picture: A coded picture for which each VCL NAL unit has 

nal_unit_type equal to RADL_R or RADL_N. 

NOTE ï All RADL pictures are leading pictures. RADL pictures are not used as reference pictures for the decoding 

process of trailing pictures of the same associated IRAP picture. When present, all RADL pictures precede, in decoding 

order, all trailing pictures of the same associated IRAP picture. 

3.125 random access skipped leading (RASL) access unit: An access unit in which the coded picture with 

nuh_layer_id equal to 0 is a RASL picture. 

3.126 random access skipped leading (RASL) picture: A coded picture for which each VCL NAL unit has 

nal_unit_type equal to RASL_R or RASL_N. 

NOTE ï All RASL pictures are leading pictures of an associated BLA or CRA picture. When the associated IRAP 

picture has NoRaslOutputFlag equal to 1, the RASL picture is not output and may not be correctly decodable, as the 

RASL picture may contain references to pictures that are not present in the bitstream. RASL pictures are not used as 

reference pictures for the decoding process of non-RASL pictures. When present, all RASL pictures precede, in 

decoding order, all trailing pictures of the same associated IRAP picture. 

3.127 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the first 

entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from 

left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from 

left to right. 

3.128 raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is 

encapsulated in a NAL unit and that is either empty or has the form of a string of data bits containing syntax 

elements followed by an RBSP stop bit and zero or more subsequent bits equal to 0. 

3.129 raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload 

(RBSP) after a string of data bits, for which the location of the end within an RBSP can be identified by searching 

from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP. 

3.130 recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of 

the decoded pictures represented by the bitstream is achieved after a random access or broken link. 

3.131 reference index: An index into a reference picture list. 

3.132 reference picture: A picture that is a short-term reference picture or a long-term reference picture. 

NOTE ï A reference picture contains samples that may be used for inter prediction in the decoding process of 

subsequent pictures in decoding order. 

3.133 reference picture list: A list of reference pictures that is used for inter prediction of a P or B slice. 

NOTE ï For the decoding process of a P slice, there is one reference picture list ï reference picture list 0. For the 

decoding process of a B slice, there are two reference picture lists ï reference picture list 0 and reference picture list 1. 

3.134 reference picture list 0: The reference picture list used for inter prediction of a P or the first reference picture 

list used for inter prediction of a B slice. 

3.135 reference picture list 1: The second reference picture list used for inter prediction of a B slice. 



 

  Rec. ITU-T H.265 v8 (08/2021) 11 

3.136 reference picture set (RPS): A set of reference pictures associated with a picture, consisting of all reference 

pictures that are prior to the associated picture in decoding order, that may be used for inter prediction of the 

associated picture or any picture following the associated picture in decoding order. 

NOTE ï The RPS of a picture consists of five RPS lists, three of which are to contain short-term reference pictures and 

the other two are to contain long-term reference pictures. 

3.137 region-wise packed picture: A decoded picture that contains one or more packed regions. 

NOTE ï A region-wise packed picture may contain a region-wise packing of a projected picture. 

3.138 region-wise packing: A transformation, resizing, and relocation of packed regions of a region-wise packed 

picture to remap the packed regions to projected regions of a projected picture. 

3.139 reserved: A term that may be used to specify that some values of a particular syntax element are for future use 

by ITU-T | ISO/IEC and shall not be used in bitstreams conforming to this version of this Specification, but may 

be used in bitstreams conforming to future extensions of this Specification by ITU-T | ISO/IEC. 

3.140 residual: The decoded difference between a prediction of a sample or data element and its decoded value. 

3.141 sample aspect ratio: The ratio between the intended horizontal distance between the columns and the intended 

vertical distance between the rows of the luma sample array in a picture, which is specified for assisting the 

display process (not specified in this Specification) and expressed as h:v, where h is the horizontal width and v 

is the vertical height, in arbitrary units of spatial distance. 

3.142 scalable-nested SEI message: An SEI message that is contained in a scalable nesting SEI message. 

3.143 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients. 

3.144 sequence parameter set (SPS): A syntax structure containing syntax elements that apply to zero or more entire 

CVSs as determined by the content of a syntax element found in the PPS referred to by a syntax element found 

in each slice segment header. 

3.145 shall: A term used to express mandatory requirements for conformance to this Specification. 

NOTE ï When used to express a mandatory constraint on the values of syntax elements or on the results obtained by 

operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. 

When used in reference to operations performed by the decoding process, any decoding process that produces identical 

cropped decoded pictures to those output from the decoding process described in this Specification conforms to the 

decoding process requirements of this Specification. 

3.146 short-term reference picture: A picture that is marked as "used for short-term reference". 

3.147 short-term reference picture set: The three RPS lists that may contain short-term reference pictures. 

3.148 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under 

anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Specification. 

3.149 slice: An integer number of CTUs contained in one independent slice segment and all subsequent dependent slice 

segments (if any) that precede the next independent slice segment (if any) within the same access unit. 

3.150 slice header: The slice segment header of the independent slice segment that is a current slice segment or the 

most recent independent slice segment that precedes a current dependent slice segment in decoding order. 

3.151 slice segment: An integer number of CTUs ordered consecutively in the tile scan and contained in a single NAL 

unit. 

3.152 slice segment header: A part of a coded slice segment containing the data elements pertaining to the first or all 

CTUs represented in the slice segment. 

3.153 source: A term used to describe the video material or some of its attributes before encoding. 

3.154 sphere coordinates: The azimuth and elevation angles identifying a location of a point on a sphere. 

3.155 sphere region: A region on a sphere, specified either by four great circles or by two azimuth circles and two 

elevation circles, or such a region on a rotated sphere after applying yaw, pitch, and roll rotations. 

3.156 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix 

to each NAL unit. 

NOTE ï The location of a start code prefix can be used by a decoder to identify the beginning of a new NAL unit and 

the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the inclusion of 

emulation prevention bytes. 

3.157 step-wise temporal sub-layer access (STSA) access unit: An access unit in which the coded picture with 

nuh_layer_id equal to 0 is an STSA picture. 



 

12 Rec. ITU-T H.265 v8 (08/2021) 

3.158 step-wise temporal sub-layer access (STSA) picture: A coded picture for which each VCL NAL unit has 

nal_unit_type equal to STSA_R or STSA_N. 

NOTE ï An STSA picture does not use pictures with the same TemporalId as the STSA picture for inter prediction 

reference. Pictures following an STSA picture in decoding order with the same TemporalId as the STSA picture do not 

use pictures prior to the STSA picture in decoding order with the same TemporalId as the STSA picture for inter 

prediction reference. An STSA picture enables up-switching, at the STSA picture, to the sub-layer containing the STSA 

picture, from the immediately lower sub-layer. STSA pictures must have TemporalId greater than 0. 

3.159 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a 

raw byte sequence payload prior to the raw byte sequence payload stop bit, where the left-most bit is considered 

to be the first and most significant bit, and the right-most bit is considered to be the last and least significant bit. 

3.160 sub-bitstream extraction process: A specified process by which NAL units in a bitstream that do not belong to a 

target set, determined by a target highest TemporalId and a target layer identifier list, are removed from the 

bitstream, with the output sub-bitstream consisting of the NAL units in the bitstream that belong to the target set. 

3.161 sub-layer: A temporal scalable layer of a temporal scalable bitstream, consisting of VCL NAL units with a 

particular value of the TemporalId variable and the associated non-VCL NAL units. 

3.162 sub-layer non-reference (SLNR) picture: A picture that contains samples that cannot be used for inter 

prediction in the decoding process of subsequent pictures of the same sub-layer in decoding order. 

NOTE ï Samples of an SLNR picture may be used for inter prediction in the decoding process of subsequent pictures 

of higher sub-layers in decoding order. 

3.163 sub-layer reference picture: A picture that contains samples that may be used for inter prediction in the 

decoding process of subsequent pictures of the same sub-layer in decoding order. 

NOTE ï Samples of a sub-layer reference picture may also be used for inter prediction in the decoding process of 

subsequent pictures of higher sub-layers in decoding order. 

3.164 sub-layer representation: A subset of the bitstream consisting of NAL units of a particular sub-layer and the 

lower sub-layers. 

3.165 suffix SEI message: An SEI message that is contained in a suffix SEI NAL unit. 

3.166 suffix SEI NAL unit : An SEI NAL unit that has nal_unit_type equal to SUFFIX_SEI_NUT. 

3.167 supplemental enhancement information (SEI) NAL unit: A NAL unit that has nal_unit_type equal to 

PREFIX_SEI_NUT or SUFFIX_SEI_NUT. 

3.168 syntax element: An element of data represented in the bitstream. 

3.169 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order. 

3.170 temporal sub-layer: Same as sub-layer. 

3.171 temporal sub-layer access (TSA) access unit: An access unit in which the coded picture with nuh_layer_id 

equal to 0 is a TSA picture. 

3.172 temporal sub-layer access (TSA) picture: A coded picture for which each VCL NAL unit has nal_unit_type 

equal to TSA_R or TSA_N. 

NOTE ï A TSA picture and pictures following the TSA picture in decoding order do not use pictures prior to the TSA 

picture in decoding order with TemporalId greater than or equal to that of the TSA picture for inter prediction reference. 

A TSA picture enables up-switching, at the TSA picture, to the sub-layer containing the TSA picture or any higher sub-

layer, from the immediately lower sub-layer. TSA pictures must have TemporalId greater than 0. 

3.173 tier : A specified category of level constraints imposed on values of the syntax elements in the bitstream, where 

the level constraints are nested within a tier and a decoder conforming to a certain tier and level would be capable 

of decoding all bitstreams that conform to the same tier or the lower tier of that level or any level below it. 

3.174 tile: A rectangular region of CTUs within a particular tile column and a particular tile row in a picture. 

3.175 tile column: A rectangular region of CTUs having a height equal to the height of the picture and a width specified 

by syntax elements in the picture parameter set. 

3.176 tile row : A rectangular region of CTUs having a height specified by syntax elements in the picture parameter 

set and a width equal to the width of the picture. 

3.177 tile scan: A specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered 

consecutively in CTU raster scan in a tile, whereas tiles in a picture are ordered consecutively in a raster scan 

of the tiles of the picture. 



 

  Rec. ITU-T H.265 v8 (08/2021) 13 

3.178 tilt angle: The angle indicating the amount of tilt of a sphere region, measured as the amount of rotation of a 

sphere region along the axis originating from the sphere origin passing through the centre point of the sphere 

region, where the angle value increases clockwise when looking from the origin towards the positive end of the 

axis. 

3.179 trailing picture: A non-IRAP picture that follows the associated IRAP picture in output order. 

NOTE ï Trailing pictures associated with an IRAP picture also follow the IRAP picture in decoding order. Pictures 

that follow the associated IRAP picture in output order and precede the associated IRAP picture in decoding order are 

not allowed. 

3.180 transform : A part of the decoding process by which a block of transform coefficients is converted to a block of 

spatial-domain values. 

3.181 transform block: A rectangular MxN block of samples resulting from a transform in the decoding process. 

3.182 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a 

particular one-dimensional or two-dimensional frequency index in a transform in the decoding process. 

3.183 transform coefficient level: An integer quantity representing the value associated with a particular 

two-dimensional frequency index in the decoding process prior to scaling for computation of a transform 

coefficient value. 

3.184 transform unit : A transform block of luma samples of size 8x8, 16x16, or 32x32 or four transform blocks of 

luma samples of size 4x4, two corresponding transform blocks of chroma samples of a picture in 4:2:0 colour 

format; or a transform block of luma samples of size 8x8, 16x16, or 32x32, and four corresponding transform 

blocks of chroma samples, or four transform blocks of luma samples of size 4x4, and four corresponding 

transform blocks of chroma samples of a picture in 4:2:2 colour format; or a transform block of luma samples 

of size 4x4, 8x8, 16x16, or 32x32, and two corresponding transform blocks of chroma samples of a picture in 

4:4:4 colour format that is not coded using three separate colour planes and syntax structures used to transform 

the transform block samples; or a transform block of luma samples of size 8x8, 16x16, or 32x32 or four transform 

blocks of luma samples of size 4x4 of a monochrome picture or a picture in 4:4:4 colour format that is coded 

using three separate colour planes; and the associated syntax structures used to transform the transform block 

samples. 

3.185 tree: A tree is a finite set of nodes with a unique root node. 

3.186 universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal unique 

identifiers. 

3.187 unspecified: A term that may be used to specify some values of a particular syntax element to indicate that the 

values have no specified meaning in this Specification and will not have a specified meaning in the future as an 

integral part of future versions of this Specification. 

3.188 video coding layer (VCL) NAL unit : A collective term for coded slice segment NAL units and the subset of 

NAL units that have reserved values of nal_unit_type that are classified as VCL NAL units in this Specification. 

3.189 video parameter set (VPS): A syntax structure containing syntax elements that apply to zero or more entire 

CVSs as determined by the content of a syntax element found in the SPS referred to by a syntax element found in 

the PPS referred to by a syntax element found in each slice segment header. 

3.190 viewport: A region of omnidirectional video content suitable for display and viewing by the user. 

3.191 z-scan order: A specified sequential ordering of blocks partitioning a picture, where the order is identical to 

CTB raster scan of the picture when the blocks are of the same size as CTBs, and, when the blocks are of a 

smaller size than CTBs, i.e., CTBs are further partitioned into smaller coding blocks, the order traverses from 

CTB to CTB in CTB raster scan of the picture, and inside each CTB, which may be divided into quadtrees 

hierarchically to lower levels, the order traverses from quadtree to quadtree of a particular level in quadtree-of-

the-particular-level raster scan of the quadtree of the immediately higher level. 

4 Abbreviations and acronyms 

For the purposes of this Recommendation | International Standard, the following abbreviations and acronyms apply: 

ATSC Advanced Television Systems Committee 

B Bi-predictive 

BLA Broken Link Access 



 

14 Rec. ITU-T H.265 v8 (08/2021) 

BPB Bitstream Partition Buffer 

CABAC Context-based Adaptive Binary Arithmetic Coding 

CB Coding Block 

CBR Constant Bit Rate 

CIE International Commission on Illumination (Commission Internationale de l'Eclairage)  

CLVS Coded Layer-wise Video Sequence 

CPB Coded Picture Buffer 

CRA Clean Random Access 

CRC Cyclic Redundancy Check 

CTB Coding Tree Block 

CTU Coding Tree Unit 

CU Coding Unit 

CVS Coded Video Sequence 

CVSG Coded Video Sequence Group 

DCT Discrete Cosine Transform 

DPB Decoded Picture Buffer 

DRAP Dependent Random Access Point 

DUT Decoder Under Test 

EG Exponential-Golomb 

EGk k-th order Exponential-Golomb 

FCC Federal Communications Commission (of the United States) 

FIFO First-In, First-Out 

FIR Finite Impulse Response 

FL Fixed-Length 

GBR Green, Blue and Red  

GDR Gradual Decoding Refresh 

HRD Hypothetical Reference Decoder 

HSS Hypothetical Stream Scheduler 

I Intra 

IDCT Inverse Discrete Cosine Transformation 

IDR Instantaneous Decoding Refresh 

INBLD Independent Non-Base Layer Decoding 

IRAP Intra Random Access Point 

LPS Least Probable Symbol 

LSB Least Significant Bit 

MCTS Motion-Constrained Tile Set 

MAC Multiplexed Analogue Components 

MPS Most Probable Symbol 

MSB Most Significant Bit 

MVP Motion Vector Prediction 



 

  Rec. ITU-T H.265 v8 (08/2021) 15 

NAL Network Abstraction Layer 

NTSC National Television System Committee (of the United States) 

OLS Output Layer Set 

P Predictive 

PAL Phase Alternating Line 

PB Prediction Block 

PCM Pulse Code Modulation 

POC Picture Order Count  

PPS Picture Parameter Set 

PU Prediction Unit 

QP Quantization Parameter 

RADL Random Access Decodable Leading (Picture) 

RASL Random Access Skipped Leading (Picture) 

RBSP Raw Byte Sequence Payload 

RGB Same as GBR 

RPS Reference Picture Set 

SAO Sample Adaptive Offset 

SAR Sample Aspect Ratio  

SECAM Sequential colour with memory (Séquentiel Couleur avec Mémoire)  

SEI Supplemental Enhancement Information 

SLNR Sub-Layer Non-Reference (Picture) 

SMPTE Society of Motion Picture and Television Engineers 

SODB String Of Data Bits 

SPS Sequence Parameter Set 

STSA Step-wise Temporal Sub-layer Access 

TB Transform Block 

TR Truncated Rice 

TSA Temporal Sub-layer Access 

TU Transform Unit 

UCS Universal Coded Character Set 

UTF UCS Transmission Format 

UUID Universal Unique Identifier 

VBR Variable Bit Rate 

VCL Video Coding Layer 

VPS Video Parameter Set 

VUI Video Usability Information 



 

16 Rec. ITU-T H.265 v8 (08/2021) 

5 Conventions 

5.1 General 

NOTE ï The mathematical operators used in this Specification are similar to those used in the C programming language. However, 

the results of integer division and arithmetic shift operations are defined more precisely, and additional operations are defined, such 

as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0, e.g., "the first" is 

equivalent to the 0-th, "the second" is equivalent to the 1-th, etc. 

5.2 Arithmetic operators 

The following arithmetic operators are defined as follows: 

+ Addition 

ī Subtraction (as a two-argument operator) or negation (as a unary prefix operator) 

*  Multiplication, including matrix multiplication 

xy Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for 

superscripting not intended for interpretation as exponentiation. 

/ Integer division with truncation of the result toward zero. For example, 7 / 4 and ī7 / ī4 are truncated 

to 1 and ī7 / 4 and 7 / ī4 are truncated to ī1. 

÷ Used to denote division in mathematical equations where no truncation or rounding is intended. 

Ø

Ù
 Used to denote division in mathematical equations where no truncation or rounding is intended. 

Æ É 

Ù

É  Ø

 The summation of f( i ) with i taking all integer values from x up to and including y. 

x % y Modulus. Remainder of x divided by y, defined only for integers x and y with x  >=  0 and y > 0. 

5.3 Logical operators 

The following logical operators are defined as follows: 

x  &&  y Boolean logical "and" of x and y 

x  | |  y Boolean logical "or" of x and y 

! Boolean logical "not" 

x ? y : z If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z. 

5.4 Relational operators 

The following relational operators are defined as follows: 

> Greater than 

>= Greater than or equal to 

< Less than 

<= Less than or equal to 

= = Equal to 

!= Not equal to 

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not applicable), 

the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered not to be equal 

to any other value. 

5.5 Bit -wise operators 

The following bit-wise operators are defined as follows: 

& Bit-wise "and". When operating on integer arguments, operates on a two's complement representation of 

the integer value. When operating on a binary argument that contains fewer bits than another argument, 

the shorter argument is extended by adding more significant bits equal to 0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 17 

| Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of 

the integer value. When operating on a binary argument that contains fewer bits than another argument, 

the shorter argument is extended by adding more significant bits equal to 0. 

^ Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement 

representation of the integer value. When operating on a binary argument that contains fewer bits than 

another argument, the shorter argument is extended by adding more significant bits equal to 0. 

x  >>  y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This function 

is defined only for non-negative integer values of y. Bits shifted into the most significant bits (MSBs) as 

a result of the right shift have a value equal to the MSB of x prior to the shift operation. 

x  <<  y Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function 

is defined only for non-negative integer values of y. Bits shifted into the least significant bits (LSBs) as 

a result of the left shift have a value equal to 0. 

5.6 Assignment operators 

The following arithmetic operators are defined as follows: 

= Assignment operator 

+ + Increment, i.e., x+ + is equivalent to x = x + 1; when used in an array index, evaluates to the value of the 

variable prior to the increment operation. 

ī ī Decrement, i.e., xī ī is equivalent to x = x ī 1; when used in an array index, evaluates to the value of the 

variable prior to the decrement operation. 

+= Increment by amount specified, i.e., x  +=  3 is equivalent to x = x + 3, and x  +=  (ī3) is equivalent 

to x = x + (ī3). 

ī= Decrement by amount specified, i.e., x  ī=  3 is equivalent to x = x ī 3, and x  ī=  (ī3) is equivalent 

to x = x ī (ī3). 

5.7 Range notation 

The following notation is used to specify a range of values: 

x = y..z x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers 

and z being greater than or equal to y. 

5.8 Mathematical functions 

The following mathematical functions are defined: 

Abs( x ) =  
x ; x  >=  0

x ; x < 0
  (5-1) 

Asin( x ) the trigonometric inverse sine function, operating on an argument x that is 

in the range of ī1.0 to 1.0, inclusive, with an output value in the range of  

īˊõ2 to ˊõ2, inclusive, in units of radians 

 (5-2) 

Atan( x ) the trigonometric inverse tangent function, operating on an argument x, with 

an output value in the range of īˊõ2 to ˊõ2, inclusive, in units of radians (5-3) 

Atan2( y, x ) = 

ừ
Ử
Ử
Ừ

Ử
Ử
ứ

 

Atan
y

x
; x > 0

Atan
y

x
ˊ

Atan
y

x
ʌ

;

;

x < 0  &&  y  >=  0

x < 0  &&  y  <  0

ˊ

2
ˊ

2

;

;
x = =  0  &&  y  >=  0

otherwise

 (5-4) 



 

18 Rec. ITU-T H.265 v8 (08/2021) 

Ceil( x ) the smallest integer greater than or equal to x. (5-5) 

Clip1Y( x ) = Clip3( 0, ( 1  <<  BitDepthY ) ī 1, x ) 

 (5-6) 

Clip1C( x ) = Clip3( 0, ( 1  <<  BitDepthC ) ī 1, x ) 

 (5-7) 

Clip3( x, y, z ) =  

x ; z < x

y ; z > y

z ; otherwise

  (5-8) 

Cos( x ) the trigonometric cosine function operating on an argument x in units of radians. (5-9) 

Floor( x ) the largest integer less than or equal to x. 

 (5-10) 

GetCurrMsb( a, b, c, d ) =  

c d ; b a  >=  d / 2  

c d ; a b  >  d / 2

c ; otherwise

 (5-11) 

Ln( x ) the natural logarithm of x (the base-e logarithm, where e is the natural logarithm base constant 

2.718 281 828...).  (5-12) 

Log2( x ) the base-2 logarithm of x.  (5-13) 

Log10( x ) the base-10 logarithm of x.  (5-14) 

Min( x, y ) =   
x ; x <= y

y ; x > Ù
  (5-15) 

Max( x, y ) =   
x ; x >= y

y ; x < y
  (5-16) 

Round( x ) = Sign( x ) * Floor( Abs( x ) + 0.5 )  (5-17) 

Sign( x ) = 

1 ; x > 0

0 ; x  = =  0

1 ; x  <  0

  (5-18) 

Sin( x ) the trigonometric sine function operating on an argument x in units of radians (5-19) 

Sqrt( x ) the square root of x  (5-20) 

Swap( x, y ) = ( y, x )  (5-21) 

Tan( x ) the trigonometric tangent function operating on an argument x in units of radians (5-22) 

5.9 Order of operation precedence 

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply: 

ï Operations of a higher precedence are evaluated before any operation of a lower precedence. 

ï Operations of the same precedence are evaluated sequentially from left to right. 

Table 5-1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher 

precedence. 

NOTE ï For those operators that are also used in the C programming language, the order of precedence used in this Specification is 

the same as used in the C programming language. 



 

  Rec. ITU-T H.265 v8 (08/2021) 19 

Table 5-1 ï Operation precedence from highest (at top of table) to lowest (at bottom of table) 

operations (with operands x, y, and z) 

"x++", "xī ī" 

"!x", "īx" (as a unary prefix operator) 

xy 

"x *  y", "x / y", "x ÷ y", "
x

y
", "x % y" 

"x + y", "x ī y" (as a two-argument operator), "ä
=

  y  

x i 

) i f( " 

"x  <<  y", "x  >>  y" 

"x < y", "x  <=  y", "x > y", "x  >=  y" 

"x  = =  y", "x  !=  y" 

"x & y" 

"x | y" 

"x  &&   y" 

"x  | |  y" 

"x ? y : z" 

"x..y" 

"x = y", "x  +=  y", "x  ī=  y" 

5.10 Variables, syntax elements and tables 

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower case 

letters with underscore characters), and one descriptor for its method of coded representation. The decoding process 

behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a 

value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e., not bold) type. 

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such variables 

appear in the syntax tables, or text, named by a mixture of lower case and upper case letters and without any underscore 

characters. Variables starting with an upper case letter are derived for the decoding of the current syntax structure and all 

depending syntax structures. Variables starting with an upper case letter may be used in the decoding process for later 

syntax structures without mentioning the originating syntax structure of the variable. Variables starting with a lower case 

letter are only used within the clause in which they are derived. 

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their 

numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of 

values and names is specified in the text. The names are constructed from one or more groups of letters separated by an 

underscore character. Each group starts with an upper case letter and may contain more upper case letters. 

NOTE ï The syntax is described in a manner that closely follows the C-language syntactic constructs. 

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These functions 

are specified in clause 7.2 and assume the existence of a bitstream pointer with an indication of the position of the next bit 

to be read by the decoding process from the bitstream. Syntax functions are described by their names, which are constructed 

as syntax element names and end with left and right round parentheses including zero or more variable names 

(for definition) or values (for usage), separated by commas (if more than one variable). 

Functions that are not syntax functions (including mathematical functions specified in clause 5.8) are described by their 

names, which start with an upper case letter, contain a mixture of lower and upper case letters without any underscore 

character, and end with left and right parentheses including zero or more variable names (for definition) or values 

(for usage) separated by commas (if more than one variable). 

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be 

syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual 

depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column 

(horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. 



 

20 Rec. ITU-T H.265 v8 (08/2021) 

Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as s[ x ][  y ] or as syx. 

A single column of a matrix may be referred to as a list and denoted by omission of the row index. Thus, the column of a 

matrix s at horizontal position x may be referred to as the list s[ x ]. 

A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...} }, where each inner 

pair of brackets specifies the values of the elements within a row in increasing column order and the rows are ordered in 

increasing row order. Thus, setting a matrix s equal to { { 1  6 } { 4 9 }}  specifies that s[ 0 ][  0 ] is set equal to 1, s[ 1 ][  0 ] 

is set equal to 6, s[ 0 ][  1 ] is set equal to 4, and s[ 1 ][  1 ] is set equal to 9. 

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' represents 

an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) equal to 1. 

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation 

when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its second 

and its last bits (counted from the most to the least significant bit) equal to 1. 

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values. 

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value different 

from zero. 

5.11 Text description of logical operations 

In the text, a statement of logical operations as would be described mathematically in the following form: 

if( condition 0 ) 

  statement 0 

else if( condition 1 ) 

  statement 1 

... 

else /* informative remark on remaining condition */ 

  statement n 

may be described in the following manner: 

... as follows / ... the following applies: 

ï If condition 0, statement 0 

ï Otherwise, if condition 1, statement 1 

ï ... 

ï Otherwise (informative remark on remaining condition), statement n 

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following 

applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an 

"Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as follows" 

or "... the following applies" with the ending "Otherwise, ...". 

In the text, a statement of logical operations as would be described mathematically in the following form: 

if( condition 0a  &&  condition 0b ) 

  statement 0 

else if( condition 1a  | |  condition 1b ) 

  statement 1 

... 

else 

  statement n 

may be described in the following manner: 

... as follows / ... the following applies: 

ï If all of the following conditions are true, statement 0: 

ï condition 0a 

ï condition 0b 

ï Otherwise, if one or more of the following conditions are true, statement 1: 



 

  Rec. ITU-T H.265 v8 (08/2021) 21 

ï condition 1a 

ï condition 1b 

ï ... 

ï Otherwise, statement n 

In the text, a statement of logical operations as would be described mathematically in the following form: 

if( condition 0 ) 

  statement 0 

if( condition 1 ) 

  statement 1 

may be described in the following manner: 

When condition 0, statement 0 

When condition 1, statement 1 

5.12 Processes 

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All 

syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are 

available in the process specification and invoking. A process specification may also have a lower case variable explicitly 

specified as input. Each process specification has explicitly specified an output. The output is a variable that can either be 

an upper case variable or a lower case variable. 

When invoking a process, the assignment of variables is specified as follows: 

ï If the variables at the invoking and the process specification do not have the same name, the variables are explicitly 

assigned to lower case input or output variables of the process specification. 

ï Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied. 

In the specification of a process, a specific coding block may be referred to by the variable name having a value equal to 

the address of the specific coding block. 

6 Bitstream and picture formats, partitionings, scanning processes and neighbouring 

relationships 

6.1 Bitstream formats 

This clause specifies the relationship between the network abstraction layer (NAL) unit stream and byte stream, either of 

which are referred to as the bitstream. 

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream 

format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This sequence 

is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL units in the 

NAL unit stream. 

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding order 

and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes. The 

NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique start code 

prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the byte stream 

format are outside the scope of this Specification. The byte stream format is specified in Annex B. 

6.2 Source, decoded and output picture formats 

This clause specifies the relationship between source and decoded pictures that is given via the bitstream. 

The video source that is represented by the bitstream is a sequence of pictures in decoding order. 

The source and decoded pictures are each comprised of one or more sample arrays: 

ï Luma (Y) only (monochrome). 

ï Luma and two chroma (YCbCr or YCgCo). 



 

22 Rec. ITU-T H.265 v8 (08/2021) 

ï Green, blue, and red (GBR, also known as RGB). 

ï Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX, also known 

as XYZ). 

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays are 

referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of the 

actual colour representation method in use. The actual colour representation method in use can be indicated in syntax that 

is specified in Annex E. 

The variables SubWidthC and SubHeightC are specified in Table 6-1, depending on the chroma format sampling structure, 

which is specified through chroma_format_idc and separate_colour_plane_flag. Other values of chroma_format_idc, 

SubWidthC and SubHeightC may be specified in the future by ITU-T | ISO/IEC. 

Table 6-1 ï SubWidthC and SubHeightC values derived from 

chroma_format_idc and separate_colour_plane_flag 
 

chroma_format_idc separate_colour_plane_flag Chroma format SubWidthC SubHeightC 

0 0 Monochrome 1 1 

1 0 4:2:0 2 2 

2 0 4:2:2 2 1 

3 0 4:4:4 1 1 

3 1 4:4:4 1 1 

In monochrome sampling there is only one sample array, which is nominally considered the luma array. 

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array. 

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array. 

In 4:4:4 sampling, depending on the value of separate_colour_plane_flag, the following applies: 

ï If separate_colour_plane_flag is equal to 0, each of the two chroma arrays has the same height and width as the luma 

array. 

ï Otherwise (separate_colour_plane_flag is equal to 1), the three colour planes are separately processed as monochrome 

sampled pictures. 

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video 

sequence is in the range of 8 to 16, inclusive, and the number of bits used in the luma array may differ from the number of 

bits used in the chroma arrays. 

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and 

chroma samples in pictures are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in 

video usability information (see Annex E). 

 

Figure 6-1 ï Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture 

When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the corresponding luma samples 

and the nominal locations in a picture are as shown in Figure 6-2. 



 

  Rec. ITU-T H.265 v8 (08/2021) 23 

 

Figure 6-2 ï Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture 

When the value of chroma_format_idc is equal to 3, all array samples are co-sited for all cases of pictures and the nominal 

locations in a picture are as shown in Figure 6-3.  

 

Figure 6-3 ï Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture 

6.3 Partitioning of pictures, slices, slice segments, tiles, CTUs and CTBs 

6.3.1 Partitioning of pictures into slices, slice segments and tiles 

This clause specifies how a picture is partitioned into slices, slice segments and tiles. Pictures are divided into slices and 

tiles. A slice is a sequence of one or more slice segments starting with an independent slice segment and containing all 

subsequent dependent slice segments (if any) that precede the next independent slice segment (if any) within the same 

picture. A slice segment is a sequence of CTUs. Likewise, a tile is a sequence of CTUs. 

For example, a picture may be divided into two slices as shown in Figure 6-4. In this example, the first slice is composed 

of an independent slice segment containing 4 CTUs, a dependent slice segment containing 32 CTUs and another dependent 

slice segment containing 24 CTUs; and the second slice consists of a single independent slice segment containing the 

remaining 39 CTUs of the picture. 

As another example, a picture may be divided into two tiles separated by a vertical tile boundary as shown in Figure 6-5. 

The left side of the figure illustrates a case in which the picture only contains one slice, starting with an independent slice 

segment and followed by four dependent slice segments. The right side of the figure illustrates an alternative case in which 

the picture contains two slices in the first tile and one slice in the second tile. 

Unlike slices, tiles are always rectangular. A tile always contains an integer number of CTUs, and may consist of CTUs 

contained in more than one slice. Similarly, a slice may consist of CTUs contained in more than one tile. 

One or both of the following conditions shall be fulfilled for each slice and tile: 

ï All CTUs in a slice belong to the same tile. 



 

24 Rec. ITU-T H.265 v8 (08/2021) 

ï All CTUs in a tile belong to the same slice. 

NOTE 1 ï Within the same picture, there may be both slices that contain multiple tiles and tiles that contain multiple slices. 

One or both of the following conditions shall be fulfilled for each slice segment and tile: 

ï Al l CTUs in a slice segment belong to the same tile. 

ï All CTUs in a tile belong to the same slice segment. 

When a picture is coded using three separate colour planes (separate_colour_plane_flag is equal to 1), a slice contains only 

CTBs of one colour component being identified by the corresponding value of colour_plane_id, and each colour component 

array of a picture consists of slices having the same colour_plane_id value. Coded slices with different values of 

colour_plane_id within a picture may be interleaved with each other under the constraint that for each value of 

colour_plane_id, the coded slice segment NAL units with that value of colour_plane_id shall be in the order of increasing 

CTB address in tile scan order for the first CTB of each coded slice segment NAL unit. 

NOTE 2 ï When separate_colour_plane_flag is equal to 0, each CTB of a picture is contained in exactly one slice. When 

separate_colour_plane_flag is equal to 1, each CTB of a colour component is contained in exactly one slice (i.e., information for 

each CTB of a picture is present in exactly three slices and these three slices have different values of colour_plane_id). 

 

Figure 6-4 ï A picture with 11 by 9 luma CTBs that is partitioned into two slices, the first of which is partitioned 

into three slice segments (informative) 

 

 

Figure 6-5 ï A picture with 11 by 9 luma CTBs that is partitioned into two tiles and one slice (left) or is 

partitioned into two tiles and three slices (right) (informative) 

6.3.2 Block and quadtree structures 

The samples are processed in units of CTBs. The array size for each luma CTB in both width and height is CtbSizeY in 

units of samples. The width and height of the array for each chroma CTB are CtbWidthC and CtbHeightC, respectively, 

in units of samples. 

Each CTB is assigned a partition signalling to identify the block sizes for intra or inter prediction and for transform coding. 

The partitioning is a recursive quadtree partitioning. The root of the quadtree is associated with the CTB. The quadtree is 

split until a leaf is reached, which is referred to as the coding block. When the component width is not an integer number 

of the CTB size, the CTBs at the right component boundary are incomplete. When the component height is not an integer 

multiple of the CTB size, the CTBs at the bottom component boundary are incomplete. 



 

  Rec. ITU-T H.265 v8 (08/2021) 25 

The coding block is the root node of two trees, the prediction tree and the transform tree. The prediction tree specifies the 

position and size of prediction blocks. The transform tree specifies the position and size of transform blocks. The splitting 

information for luma and chroma is identical for the prediction tree and may or may not be identical for the transform tree. 

The blocks and associated syntax structures are grouped into "unit" structures as follows: 

ï One prediction block (monochrome picture or separate_colour_plane_flag is equal to 1) or three prediction blocks 

(luma and chroma components of a picture in 4:2:0 or 4:4:4 colour format) or five prediction blocks (luma and chroma 

components of a picture in 4:2:2 colour format) and the associated prediction syntax structures units are associated with 

a prediction unit. 

ï One transform block (monochrome picture or separate_colour_plane_flag is equal to 1) or three transform blocks (luma 

and chroma components of a picture in 4:2:0 or 4:4:4 colour format) or five transform blocks (luma and chroma 

components of a picture in 4:2:2 colour format) and the associated transform syntax structures units are associated with 

a transform unit. 

ï One coding block (monochrome picture or separate_colour_plane_flag is equal to 1) or three coding blocks (luma and 

chroma), the associated coding syntax structures and the associated prediction and transform units are associated with 

a coding unit. 

ï One CTB (monochrome picture or separate_colour_plane_flag is equal to 1) or three CTBs (luma and chroma), the 

associated coding tree syntax structures and the associated coding units are associated with a CTU. 

6.3.3 Spatial or component-wise partitionings 

The following divisions of processing elements of this Specification form spatial or component-wise partitionings: 

ï The division of each picture into components 

ï The division of each component into CTBs 

ï The division of each picture into tile columns 

ï The division of each picture into tile rows 

ï The division of each tile column into tiles 

ï The division of each tile row into tiles 

ï The division of each tile into CTUs 

ï The division of each picture into slices 

ï The division of each slice into slice segments 

ï The division of each slice segment into CTUs 

ï The division of each CTU into CTBs 

ï The division of each CTB into coding blocks, except that the CTBs are incomplete at the right component boundary 

when the component width is not an integer multiple of the CTB size and the CTBs are incomplete at the bottom 

component boundary when the component height is not an integer multiple of the CTB size 

ï The division of each CTU into coding units, except that the CTUs are incomplete at the right picture boundary when 

the picture width in luma samples is not an integer multiple of the luma CTB size and the CTUs are incomplete at the 

bottom picture boundary when the picture height in luma samples is not an integer multiple of the luma CTB size 

ï The division of each coding unit into prediction units 

ï The division of each coding unit into transform units 

ï The division of each coding unit into coding blocks 

ï The division of each coding block into prediction blocks 

ï The division of each coding block into transform blocks 

ï The division of each prediction unit into prediction blocks 

ï The division of each transform unit into transform blocks. 



 

26 Rec. ITU-T H.265 v8 (08/2021) 

6.4 Availability processes 

6.4.1 Derivation process for z-scan order block availability  

Inputs to this process are: 

ï The luma location ( xCurr, yCurr ) of the top-left sample of the current block relative to the top-left luma sample of 

the current picture 

ï The luma location ( xNbY, yNbY ) covered by a neighbouring block relative to the top-left luma sample of the current 

picture. 

Output of this process is the availability of the neighbouring block covering the location ( xNbY, yNbY ), denoted as 

availableN. 

The minimum luma block address in z-scan order minBlockAddrCurr of the current block is derived as follows: 

minBlockAddrCurr = MinTbAddrZs[ xCurr  >>  MinTbLog2SizeY ][  yCurr  >>  MinTbLog2SizeY ]

 (6-1) 

The minimum luma block address in z-scan order minBlockAddrN of the neighbouring block covering the location 

( xNbY, yNbY ) is derived as follows: 

ï If one or more of the following conditions are true, minBlockAddrN is set equal to ī1: 

ï xNbY is less than 0 

ï yNbY is less than 0 

ï xNbY is greater than or equal to pic_width_in_luma_samples 

ï yNbY is greater than or equal to pic_height_in_luma_samples 

ï Otherwise (xNbY and yNbY are inside the picture boundaries), 

minBlockAddrN = MinTbAddrZs[ xNbY  >>  MinTbLog2SizeY ][  yNbY  >>  MinTbLog2SizeY ]

 (6-2) 

The neighbouring block availability availableN is derived as follows: 

ï If one or more of the following conditions are true, availableN is set equal to FALSE: 

ï minBlockAddrN is less than 0, 

ï minBlockAddrN is greater than minBlockAddrCurr, 

ï the variable SliceAddrRs associated with the slice segment containing the neighbouring block with the minimum 

luma block address minBlockAddrN differs in value from the variable SliceAddrRs associated with the slice 

segment containing the current block with the minimum luma block address minBlockAddrCurr. 

ï the neighbouring block with the minimum luma block address minBlockAddrN is contained in a different tile than 

the current block with the minimum luma block address minBlockAddrCurr. 

ï Otherwise, availableN is set equal to TRUE. 

6.4.2 Derivation process for prediction block availability 

Inputs to this process are: 

ï the luma location ( xCb, yCb ) of the top-left sample of the current luma coding block relative to the top-left luma 

sample of the current picture, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï the luma location ( xPb, yPb ) of the top-left sample of the current luma prediction block relative to the top-left luma 

sample of the current picture, 

ï two variables nPbW and nPbH specifying the width and the height of the current luma prediction block, 

ï a variable partIdx specifying the partition index of the current prediction unit within the current coding unit, 

ï the luma location ( xNbY, yNbY ) covered by a neighbouring prediction block relative to the top-left luma sample of 

the current picture. 



 

  Rec. ITU-T H.265 v8 (08/2021) 27 

Output of this process is the availability of the neighbouring prediction block covering the location ( xNbY, yNbY ), 

denoted as availableN is derived as follows: 

The variable sameCb identifies whether the current luma prediction block and the neighbouring luma prediction block 

cover the same luma coding block, and is derived as follows: 

ï If all of the following conditions are true, sameCb is set equal to TRUE: 

ï xCb is less than or equal than xNbY, 

ï yCb is less than or equal than yNbY, 

ï ( xCb + nCbS ) is greater than xNbY, 

ï ( yCb + nCbS ) is greater than yNbY. 

ï Otherwise, sameCb is set equal to FALSE. 

The neighbouring prediction block availability availableN is derived as follows: 

ï If sameCb is equal to FALSE, the derivation process for z-scan order block availability as specified in clause 6.4.1 is 

invoked with ( xCurr, yCurr ) set equal to ( xPb, yPb ) and the luma location ( xNbY, yNbY ) as inputs, and the output 

is assigned to availableN. 

ï Otherwise, if all of the following conditions are true, availableN is set equal to FALSE: 

ï ( nPbW  <<  1 ) is equal to nCbS, 

ï ( nPbH  <<  1 ) is equal to nCbS, 

ï partIdx is equal to 1, 

ï ( yCb + nPbH ) is less than or equal to yNbY, 

ï ( xCb + nPbW ) is greater than xNbY. 

ï Otherwise, availableN is set equal to TRUE. 

When availableN is equal to TRUE and CuPredMode[ xNbY ][  yNbY ] is equal to MODE_INTRA, availableN is set equal 

to FALSE. 

6.5 Scanning processes 

6.5.1 CTB raster and tile scanning conversion process 

The list colWidth[ i ] for i ranging from 0 to num_tile_columns_minus1, inclusive, specifying the width of the i-th tile 

column in units of CTBs, is derived as follows: 

if( uniform_spacing_flag ) 

 for( i = 0; i  <=  num_tile_columns_minus1; i++ ) 

  colWidth[ i ] = ( ( i + 1 ) * PicWidthInCtbsY ) / ( num_tile_columns_minus1 + 1 ) ī  

     ( i * PicWidthInCtbsY ) / ( num_tile_columns_minus1 + 1 ) 

else { 

 colWidth[ num_tile_columns_minus1 ] = PicWidthInCtbsY (6-3) 

 for( i = 0; i < num_tile_columns_minus1; i++ ) { 

  colWidth[ i ] = column_width_minus1[ i ] + 1 

  colWidth[ num_tile_columns_minus1 ]  ī=  colWidth[ i ] 

 }  

}  

The list rowHeight[ j ] for j ranging from 0 to num_tile_rows_minus1, inclusive, specifying the height of the j-th tile row 

in units of CTBs, is derived as follows: 

if( uniform_spacing_flag ) 

 for( j = 0; j  <=  num_tile_rows_minus1; j++ ) 

  rowHeight[ j ] = ( ( j + 1 ) * PicHeightInCtbsY ) / ( num_tile_rows_minus1 + 1 ) ī  

      ( j * PicHeightInCtbsY ) / ( num_tile_rows_minus1 + 1 ) 

else { 

 rowHeight[ num_tile_rows_minus1 ] = PicHeightInCtbsY (6-4) 



 

28 Rec. ITU-T H.265 v8 (08/2021) 

 for( j = 0; j < num_tile_rows_minus1; j++ ) { 

  rowHeight[ j ] = row_height_minus1[ j ] + 1 

  rowHeight[ num_tile_rows_minus1 ]  ī=  rowHeight[ j ] 

 }  

}  

The list colBd[ i ] for i ranging from 0 to num_tile_columns_minus1 + 1, inclusive, specifying the location of the i-th tile 

column boundary in units of CTBs, is derived as follows: 

for( colBd[ 0 ] = 0, i = 0; i  <=  num_tile_columns_minus1; i++ ) 

  colBd[ i + 1 ] = colBd[ i ] + colWidth[ i ] 

 (6-5) 

The list rowBd[ j ] for j ranging from 0 to num_tile_rows_minus1 + 1, inclusive, specifying the location of the j-th tile row 

boundary in units of CTBs, is derived as follows: 

for( rowBd[ 0 ] = 0, j = 0; j  <=  num_tile_rows_minus1; j++ ) 

 rowBd[ j + 1 ] = rowBd[ j ] + rowHeight[ j ] 

 (6-6) 

The list CtbAddrRsToTs[ ctbAddrRs ] for ctbAddrRs ranging from 0 to PicSizeInCtbsY ī 1, inclusive, specifying the 

conversion from a CTB address in CTB raster scan of a picture to a CTB address in tile scan, is derived as follows: 

for( ctbAddrRs = 0; ctbAddrRs < PicSizeInCtbsY; ctbAddrRs++ ) { 

 tbX = ctbAddrRs % PicWidthInCtbsY 

 tbY = ctbAddrRs / PicWidthInCtbsY 

 for( i = 0; i  <=  num_tile_columns_minus1; i++ ) 

  if( tbX  >=  colBd[ i ] ) 

   tileX = i 

 for( j = 0; j  <=  num_tile_rows_minus1; j++ ) 

 (6-7) 

  if( tbY  >=  rowBd[ j ] ) 

   tileY = j 

 CtbAddrRsToTs[ ctbAddrRs ] = 0 

 for( i = 0; i < tileX; i++ ) 

  CtbAddrRsToTs[ ctbAddrRs ]  +=  rowHeight[ tileY ] *  colWidth[ i ] 

 for( j = 0; j < tileY; j++ ) 

  CtbAddrRsToTs[ ctbAddrRs ]  +=  PicWidthInCtbsY * rowHeight[ j ] 

 CtbAddrRsToTs[ ctbAddrRs ]  +=  ( tbY ī rowBd[ tileY ] 

) *  colWidth[ tileX ] + tbX ī colBd[ tileX ] 

}  

The list CtbAddrTsToRs[ ctbAddrTs ] for ctbAddrTs ranging from 0 to PicSizeInCtbsY ī 1, inclusive, specifying the 

conversion from a CTB address in tile scan to a CTB address in CTB raster scan of a picture, is derived as follows: 

for( ctbAddrRs = 0; ctbAddrRs < PicSizeInCtbsY; ctbAddrRs++ ) (6-8) 

 CtbAddrTsToRs[ CtbAddrRsToTs[ ctbAddrRs ] ] = ctbAddrRs 

The list TileId[ ctbAddrTs ] for ctbAddrTs ranging from 0 to PicSizeInCtbsY ī 1, inclusive, specifying the conversion 

from a CTB address in tile scan to a tile ID, is derived as follows: 

for( j = 0, tileIdx = 0; j  <=  num_tile_rows_minus1; j++ ) 

 for( i = 0; i  <=  num_tile_columns_minus1; i++, tileIdx++ ) 

  for( y = rowBd[ j ]; y < rowBd[ j + 1 ]; y++ ) (6-9) 

   for( x = colBd[ i ]; x < colBd[ i + 1 ]; x++ ) 

     TileId[ CtbAddrRsToTs[ y *  PicWidthInCtbsY+ x ] ] = tileIdx 

The values of ColumnWidthInLumaSamples[ i ], specifying the width of the i-th tile column in units of luma samples, are 

set equal to colWidth[ i ]  <<  CtbLog2SizeY for i ranging from 0 to num_tile_columns_minus1, inclusive. 



 

  Rec. ITU-T H.265 v8 (08/2021) 29 

The values of RowHeightInLumaSamples[ j ], specifying the height of the j-th tile row in units of luma samples, are set 

equal to rowHeight[ j ]  <<  CtbLog2SizeY for j ranging from 0 to num_tile_rows_minus1, inclusive. 

6.5.2 Z-scan order array initialization process 

The array MinTbAddrZs with elements MinTbAddrZs[ x ][  y ] for x ranging from 0 to 

( PicWidthInCtbsY  <<  ( CtbLog2SizeY ī MinTbLog2SizeY ) ) ī 1, inclusive, and y ranging from 0 to 

( PicHeightInCtbsY  <<  ( CtbLog2SizeY ī MinTbLog2SizeY ) ) ī 1, specifying the conversion from a location ( x, y ) in 

units of minimum blocks to a minimum block address in z-scan order, inclusive, is derived as follows: 

for( y = 0; y < ( PicHeightInCtbsY  <<  ( CtbLog2SizeY ī MinTbLog2SizeY ) ); y++ ) 

 for( x = 0; x < ( PicWidthInCtbsY  <<  ( CtbLog2SizeY ī MinTbLog2SizeY ) ); x++) { 

  tbX = ( x  <<  MinTbLog2SizeY )  >>  CtbLog2SizeY 

  tbY = ( y  <<  MinTbLog2SizeY )  >>  CtbLog2SizeY 

  ctbAddrRs = PicWidthInCtbsY * tbY + tbX 

  MinTbAddrZs[ x ][  y ] = CtbAddrRsToTs[ ctbAddrRs ]  << (6-10) 

    ( ( CtbLog2SizeY ī MinTbLog2SizeY ) *  2 ) 

  for( i = 0, p = 0; i < ( CtbLog2SizeY ī MinTbLog2SizeY ); i++ ) {  

   m = 1  <<  i 

   p  +=  ( m & x ? m *  m : 0 ) + ( m & y ? 2 * m * m : 0 ) 
  }  

  MinTbAddrZs[ x ][  y ]  +=  p 

 }  

6.5.3 Up-right diagonal scan order array initialization process 

Input to this process is a block size blkSize. 

Output of this process is the array diagScan[ sPos ][  sComp ]. The array index sPos specify the scan position ranging from 

0 to ( blkSize *  blkSize ) ī 1. The array index sComp equal to 0 specifies the horizontal component and the array index 

sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array diagScan is derived as 

follows: 

i = 0 

x = 0 

y = 0 

stopLoop = FALSE 

while( !stopLoop ) { 

 while( y  >=  0 ) { 

  if( x < blkSize  &&  y < blkSize ) {  (6-11) 

   diagScan[ i ][  0 ] = x 

   diagScan[ i ][  1 ] = y 

   i++ 

  }  

  yī ī 

  x++ 

 }  

 y = x 

 x = 0 

 if( i  >=  blkSize * blkSize ) 

  stopLoop = TRUE 

}  

6.5.4 Horizontal scan order array initialization pr ocess 

Input to this process is a block size blkSize. 

Output of this process is the array horScan[ sPos ][  sComp ]. The array index sPos specifies the scan position ranging from 

0 to ( blkSize *  blkSize ) ī 1. The array index sComp equal to 0 specifies the horizontal component and the array index 

sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array horScan is derived as 

follows: 



 

30 Rec. ITU-T H.265 v8 (08/2021) 

i = 0 

for( y = 0; y < blkSize; y++ ) 

 for( x = 0; x < blkSize; x++ ) { 

  horScan[ i ][  0 ] = x  (6-12) 

  horScan[ i ][  1 ] = y 

  i++ 

 }  

6.5.5 Vertical scan order array initialization process 

Input to this process is a block size blkSize. 

Output of this process is the array verScan[ sPos ][  sComp ]. The array index sPos specifies the scan position ranging from 

0 to ( blkSize *  blkSize ) ī 1. The array index sComp equal to 0 specifies the horizontal component and the array index 

sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array verScan is derived as 

follows: 

i = 0 

for( x = 0; x < blkSize; x++ ) 

 for( y = 0; y < blkSize; y++ ) { 

  verScan[ i ][  0 ] = x  (6-13) 

  verScan[ i ][  1 ] = y 

  i++ 

 }  

6.5.6 Traverse scan order array initialization process 

Input to this process is a block size blkSize. 

Output of this process is the array travScan[ sPos ][  sComp ]. The array index sPos specifies the scan position ranging from 

0 to ( blkSize *  blkSize ) ī 1, inclusive. The array index sComp equal to 0 specifies the horizontal component and the array 

index sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array travScan is derived 

as follows: 

i = 0 

for( y = 0; y < blkSize; y++ ) 

 if( y % 2  = =  0 ) 

  for( x = 0; x < blkSize; x++ ) { 

   travScan[ i ][  0 ] = x 

   travScan[ i ][  1 ] = y 

   i++ 

  }  

 else     (6-14) 

  for( x = blkSize ī 1; x  >=  0; xī ī ) { 

   travScan[ i ][  0 ] = x 

   travScan[ i ][  1 ] = y 

   i++ 

  }  

7 Syntax and semantics 

7.1 Method of specifying syntax in tabular form 

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be 

specified, either directly or indirectly, in other clauses. 

NOTE ï An actual decoder should implement some means for identifying entry points into the bitstream and some means to identify 

and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified 

in this Specification. 

The following table lists examples of the syntax specification format. When syntax_element appears, it specifies that a 

syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position beyond the syntax 

element in the bitstream parsing process. 



 

  Rec. ITU-T H.265 v8 (08/2021) 31 

 Descriptor 

/* A statement can be a syntax element with an associated descriptor or can be an expression 

used to specify conditions for the existence, type and quantity of syntax elements, as in the 

following two examples */ 

 

syntax_element ue(v) 

conditioning statement  

  

/* A group of statements enclosed in curly brackets is a compound statement and is treated 

functionally as a single statement. */ 

 

{   

 statement  

 statement  

 ...  

}   

  

/* A "while" structure specifies a test of whether a condition is true, and if true, specifies 

evaluation of a statement (or compound statement) repeatedly until the condition is no longer 

true */ 

 

while( condition )  

 statement  

  

/* A "do ... while" structure specifies evaluation of a statement once, followed by a test of 

whether a condition is true, and if true, specifies repeated evaluation of the statement until the 

condition is no longer true */ 

 

do  

 statement  

while( condition )  

  

/* An "if ... else" structure specifies a test of whether a condition is true and, if the condition is 

true, specifies evaluation of a primary statement, otherwise, specifies evaluation of an 

alternative statement. The "else" part of the structure and the associated alternative statement is 

omitted if no alternative statement evaluation is needed */ 

 

if( condition )  

 primary statement  

else  

 alternative statement  

  

/* A "for" structure specifies evaluation of an initial statement, followed by a test of a 

condition, and if the condition is true, specifies repeated evaluation of a primary statement 

followed by a subsequent statement until the condition is no longer true. */ 

 

for( initial statement; condition; subsequent statement )  

 primary statement  

7.2 Specification of syntax functions and descriptors 

The functions presented here are used in the syntactical description. These functions are expressed in terms of the value of 

a bitstream pointer that indicates the position of the next bit to be read by the decoding process from the bitstream. 

byte_aligned( ) is specified as follows: 

ï If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a 

byte, the return value of byte_aligned( ) is equal to TRUE. 

ï Otherwise, the return value of byte_aligned( ) is equal to FALSE. 



 

32 Rec. ITU-T H.265 v8 (08/2021) 

more_data_in_byte_stream( ), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is 

specified as follows: 

ï If more data follow in the byte stream, the return value of more_data_in_byte_stream( ) is equal to TRUE. 

ï Otherwise, the return value of more_data_in_byte_stream( ) is equal to FALSE. 

more_data_in_payload( ) is specified as follows: 

ï If byte_aligned( ) is equal to TRUE and the current position in the sei_payload( ) syntax structure is 

8 *  payloadSize bits from the beginning of the sei_payload( ) syntax structure, the return value of 

more_data_in_payload( ) is equal to FALSE. 

ï Otherwise, the return value of more_data_in_payload( ) is equal to TRUE. 

more_rbsp_data( ) is specified as follows: 

ï If there is no more data in the raw byte sequence payload (RBSP), the return value of more_rbsp_data( ) is equal 

to FALSE. 

ï Otherwise, the RBSP data are searched for the last (least significant, right-most) bit equal to 1 that is present in 

the RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits( ) 

syntax structure, the following applies: 

ï If there is more data in an RBSP before the rbsp_trailing_bits( ) syntax structure, the return value of 

more_rbsp_data( ) is equal to TRUE. 

ï Otherwise, the return value of more_rbsp_data( ) is equal to FALSE. 

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or 

in Annex B for applications that use the byte stream format). 

more_rbsp_trailing_data( ) is specified as follows: 

ï If there is more data in an RBSP, the return value of more_rbsp_trailing_data( ) is equal to TRUE. 

ï Otherwise, the return value of more_rbsp_trailing_data( ) is equal to FALSE. 

next_bits( n ) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer. It 

provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream format as 

specified in Annex B and fewer than n bits remain within the byte stream, next_bits( n ) returns a value of 0. 

payload_extension_present( ) is specified as follows: 

ï If the current position in the sei_payload( ) syntax structure is not the position of the last (least significant, right-

most) bit that is equal to 1 that is less than 8 *  payloadSize bits from the beginning of the syntax structure (i.e., 

the position of the payload_bit_equal_to_one syntax element), the return value of payload_extension_present( ) 

is equal to TRUE. 

ï Otherwise, the return value of payload_extension_present( ) is equal to FALSE. 

pic_layer_id( picX ) returns the value of the nuh_layer_id of the VCL NAL units in the picture picX. 

read_bits( n ) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is 

equal to 0, read_bits( n ) is specified to return a value equal to 0 and to not advance the bitstream pointer. 

The following descriptors specify the parsing process of each syntax element: 

ï ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is 

specified in clause 9.3. 

ï b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the return 

value of the function read_bits( 8 ). 

ï f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for 

this descriptor is specified by the return value of the function read_bits( n ). 

ï i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner dependent 

on the value of other syntax elements. The parsing process for this descriptor is specified by the return value of 

the function read_bits( n ) interpreted as a two's complement integer representation with most significant bit 

written first. 

ï se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for 

this descriptor is specified in clause 9.2. 



 

  Rec. ITU-T H.265 v8 (08/2021) 33 

ï st(v): null-terminated string encoded as universal coded character set (UCS) transmission format-8 (UTF-8) 

characters as specified in ISO/IEC 10646. The parsing process is specified as follows: st(v) begins at a byte-

aligned position in the bitstream and reads and returns a series of bytes from the bitstream, beginning at the current 

position and continuing up to but not including the next byte-aligned byte that is equal to 0x00, and advances the 

bitstream pointer by ( stringLength + 1 ) *  8 bit positions, where stringLength is equal to the number of bytes 

returned. 

NOTE ï The st(v) syntax descriptor is only used in this Specification when the current position in the bitstream is a 

byte-aligned position. 

ï u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner 

dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the return 

value of the function read_bits( n ) interpreted as a binary representation of an unsigned integer with most 

significant bit written first. 

ï ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process 

for this descriptor is specified in clause 9.2. 

7.3 Syntax in tabular form 

7.3.1 NAL unit syntax 

7.3.1.1 General NAL unit syntax 

 

nal_unit( NumBytesInNalUnit ) { Descriptor 

 nal_unit_header( )  

 NumBytesInRbsp = 0  

 for( i = 2; i < NumBytesInNalUnit; i++ )  

  if( i + 2 < NumBytesInNalUnit  &&  next_bits( 24 )  = =  0x000003 ) {  

   rbsp_byte[ NumBytesInRbsp++ ] b(8) 

   rbsp_byte[ NumBytesInRbsp++ ] b(8) 

   i  +=  2  

   emulation_prevention_three_byte  /* equal to 0x03 */ f(8) 

  } else  

   rbsp_byte[ NumBytesInRbsp++ ] b(8) 

}   

 

7.3.1.2 NAL unit header syntax 

 

nal_unit_header( ) {  Descriptor 

 forbidden_zero_bit f(1) 

 nal_unit_type u(6) 

 nuh_layer_id u(6) 

 nuh_temporal_id_plus1 u(3) 

}   

 



 

34 Rec. ITU-T H.265 v8 (08/2021) 

7.3.2 Raw byte sequence payloads, trailing bits and byte alignment syntax 

7.3.2.1 Video parameter set RBSP syntax 

 

video_parameter_set_rbsp( ) {  Descriptor 

 vps_video_parameter_set_id u(4) 

 vps_base_layer_internal_flag u(1) 

 vps_base_layer_available_flag u(1) 

 vps_max_layers_minus1 u(6) 

 vps_max_sub_layers_minus1 u(3) 

 vps_temporal_id_nesting_flag u(1) 

 vps_reserved_0xffff_16bits u(16) 

 profile_tier_level( 1, vps_max_sub_layers_minus1 )  

 vps_sub_layer_ordering_info_present_flag u(1) 

 for( i = ( vps_sub_layer_ordering_info_present_flag ? 0 : vps_max_sub_layers_minus1 ); 

   i  <=  vps_max_sub_layers_minus1; i++ ) { 

 

  vps_max_dec_pic_buffering_minus1[ i ] ue(v) 

  vps_max_num_reorder_pics[ i ] ue(v) 

  vps_max_latency_increase_plus1[ i ] ue(v) 

 }   

 vps_max_layer_id u(6) 

 vps_num_layer_sets_minus1 ue(v) 

 for( i = 1; i  <=  vps_num_layer_sets_minus1; i++ )  

  for( j = 0; j  <=  vps_max_layer_id; j++ )  

   layer_id_included_flag[ i ][  j ] u(1) 

 vps_timing_info_present_flag u(1) 

 if( vps_timing_info_present_flag ) {  

  vps_num_units_in_tick u(32) 

  vps_time_scale u(32) 

  vps_poc_proportional_to_timing_flag u(1) 

  if( vps_poc_proportional_to_timing_flag )  

   vps_num_ticks_poc_diff_one_minus1 ue(v) 

  vps_num_hrd_parameters ue(v) 

  for( i = 0; i < vps_num_hrd_parameters; i++ ) {  

   hrd_layer_set_idx[ i ] ue(v) 

   if( i > 0 )  

    cprms_present_flag[ i ] u(1) 

   hrd_parameters( cprms_present_flag[ i ], vps_max_sub_layers_minus1 )  

  }   

 }   

 vps_extension_flag u(1) 

 if( vps_extension_flag )  

  while( more_rbsp_data( ) )  

   vps_extension_data_flag u(1) 

 rbsp_trailing_bits( )  

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 35 

7.3.2.2 Sequence parameter set RBSP syntax 

7.3.2.2.1 General sequence parameter set RBSP syntax 

 

seq_parameter_set_rbsp( ) {  Descriptor 

 sps_video_parameter_set_id u(4) 

 sps_max_sub_layers_minus1 u(3) 

 sps_temporal_id_nesting_flag u(1) 

 profile_tier_level( 1, sps_max_sub_layers_minus1 )  

 sps_seq_parameter_set_id ue(v) 

 chroma_format_idc ue(v) 

 if( chroma_format_idc  = =  3 )  

  separate_colour_plane_flag u(1) 

 pic_width_in_luma_samples ue(v) 

 pic_height_in_luma_samples ue(v) 

 conformance_window_flag u(1) 

 if( conformance_window_flag ) {  

  conf_win_left_offset ue(v) 

  conf_win_right_offset ue(v) 

  conf_win_top_offset ue(v) 

  conf_win_bottom_offset ue(v) 

 }   

 bit_depth_luma_minus8 ue(v) 

 bit_depth_chroma_minus8 ue(v) 

 log2_max_pic_order_cnt_lsb_minus4 ue(v) 

 sps_sub_layer_ordering_info_present_flag u(1) 

 for( i = ( sps_sub_layer_ordering_info_present_flag ? 0 : sps_max_sub_layers_minus1 ); 

   i  <=  sps_max_sub_layers_minus1; i++ ) { 

 

  sps_max_dec_pic_buffering_minus1[ i ] ue(v) 

  sps_max_num_reorder_pics[ i ] ue(v) 

  sps_max_latency_increase_plus1[ i ] ue(v) 

 }   

 log2_min_luma_coding_block_size_minus3 ue(v) 

 log2_diff_max_min_luma_coding_block_size ue(v) 

 log2_min_luma_transform_block_size_minus2 ue(v) 

 log2_diff_max_min_luma_transform_block_size ue(v) 

 max_transform_hierarchy_depth_inter ue(v) 

 max_transform_hierarchy_depth_intra ue(v) 

 scaling_list_enabled_flag u(1) 

 if( scaling_list_enabled_flag ) {  

  sps_scaling_list_data_present_flag u(1) 

  if( sps_scaling_list_data_present_flag )  

   scaling_list_data( )  

 }   

 amp_enabled_flag u(1) 

 sample_adaptive_offset_enabled_flag u(1) 

 pcm_enabled_flag u(1) 

 if( pcm_enabled_flag ) {  

  pcm_sample_bit_depth_luma_minus1 u(4) 

  pcm_sample_bit_depth_chroma_minus1 u(4) 



 

36 Rec. ITU-T H.265 v8 (08/2021) 

  log2_min_pcm_luma_coding_block_size_minus3 ue(v) 

  log2_diff_max_min_pcm_luma_coding_block_size ue(v) 

  pcm_loop_filter_disabled_flag u(1) 

 }   

 num_short_term_ref_pic_sets ue(v) 

 for( i = 0; i < num_short_term_ref_pic_sets; i++)  

  st_ref_pic_set( i )  

 long_term_ref_pics_present_flag u(1) 

 if( long_term_ref_pics_present_flag ) {  

  num_long_term_ref_pics_sps ue(v) 

  for( i = 0; i < num_long_term_ref_pics_sps; i++ ) {  

   lt_ref_pic_poc_lsb_sps[ i ] u(v) 

   used_by_curr_pic_lt_sps_flag[ i ] u(1) 

  }   

 }   

 sps_temporal_mvp_enabled_flag u(1) 

 strong_intra_smoothing_enabled_flag u(1) 

 vui_parameters_present_flag u(1) 

 if( vui_parameters_present_flag )  

  vui_parameters( )  

 sps_extension_present_flag u(1) 

 if( sps_extension_present_flag ) {  

  sps_range_extension_flag u(1) 

  sps_multilayer_extension_flag u(1) 

  sps_3d_extension_flag u(1) 

  sps_scc_extension_flag u(1) 

  sps_extension_4bits u(4) 

 }   

 if( sps_range_extension_flag )  

  sps_range_extension( )  

 if( sps_multilayer_extension_flag )  

  sps_multilayer_extension( )  /* specified in Annex F */   

 if( sps_3d_extension_flag )  

  sps_3d_extension( )  /* specified in Annex I */   

 if( sps_scc_extension_flag )  

  sps_scc_extension( )  

 if( sps_extension_4bits )  

  while( more_rbsp_data( ) )  

   sps_extension_data_flag u(1) 

 rbsp_trailing_bits( )  

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 37 

7.3.2.2.2 Sequence parameter set range extension syntax 

 

sps_range_extension( ) {  Descriptor 

 transform_skip_rotation_enabled_flag u(1) 

 transform_skip_context_enabled_flag u(1) 

 implicit_rdpcm_enabled_flag u(1) 

 explicit_rdpcm_enabled_flag u(1) 

 extended_precision_processing_flag u(1) 

 intra_smoothing_disabled_flag u(1) 

 high_precision_offsets_enabled_flag u(1) 

 persistent_rice_adaptation_enabled_flag u(1) 

 cabac_bypass_alignment_enabled_flag u(1) 

}   

 

7.3.2.2.3 Sequence parameter set screen content coding extension syntax 

 

sps_scc_extension( ) {  Descriptor 

 sps_curr_pic_ref_enabled_flag u(1) 

 palette_mode_enabled_flag u(1) 

 if( palette_mode_enabled_flag ) {  

  palette_max_size ue(v) 

  delta_palette_max_predictor_size ue(v) 

  sps_palette_predictor_initializers_present_flag u(1) 

  if( sps_palette_predictor_initializers_present_flag ) {  

   sps_num_palette_predictor_initializers_minus1 ue(v) 

   numComps = ( chroma_format_idc  = =  0 ) ? 1 : 3  

   for( comp = 0; comp < numComps; comp++ )  

    for( i = 0; i  <=  sps_num_palette_predictor_initializers_minus1; i++ )  

     sps_palette_predictor_initializer[ comp ][  i ] u(v) 

  }   

 }   

 motion_vector_resolution_control_idc u(2) 

 intra_boundary_filtering_disabled_flag u(1) 

}   

 

7.3.2.3 Picture parameter set RBSP syntax 

7.3.2.3.1 General picture parameter set RBSP syntax 

 

pic_parameter_set_rbsp( ) {  Descriptor 

 pps_pic_parameter_set_id ue(v) 

 pps_seq_parameter_set_id ue(v) 

 dependent_slice_segments_enabled_flag u(1) 

 output_flag_present_flag u(1) 

 num_extra_slice_header_bits u(3) 

 sign_data_hiding_enabled_flag u(1) 

 cabac_init_present_flag u(1) 



 

38 Rec. ITU-T H.265 v8 (08/2021) 

 num_ref_idx_l0_default_active_minus1 ue(v) 

 num_ref_idx_l1_default_active_minus1 ue(v) 

 init_qp_minus26 se(v) 

 constrained_intra_pred_flag u(1) 

 transform_skip_enabled_flag u(1) 

 cu_qp_delta_enabled_flag u(1) 

 if( cu_qp_delta_enabled_flag )  

  diff_cu_qp_delta_depth ue(v) 

 pps_cb_qp_offset se(v) 

 pps_cr_qp_offset se(v) 

 pps_slice_chroma_qp_offsets_present_flag u(1) 

 weighted_pred_flag u(1) 

 weighted_bipred_flag u(1) 

 transquant_bypass_enabled_flag u(1) 

 tiles_enabled_flag u(1) 

 entropy_coding_sync_enabled_flag u(1) 

 if( tiles_enabled_flag ) {   

  num_tile_columns_minus1 ue(v) 

  num_tile_rows_minus1 ue(v) 

  uniform_spacing_flag u(1) 

  if( !uniform_spacing_flag ) {  

   for( i = 0; i < num_tile_columns_minus1; i++ )  

    column_width_minus1[ i ] ue(v) 

   for( i = 0; i < num_tile_rows_minus1; i++ )  

    row_height_minus1[ i ] ue(v) 

  }   

  loop_filter_across_tiles_enabled_flag u(1) 

 }   

 pps_loop_filter_across_slices_enabled_flag u(1) 

 deblocking_filter_control_present_flag u(1) 

 if( deblocking_filter_control_present_flag ) {  

  deblocking_filter_override_enabled_flag u(1) 

  pps_deblocking_filter_disabled_flag u(1) 

  if( !pps_deblocking_filter_disabled_flag ) {  

   pps_beta_offset_div2 se(v) 

   pps_tc_offset_div2 se(v) 

  }   

 }   

 pps_scaling_list_data_present_flag u(1) 

 if( pps_scaling_list_data_present_flag )  

  scaling_list_data( )  

 lists_modification_present_flag u(1) 

 log2_parallel_merge_level_minus2 ue(v) 

 slice_segment_header_extension_present_flag u(1) 

 pps_extension_present_flag u(1) 

 if( pps_extension_present_flag ) {  

  pps_range_extension_flag u(1) 

  pps_multilayer_extension_flag u(1) 



 

  Rec. ITU-T H.265 v8 (08/2021) 39 

  pps_3d_extension_flag u(1) 

  pps_scc_extension_flag u(1) 

  pps_extension_4bits u(4) 

 }   

 if( pps_range_extension_flag )  

  pps_range_extension( )  

 if( pps_multilayer_extension_flag )  

  pps_multilayer_extension( )  /* specified in Annex F */   

 if( pps_3d_extension_flag )  

  pps_3d_extension( )  /* specified in Annex I */   

 if( pps_scc_extension_flag )  

  pps_scc_extension( )  

 if( pps_extension_4bits )  

  while( more_rbsp_data( ) )  

   pps_extension_data_flag u(1) 

 rbsp_trailing_bits( )  

}   

 

7.3.2.3.2 Picture parameter set range extension syntax 

 

pps_range_extension( ) {  Descriptor 

 if( transform_skip_enabled_flag )  

  log2_max_transform_skip_block_size_minus2 ue(v) 

 cross_component_prediction_enabled_flag u(1) 

 chroma_qp_offset_list_enabled_flag u(1) 

 if( chroma_qp_offset_list_enabled_flag ) {  

  diff_cu_chroma_qp_offset_depth ue(v) 

  chroma_qp_offset_list_len_minus1 ue(v) 

  for( i = 0; i  <=  chroma_qp_offset_list_len_minus1; i++ ) {  

   cb_qp_offset_list[ i ] se(v) 

   cr_qp_offset_list[ i ] se(v) 

  }   

 }   

 log2_sao_offset_scale_luma ue(v) 

 log2_sao_offset_scale_chroma ue(v) 

}   

 



 

40 Rec. ITU-T H.265 v8 (08/2021) 

7.3.2.3.3 Picture parameter set screen content coding extension syntax 

 

pps_scc_extension( ) {  Descriptor 

 pps_curr_pic_ref_enabled_flag u(1) 

 residual_adaptive_colour_transform_enabled_flag u(1) 

 if( residual_adaptive_colour_transform_enabled_flag ) {  

  pps_slice_act_qp_offsets_present_flag u(1) 

  pps_act_y_qp_offset_plus5 se(v) 

  pps_act_cb_qp_offset_plus5 se(v) 

  pps_act_cr_qp_offset_plus3 se(v) 

 }   

 pps_palette_predictor_initializers_present_flag u(1) 

 if( pps_palette_predictor_initializers_present_flag ) {  

  pps_num_palette_predictor_initializers ue(v) 

  if( pps_num_palette_predictor_initializers > 0 ) {  

   monochrome_palette_flag u(1) 

   luma_bit_depth_entry_minus8 ue(v) 

   if( !monochrome_palette_flag )  

    chroma_bit_depth_entry_minus8 ue(v) 

   numComps = monochrome_palette_flag ? 1 : 3  

   for( comp = 0; comp < numComps; comp++ )  

    for( i = 0; i < pps_num_palette_predictor_initializers; i++ )  

     pps_palette_predictor_initializer[ comp ][  i ] u(v) 

  }   

 }   

}   

 

7.3.2.4 Supplemental enhancement information RBSP syntax 

 

sei_rbsp( ) {  Descriptor 

do  

sei_message( )  

while( more_rbsp_data( ) )  

rbsp_trailing_bits( )  

}   

 

7.3.2.5 Access unit delimiter RBSP syntax 

 

access_unit_delimiter_rbsp( ) {  Descriptor 

 pic_type u(3) 

 rbsp_trailing_bits( )  

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 41 

7.3.2.6 End of sequence RBSP syntax 

 

end_of_seq_rbsp( ) {  Descriptor 

}   

 

7.3.2.7 End of bitstream RBSP syntax 

 

end_of_bitstream_rbsp( ) {  Descriptor 

}   

 

7.3.2.8 Filler data RBSP syntax 

 

filler_data_rbsp( ) {  Descriptor 

 while( next_bits( 8 )  = =  0xFF )  

  ff_byte  /* equal to 0xFF */ f(8) 

 rbsp_trailing_bits( )  

}   

 

7.3.2.9 Slice segment layer RBSP syntax 

 

slice_segment_layer_rbsp( ) {  Descriptor 

 slice_segment_header( )  

 slice_segment_data( )  

 rbsp_slice_segment_trailing_bits( )  

}   

 

7.3.2.10 RBSP slice segment trailing bits syntax 

 

rbsp_slice_segment_trailing_bits( ) {  Descriptor 

 rbsp_trailing_bits( )  

 while( more_rbsp_trailing_data( ) )  

  cabac_zero_word  /* equal to 0x0000 */ f(16) 

}   

 

7.3.2.11 RBSP trailing bits syntax 

 

rbsp_trailing_bits( ) {  Descriptor 

 rbsp_stop_one_bit  /* equal to 1 */ f(1) 

 while( !byte_aligned( ) )  

  rbsp_alignment_zero_bit  /* equal to 0 */ f(1) 

}   

 



 

42 Rec. ITU-T H.265 v8 (08/2021) 

7.3.2.12 Byte alignment syntax 

 

byte_alignment( ) {  Descriptor 

 alignment_bit_equal_to_one  /* equal to 1 */ f(1) 

 while( !byte_aligned( ) )  

  alignment_bit_equal_to_zero  /* equal to 0 */ f(1) 

}   

 

7.3.3 Profile, tier and level syntax 

 

profile_tier_level( profilePresentFlag, maxNumSubLayersMinus1 ) {  Descriptor 

 if( profilePresentFlag ) {  

  general_profile_space u(2) 

  general_tier_flag u(1) 

  general_profile_idc u(5) 

  for( j = 0; j < 32; j++ )  

   general_profile_compatibility_flag[ j ] u(1) 

  general_progressive_source_flag u(1) 

  general_interlaced_source_flag u(1) 

  general_non_packed_constraint_flag u(1) 

  general_frame_only_constraint_flag u(1) 

  if( general_profile_idc  = =  4  | |  general_profile_compatibility_flag[ 4 ]  | | 

   general_profile_idc  = =  5  | |  general_profile_compatibility_flag[ 5 ]  | | 

   general_profile_idc  = =  6  | |  general_profile_compatibility_flag[ 6 ]  | | 

   general_profile_idc  = =  7  | |  general_profile_compatibility_flag[ 7 ]  | | 

   general_profile_idc  = =  8  | |  general_profile_compatibility_flag[ 8 ]  | | 

   general_profile_idc  = =  9  | |  general_profile_compatibility_flag[ 9 ]  | | 

   general_profile_idc  = =  10  | |  general_profile_compatibility_flag[ 10 ]  | | 

   general_profile_idc  = =  11  | |  general_profile_compatibility_flag[ 11 ] ) {  

   /* The number of bits in this syntax structure is not affected by this condition */ 

 

   general_max_12bit_constraint_flag u(1) 

   general_max_10bit_constraint_flag u(1) 

   general_max_8bit_constraint_flag u(1) 

   general_max_422chroma_constraint_flag u(1) 

   general_max_420chroma_constraint_flag u(1) 

   general_max_monochrome_constraint_flag u(1) 

   general_intra_constraint_flag u(1) 

   general_one_picture_only_constraint_flag u(1) 

   general_lower_bit_rate_constraint_flag u(1) 

   if( general_profile_idc  = =  5 | |  general_profile_compatibility_flag[ 5 ]  | | 

    general_profile_idc  = =  9  | |  general_profile_compatibility_flag[ 9 ]  | | 

    general_profile_idc  = =  10  | |  general_profile_compatibility_flag[ 10 ]  | | 

    general_profile_idc  = =  11  | |  general_profile_compatibility_flag[ 11 ] ) {  

 

    general_max_14bit_constraint_flag u(1) 

    general_reserved_zero_33bits u(33) 

   } else  

    general_reserved_zero_34bits u(34) 

  } else if ( general_profile_idc  = =  2  | |  general_profile_compatibility_flag[ 2 ] ) {   

   general_reserved_zero_7bits u(7) 

   general_one_picture_only_constraint_flag u(1) 



 

  Rec. ITU-T H.265 v8 (08/2021) 43 

   general_reserved_zero_35bits u(35) 

  } else  

   general_reserved_zero_43bits u(43) 

  if( general_profile_idc  = =  1  | | general_profile_compatibility_flag[ 1 ]  | | 

   general_profile_idc  = =  2  | |  general_profile_compatibility_flag[ 2 ]  | | 

   general_profile_idc  = =  3  | |  general_profile_compatibility_flag[ 3 ]  | | 

   general_profile_idc  = =  4  | |  general_profile_compatibility_flag[ 4 ]  | | 

   general_profile_idc  = =  5  | |  general_profile_compatibility_flag[ 5 ]  | | 

   general_profile_idc  = =  9  | |  general_profile_compatibility_flag[ 9 ]  | | 

   general_profile_idc  = =  11  | |  general_profile_compatibility_flag[ 11 ] ) 

   /* The number of bits in this syntax structure is not affected by this condition */ 

 

   general_inbld_flag u(1) 

  else  

   general_reserved_zero_bit u(1) 

 }   

 general_level_idc u(8) 

 for( i = 0; i < maxNumSubLayersMinus1; i++ ) {  

  sub_layer_profile_present_flag[ i ] u(1) 

  sub_layer_level_present_flag[ i ] u(1) 

 }   

 if( maxNumSubLayersMinus1 > 0 )  

  for( i = maxNumSubLayersMinus1; i < 8; i++ )  

   reserved_zero_2bits[ i ] u(2) 

 for( i = 0; i < maxNumSubLayersMinus1; i++ ) {  

  if( sub_layer_profile_present_flag[ i ] ) {   

   sub_layer_profile_space[ i ] u(2) 

   sub_layer_tier_flag[ i ] u(1) 

   sub_layer_profile_idc[ i ] u(5) 

   for( j = 0; j < 32; j++ )  

    sub_layer_profile_compatibility_flag[ i ][  j ] u(1) 

   sub_layer_progressive_source_flag[ i ] u(1) 

   sub_layer_interlaced_source_flag[ i ] u(1) 

   sub_layer_non_packed_constraint_flag[ i ] u(1) 

   sub_layer_frame_only_constraint_flag[ i ] u(1) 

   if( sub_layer_profile_idc[ i ]  = =  4  | | 

    sub_layer_profile_compatibility_flag[ i ][  4 ]  | | 

    sub_layer_profile_idc[ i ]  = =  5  | | 

    sub_layer_profile_compatibility_flag[ i ][  5 ]  | | 

    sub_layer_profile_idc[ i ]  = =  6  | | 

    sub_layer_profile_compatibility_flag[ i ][  6 ]  | | 

    sub_layer_profile_idc[ i ]  = =  7  | | 

    sub_layer_profile_compatibility_flag[ i ][  7 ]  | | 

    sub_layer_profile_idc[ i ]  = =  8  | | 

    sub_layer_profile_compatibility_flag[ i ][  8 ]  | | 

    sub_layer_profile_idc[ i ]  = =  9  | | 

    sub_layer_profile_compatibility_flag[ i ][  9 ]  | | 

    sub_layer_profile_idc[ i ]  = =  10  | | 

    sub_layer_profile_compatibility_flag[ i ][  10 ]  | | 

    sub_layer_profile_idc[ i ]  = =  11  | | 

    sub_layer_profile_compatibility_flag[ i ][  11 ] ) {  

    /* The number of bits in this syntax structure is not affected by this condition */ 

 

    sub_layer_max_12bit_constraint_flag[ i ] u(1) 

    sub_layer_max_10bit_constraint_flag[ i ] u(1) 

    sub_layer_max_8bit_constraint_flag[ i ] u(1) 



 

44 Rec. ITU-T H.265 v8 (08/2021) 

    sub_layer_max_422chroma_constraint_flag[ i ] u(1) 

    sub_layer_max_420chroma_constraint_flag[ i ] u(1) 

    sub_layer_max_monochrome_constraint_flag[ i ] u(1) 

    sub_layer_intra_constraint_flag[ i ] u(1) 

    sub_layer_one_picture_only_constraint_flag[ i ] u(1) 

    sub_layer_lower_bit_rate_constraint_flag[ i ] u(1) 

    if( sub_layer_profile_idc[ i ]  = =  5 | | 

     sub_layer_profile_compatibility_flag[ i ][  5 ] | | 

     sub_layer_profile_idc[ i ]  = =  9  | | 

     sub_layer_profile_compatibility_flag[ i ][ 9 ]  | | 

     sub_layer_profile_idc[ i ]  = =  10  | | 

     sub_layer_profile_compatibility_flag[ i ][ 10 ]  | | 

     sub_layer_profile_idc[ i ]  = =  11  | | 

     sub_layer_profile_compatibility_flag[ i ][ 11 ] ) {  

 

     sub_layer_max_14bit_constraint_flag[ i ] u(1) 

     sub_layer_reserved_zero_33bits[ i ] u(33) 

    } else  

     sub_layer_reserved_zero_34bits[ i ] u(34) 

   } else if( sub_layer_profile_idc[ i ]  = =  2  | | 

       sub_layer_profile_compatibility_flag[ i ][  2 ] ) {  

 

    sub_layer_reserved_zero_7bits[ i ] u(7) 

    sub_layer_one_picture_only_constraint_flag[ i ] u(1) 

    sub_layer_reserved_zero_35bits[ i ] u(35) 

   } else  

    sub_layer_reserved_zero_43bits[ i ] u(43) 

   if(  sub_layer_profile_idc[ i ]  = =  1  | | 

    sub_layer_profile_compatibility_flag[ i ][  1 ]  | | 

    sub_layer_profile_idc[ i ]  = =  2  | | 

    sub_layer_profile_compatibility_flag[ i ][  2 ]  | | 

    sub_layer_profile_idc[ i ]  = =  3  | | 

    sub_layer_profile_compatibility_flag[ i ][  3 ]  | | 

    sub_layer_profile_idc[ i ]  = =  4  | | 

    sub_layer_profile_compatibility_flag[ i ][  4 ]  | | 

    sub_layer_profile_idc[ i ]  = =  5  | | 

    sub_layer_profile_compatibility_flag[ i ][  5 ]  | | 

    sub_layer_profile_idc[ i ]  = =  9  | | 

    sub_layer_profile_compatibility_flag[ i ][  9 ]  | | 

    sub_layer_profile_idc[ i ]  = =  11  | | 

    sub_layer_profile_compatibility_flag[ i ][  11 ] ) 

    /* The number of bits in this syntax structure is not affected by this condition */ 

 

    sub_layer_inbld_flag[ i ] u(1) 

   else  

    sub_layer_reserved_zero_bit[ i ] u(1) 

  }   

  if( sub_layer_level_present_flag[ i ] )  

   sub_layer_level_idc[ i ] u(8) 

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 45 

7.3.4 Scaling list data syntax 

 

scaling_list_data( ) {  Descriptor 

 for( sizeId = 0; sizeId < 4; sizeId++ )  

  for( matrixId = 0; matrixId < 6; matrixId  +=  ( sizeId  = =  3 ) ? 3 : 1 ) {  

   scaling_list_pred_mode_flag[ sizeId ][  matrixId ] u(1) 

   if( !scaling_list_pred_mode_flag[ sizeId ][  matrixId ] )  

    scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ] ue(v) 

   else {  

    nextCoef = 8  

    coefNum = Min( 64, ( 1  <<  ( 4 + ( sizeId  <<  1 ) ) ) )  

    if( sizeId > 1 ) {  

     scaling_list_dc_coef_minus8[ sizeId ī 2 ][  matrixId ] se(v) 

     nextCoef = scaling_list_dc_coef_minus8[ sizeId ī 2 ][  matrixId ] + 8  

    }   

    for( i = 0; i < coefNum; i++ ) {   

     scaling_list_delta_coef se(v) 

     nextCoef = ( nextCoef + scaling_list_delta_coef + 256 ) % 256  

     ScalingList[ sizeId ][  matrixId ][  i ] = nextCoef  

    }   

   }   

  }   

}   

 

7.3.5 Supplemental enhancement information message syntax 

 

sei_message( ) {  Descriptor 

 payloadType = 0  

 while( next_bits( 8 )  = =  0xFF ) {  

  ff_byte  /* equal to 0xFF */ f(8) 

  payloadType  +=  255  

 }   

 last_payload_type_byte u(8) 

 payloadType  +=  last_payload_type_byte  

 payloadSize = 0  

 while( next_bits( 8 )  = =  0xFF ) {  

  ff_byte  /* equal to 0xFF */ f(8) 

  payloadSize  +=  255  

 }   

 last_payload_size_byte u(8) 

 payloadSize  +=  last_payload_size_byte  

 sei_payload( payloadType, payloadSize )  

}   

 



 

46 Rec. ITU-T H.265 v8 (08/2021) 

7.3.6 Slice segment header syntax 

7.3.6.1 General slice segment header syntax 

 

slice_segment_header( ) {  Descriptor 

 first_slice_segment_in_pic_flag u(1) 

 if( nal_unit_type  >=  BLA_W_LP  &&  nal_unit_type  <=  RSV_IRAP_VCL23 )  

  no_output_of_prior_pics_flag u(1) 

 slice_pic_parameter_set_id ue(v) 

 if( !first_slice_segment_in_pic_flag ) {  

  if( dependent_slice_segments_enabled_flag )  

   dependent_slice_segment_flag u(1) 

  slice_segment_address u(v) 

 }   

 CuQpDeltaVal = 0  

 if( !dependent_slice_segment_flag ) {  

  for( i = 0; i < num_extra_slice_header_bits; i++ )  

   slice_reserved_flag[ i ] u(1) 

  slice_type ue(v) 

  if( output_flag_present_flag )  

   pic_output_flag u(1) 

  if( separate_colour_plane_flag  = =  1 )  

   colour_plane_id u(2) 

  if( nal_unit_type  !=  IDR_W_RADL  &&  nal_unit_type  !=  IDR_N_LP ) {   

   slice_pic_order_cnt_lsb u(v) 

   short_term_ref_pic_set_sps_flag u(1) 

   if( !short_term_ref_pic_set_sps_flag )  

    st_ref_pic_set( num_short_term_ref_pic_sets )  

   else if( num_short_term_ref_pic_sets > 1 )  

    short_term_ref_pic_set_idx u(v) 

   if( long_term_ref_pics_present_flag ) {  

    if( num_long_term_ref_pics_sps > 0 )  

     num_long_term_sps ue(v) 

    num_long_term_pics ue(v) 

    for( i = 0; i < num_long_term_sps + num_long_term_pics; i++ ) {  

     if( i < num_long_term_sps ) {  

      if( num_long_term_ref_pics_sps > 1 )  

       lt_idx_sps[ i ] u(v) 

     } else {  

      poc_lsb_lt[ i ] u(v) 

      used_by_curr_pic_lt_flag[ i ] u(1) 

     }   

     delta_poc_msb_present_flag[ i ] u(1) 

     if( delta_poc_msb_present_flag[ i ] )  

      delta_poc_msb_cycle_lt[ i ] ue(v) 

    }   

   }   

   if( sps_temporal_mvp_enabled_flag )  

    slice_temporal_mvp_enabled_flag u(1) 



 

  Rec. ITU-T H.265 v8 (08/2021) 47 

  }   

  if( sample_adaptive_offset_enabled_flag ) {  

   slice_sao_luma_flag u(1) 

   if( ChromaArrayType  !=  0 )  

    slice_sao_chroma_flag u(1) 

  }  

  if( slice_type  = =  P  | |  slice_type  = =  B ) {  

   num_ref_idx_active_override_flag u(1) 

   if( num_ref_idx_active_override_flag ) {  

    num_ref_idx_l0_active_minus1 ue(v) 

    if( slice_type  = =  B )  

     num_ref_idx_l1_active_minus1 ue(v) 

   }   

   if( lists_modification_present_flag  &&  NumPicTotalCurr > 1 )  

    ref_pic_lists_modification( )  

   if( slice_type  = =  B )  

    mvd_l1_zero_flag u(1) 

   if( cabac_init_present_flag )  

    cabac_init_flag u(1) 

   if( slice_temporal_mvp_enabled_flag ) {  

    if( slice_type  = =  B )  

     collocated_from_l0_flag u(1) 

    if( ( collocated_from_l0_flag  &&  num_ref_idx_l0_active_minus1 > 0 )  | | 

     ( !collocated_from_l0_flag  &&  num_ref_idx_l1_active_minus1 > 0 ) ) 

 

     collocated_ref_idx ue(v) 

   }   

   if( ( weighted_pred_flag  &&  slice_type  = =  P )  | | 

     ( weighted_bipred_flag  &&  slice_type  = =  B ) ) 

 

    pred_weight_table( )  

   five_minus_max_num_merge_cand ue(v) 

   if( motion_vector_resolution_control_idc  = =  2 )  

    use_integer_mv_flag u(1) 

  }   

  slice_qp_delta se(v) 

  if( pps_slice_chroma_qp_offsets_present_flag ) {  

   slice_cb_qp_offset se(v) 

   slice_cr_qp_offset se(v) 

  }   

  if( pps_slice_act_qp_offsets_present_flag ) {  

   slice_act_y_qp_offset se(v) 

   slice_act_cb_qp_offset se(v) 

   slice_act_cr_qp_offset se(v) 

  }   

  if( chroma_qp_offset_list_enabled_flag )  

   cu_chroma_qp_offset_enabled_flag u(1) 

  if( deblocking_filter_override_enabled_flag )  

   deblocking_filter_override_flag u(1) 



 

48 Rec. ITU-T H.265 v8 (08/2021) 

  if( deblocking_filter_override_flag ) {  

   slice_deblocking_filter_disabled_flag u(1) 

   if( !slice_deblocking_filter_disabled_flag ) {  

    slice_beta_offset_div2 se(v) 

    slice_tc_offset_div2 se(v) 

   }   

  }   

  if( pps_loop_filter_across_slices_enabled_flag  && 

   ( slice_sao_luma_flag  | |  slice_sao_chroma_flag  | | 

    !slice_deblocking_filter_disabled_flag ) ) 

 

   slice_loop_filter_across_slices_enabled_flag u(1) 

 }  

 if( tiles_enabled_flag  | |  entropy_coding_sync_enabled_flag ) {  

  num_entry_point_offsets ue(v) 

  if( num_entry_point_offsets > 0 ) {  

   offset_len_minus1 ue(v) 

   for( i = 0; i < num_entry_point_offsets; i++ )  

    entry_point_offset_minus1[ i ] u(v) 

  }   

 }   

 if( slice_segment_header_extension_present_flag ) {  

  slice_segment_header_extension_length ue(v) 

  for( i = 0; i < slice_segment_header_extension_length; i++)   

   slice_segment_header_extension_data_byte[ i ] u(8) 

 }   

 byte_alignment( )  

}   

 

7.3.6.2 Reference picture list modification syntax 

 

ref_pic_lists_modification( ) {  Descriptor 

 ref_pic_list_modification_flag_l0 u(1) 

 if( ref_pic_list_modification_flag_l0 )  

  for( i = 0; i  <=  num_ref_idx_l0_active_minus1; i++ )  

   list_entry_l0[ i ] u(v) 

 if( slice_type  = =  B ) {   

  ref_pic_list_modification_flag_l1 u(1) 

  if( ref_pic_list_modification_flag_l1 )  

   for( i = 0; i  <=  num_ref_idx_l1_active_minus1; i++ )  

    list_entry_l1[ i ] u(v) 

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 49 

7.3.6.3 Weighted prediction parameters syntax 

 

pred_weight_table( ) {  Descriptor 

 luma_log2_weight_denom ue(v) 

 if( ChromaArrayType  !=  0 )  

  delta_chroma_log2_weight_denom se(v) 

 for( i = 0; i  <=  num_ref_idx_l0_active_minus1; i++ )  

  if( ( pic_layer_id( RefPicList0[ i ] )  !=  nuh_layer_id )  | | 

   ( PicOrderCnt( RefPicList0[ i ] )  !=  PicOrderCnt( CurrPic ) ) ) 

 

   luma_weight_l0_flag[ i ] u(1) 

 if( ChromaArrayType  !=  0 )  

  for( i = 0; i  <=  num_ref_idx_l0_active_minus1; i++ )  

   if( ( pic_layer_id( RefPicList0[ i ] )  !=  nuh_layer_id )  | | 

    ( PicOrderCnt(RefPicList0[ i ])  !=  PicOrderCnt( CurrPic ) ) ) 

 

    chroma_weight_l0_flag[ i ] u(1) 

 for( i = 0; i  <=  num_ref_idx_l0_active_minus1; i++ ) {   

  if( luma_weight_l0_flag[ i ] ) {   

   delta_luma_weight_l0[ i ] se(v) 

   luma_offset_l0[ i ] se(v) 

  }   

  if( chroma_weight_l0_flag[ i ] )  

   for( j = 0; j < 2; j++ ) {  

    delta_chroma_weight_l0[ i ][  j ] se(v) 

    delta_chroma_offset_l0[ i ][  j ] se(v) 

   }   

 }   

 if( slice_type  = =  B ) {  

  for( i = 0; i  <=  num_ref_idx_l1_active_minus1; i++ )  

   if( ( pic_layer_id( RefPicList0[ i ] )  !=  nuh_layer_id )  | | 

    ( PicOrderCnt(RefPicList1[ i ])  !=  PicOrderCnt( CurrPic ) ) ) 

 

    luma_weight_l1_flag[ i ] u(1) 

  if( ChromaArrayType  !=  0 )  

   for( i = 0; i  <=  num_ref_idx_l1_active_minus1; i++ )  

    if( ( pic_layer_id( RefPicList0[ i ] )  !=  nuh_layer_id )  | | 

     ( PicOrderCnt(RefPicList1[ i ])  !=  PicOrderCnt( CurrPic ) ) ) 

 

     chroma_weight_l1_flag[ i ] u(1) 

  for( i = 0; i  <=  num_ref_idx_l1_active_minus1; i++ ) {   

   if( luma_weight_l1_flag[ i ] ) {   

    delta_luma_weight_l1[ i ] se(v) 

    luma_offset_l1[ i ] se(v) 

   }   



 

50 Rec. ITU-T H.265 v8 (08/2021) 

   if( chroma_weight_l1_flag[ i ] )  

    for( j = 0; j < 2; j++ ) {  

     delta_chroma_weight_l1[ i ][  j ] se(v) 

     delta_chroma_offset_l1[ i ][  j ] se(v) 

    }   

  }   

 }   

}   

 

7.3.7 Short-term reference picture set syntax 

 

st_ref_pic_set( stRpsIdx ) {  Descriptor 

 if( stRpsIdx  !=  0 )  

  inter_ref_pic_set_prediction_flag u(1) 

 if( inter_ref_pic_set_prediction_flag ) {   

  if( stRpsIdx  = =  num_short_term_ref_pic_sets )  

   delta_idx_minus1 ue(v) 

  delta_rps_sign u(1) 

  abs_delta_rps_minus1 ue(v) 

  for( j = 0; j  <=  NumDeltaPocs[ RefRpsIdx ]; j++ ) {   

   used_by_curr_pic_flag[ j ] u(1) 

   if( !used_by_curr_pic_flag[ j ] )  

    use_delta_flag[ j ] u(1) 

  }   

 } else {  

  num_negative_pics ue(v) 

  num_positive_pics ue(v) 

  for( i = 0; i < num_negative_pics; i++ ) {  

   delta_poc_s0_minus1[ i ] ue(v) 

   used_by_curr_pic_s0_flag[ i ] u(1) 

  }   

  for( i = 0; i < num_positive_pics; i++ ) {  

   delta_poc_s1_minus1[ i ] ue(v) 

   used_by_curr_pic_s1_flag[ i ] u(1) 

  }   

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 51 

7.3.8 Slice segment data syntax 

7.3.8.1 General slice segment data syntax 

 

slice_segment_data( ) {  Descriptor 

 do {  

  coding_tree_unit( )  

  end_of_slice_segment_flag ae(v) 

  CtbAddrInTs++  

  CtbAddrInRs = CtbAddrTsToRs[ CtbAddrInTs ]  

  if( !end_of_slice_segment_flag  &&   

   ( ( tiles_enabled_flag  &&  TileId[ CtbAddrInTs ]  !=  TileId[ CtbAddrInTs ī 1 ] )  | | 

   ( entropy_coding_sync_enabled_flag  && 

    ( CtbAddrInRs % PicWidthInCtbsY  = =  0  | | 

     TileId[ CtbAddrInTs ]  !=  TileId[ CtbAddrRsToTs[ CtbAddrInRs ī 1 ] ] ) ) ) 

  ) {  

 

   end_of_subset_one_bit  /* equal to 1 */ ae(v) 

   byte_alignment( )  

  }   

 } while( !end_of_slice_segment_flag )  

}   

 

7.3.8.2 Coding tree unit syntax 

 

coding_tree_unit( ) {  Descriptor 

 xCtb = ( CtbAddrInRs % PicWidthInCtbsY )  <<  CtbLog2SizeY  

 yCtb = ( CtbAddrInRs / PicWidthInCtbsY )  <<  CtbLog2SizeY  

 if( slice_sao_luma_flag  | |  slice_sao_chroma_flag )  

  sao( xCtb  >>  CtbLog2SizeY, yCtb  >>  CtbLog2SizeY )  

 coding_quadtree( xCtb, yCtb, CtbLog2SizeY, 0 )  

}   

 



 

52 Rec. ITU-T H.265 v8 (08/2021) 

7.3.8.3 Sample adaptive offset syntax 

 

sao( rx, ry ) { Descriptor 

 if( rx > 0 ) {  

  leftCtbInSliceSeg = CtbAddrInRs > SliceAddrRs  

  leftCtbInTile = TileId[ CtbAddrInTs ]  = =  TileId[ CtbAddrRsToTs[ CtbAddrInRs ī 1 ] ]  

  if( leftCtbInSliceSeg  &&  leftCtbInTile )  

   sao_merge_left_flag ae(v) 

 }  

 if( ry > 0  &&  !sao_merge_left_flag ) {  

  upCtbInSliceSeg = ( CtbAddrInRs ī PicWidthInCtbsY )  >=  SliceAddrRs  

  upCtbInTile = TileId[ CtbAddrInTs ]  = =   

        TileId[ CtbAddrRsToTs[ CtbAddrInRs ī PicWidthInCtbsY ] ] 

 

  if( upCtbInSliceSeg  &&  upCtbInTile )  

   sao_merge_up_flag ae(v) 

 }  

 if( !sao_merge_up_flag  &&  !sao_merge_left_flag )  

  for( cIdx = 0; cIdx < ( ChromaArrayType  !=  0 ? 3 : 1 ); cIdx++ )  

   if( ( slice_sao_luma_flag  &&  cIdx  = =  0 )  | | 

    ( slice_sao_chroma_flag  &&  cIdx > 0 ) ) { 

 

    if( cIdx  = =  0 )  

     sao_type_idx_luma ae(v) 

    else if( cIdx  = =  1 )  

     sao_type_idx_chroma ae(v) 

    if( SaoTypeIdx[ cIdx ][  rx ][  ry ]  !=  0 ) {  

     for( i = 0; i < 4; i++ )  

      sao_offset_abs[ cIdx ][  rx ][  ry ][  i ] ae(v) 

     if( SaoTypeIdx[ cIdx ][  rx ][  ry ]  = =  1 ) {  

      for( i = 0; i < 4; i++ )  

       if(  sao_offset_abs[ cIdx ][  rx ][  ry ][  i ]  !=  0 )  

        sao_offset_sign[ cIdx ][  rx ][  ry ][  i ] ae(v) 

      sao_band_position[ cIdx ][  rx ][  ry ] ae(v) 

     } else {  

      if( cIdx  = =  0 )  

       sao_eo_class_luma ae(v) 

      if( cIdx  = =  1 )  

       sao_eo_class_chroma ae(v) 

     }   

    }   

   }   

}  

 



 

  Rec. ITU-T H.265 v8 (08/2021) 53 

7.3.8.4 Coding quadtree syntax 

 

coding_quadtree( x0, y0, log2CbSize, cqtDepth ) {  Descriptor 

 if( x0 + ( 1  <<  log2CbSize )  <=  pic_width_in_luma_samples  && 

  y0 + ( 1  <<  log2CbSize )  <=  pic_height_in_luma_samples  &&  

  log2CbSize > MinCbLog2SizeY ) 

 

   split_cu_flag[ x0 ][  y0 ] ae(v) 

 if( cu_qp_delta_enabled_flag  &&  log2CbSize  >=  Log2MinCuQpDeltaSize ) {  

  IsCuQpDeltaCoded = 0  

  CuQpDeltaVal = 0  

 }   

 if( cu_chroma_qp_offset_enabled_flag  && 

  log2CbSize  >=  Log2MinCuChromaQpOffsetSize ) 

 

  IsCuChromaQpOffsetCoded = 0  

 if( split_cu_flag[ x0 ][  y0 ] ) {   

  x1 = x0 + ( 1  <<  ( log2CbSize ī 1 ) )  

  y1 = y0 + ( 1  <<  ( log2CbSize ī 1 ) )  

  coding_quadtree( x0, y0, log2CbSize ī 1, cqtDepth + 1 )  

  if( x1 < pic_width_in_luma_samples )  

   coding_quadtree( x1, y0, log2CbSize ī 1, cqtDepth + 1 )  

  if( y1 < pic_height_in_luma_samples )  

   coding_quadtree( x0, y1, log2CbSize ī 1, cqtDepth + 1 )  

  if( x1 < pic_width_in_luma_samples  &&  y1 < pic_height_in_luma_samples )  

   coding_quadtree( x1, y1, log2CbSize ī 1, cqtDepth + 1 )  

 } else  

  coding_unit( x0, y0, log2CbSize )  

}   

 

7.3.8.5 Coding unit syntax 

 

coding_unit( x0, y0, log2CbSize ) {  Descriptor 

 if( transquant_bypass_enabled_flag )  

  cu_transquant_bypass_flag ae(v) 

 if(  slice_type  !=  I )  

  cu_skip_flag[ x0 ][  y0 ] ae(v) 

 nCbS = ( 1  <<  log2CbSize )  

 if( cu_skip_flag[ x0 ][  y0 ] )  

  prediction_unit( x0, y0, nCbS, nCbS )  

 else {  

  if( slice_type  !=  I )  

   pred_mode_flag ae(v) 

  if( palette_mode_enabled_flag  &&  CuPredMode[ x0 ][  y0 ]  = =  MODE_INTRA  && 

   log2CbSize  <=  MaxTbLog2SizeY ) 

 

   palette_mode_flag[ x0 ][  y0 ] ae(v) 

  if( palette_mode_flag[ x0 ][  y0 ] )  

   palette_coding( x0, y0, nCbS )  

  else {  

   if( CuPredMode[ x0 ][  y0 ]  !=  MODE_INTRA  | | 

    log2CbSize  = =  MinCbLog2SizeY ) 

 



 

54 Rec. ITU-T H.265 v8 (08/2021) 

    part_mode ae(v) 

   if( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTRA ) {  

    if( PartMode  = =  PART_2Nx2N  &&  pcm_enabled_flag  && 

     log2CbSize  >=  Log2MinIpcmCbSizeY  && 

     log2CbSize  <=  Log2MaxIpcmCbSizeY ) 

 

     pcm_flag[ x0 ][  y0 ] ae(v) 

    if( pcm_flag[ x0 ][  y0 ] ) {   

     while( !byte_aligned( ) )  

      pcm_alignment_zero_bit f(1) 

     pcm_sample( x0, y0, log2CbSize )  

    } else {  

     pbOffset = ( PartMode  = =  PART_NxN ) ? ( nCbS / 2 ) : nCbS  

     for( j = 0; j < nCbS; j = j + pbOffset )  

      for( i = 0; i < nCbS; i = i + pbOffset )  

       prev_intra_luma_pred_flag[ x0 + i ][  y0 + j ] ae(v) 

     for( j = 0; j < nCbS; j = j + pbOffset )  

      for( i = 0; i < nCbS; i = i + pbOffset )  

       if( prev_intra_luma_pred_flag[ x0 + i ][  y0 + j ] )  

        mpm_idx[ x0 + i ][  y0 + j ] ae(v) 

       else  

        rem_intra_luma_pred_mode[ x0 + i ][  y0 + j ] ae(v) 

     if( ChromaArrayType  = =  3 )  

      for( j = 0; j < nCbS; j = j + pbOffset )  

       for( i = 0; i < nCbS; i = i + pbOffset )  

        intra_chroma_pred_mode[ x0 + i ][  y0 + j ] ae(v) 

     else if( ChromaArrayType  !=  0 )  

      intra_chroma_pred_mode[ x0 ][  y0 ] ae(v) 

    }   

   } else {  

    if( PartMode  = =  PART_2Nx2N )  

     prediction_unit( x0, y0, nCbS, nCbS )  

    else if( PartMode  = =  PART_2NxN ) {  

     prediction_unit( x0, y0, nCbS, nCbS / 2 )  

     prediction_unit( x0, y0 + ( nCbS / 2 ), nCbS, nCbS / 2 )  

    } else if( PartMode  = =  PART_Nx2N ) {  

     prediction_unit( x0, y0, nCbS / 2, nCbS )  

     prediction_unit( x0 + ( nCbS / 2 ), y0, nCbS / 2, nCbS )  

    } else if( PartMode  = =  PART_2NxnU ) {  

     prediction_unit( x0, y0, nCbS, nCbS / 4 )  

     prediction_unit( x0, y0 + ( nCbS / 4 ), nCbS, nCbS *  3 / 4 )  

    } else if( PartMode  = =  PART_2NxnD ) {   

     prediction_unit( x0, y0, nCbS, nCbS *  3 / 4 )  

     prediction_unit( x0, y0 + ( nCbS *  3 / 4 ), nCbS, nCbS / 4 )  

    } else if( PartMode  = =  PART_nLx2N ) {   

     prediction_unit( x0, y0, nCbS / 4, nCbS )  

     prediction_unit( x0 + ( nCbS / 4 ), y0, nCbS *  3 / 4, nCbS )  

    } else if( PartMode  = =  PART_nRx2N ) {   

     prediction_unit( x0, y0, nCbS *  3 / 4, nCbS )  

     prediction_unit( x0 + ( nCbS *  3 / 4 ), y0, nCbS / 4, nCbS )  



 

  Rec. ITU-T H.265 v8 (08/2021) 55 

    } else { /* PART_NxN */  

     prediction_unit( x0, y0, nCbS / 2, nCbS / 2 )  

     prediction_unit( x0 + ( nCbS / 2 ), y0, nCbS / 2, nCbS / 2 )  

     prediction_unit( x0, y0 + ( nCbS / 2 ), nCbS / 2, nCbS / 2 )  

     prediction_unit( x0 + ( nCbS / 2 ), y0 + ( nCbS / 2 ), nCbS / 2, nCbS / 2 )  

    }   

   }   

   if( !pcm_flag[ x0 ][  y0 ] ) {   

    if( CuPredMode[ x0 ][  y0 ]  !=  MODE_INTRA  && 

     !( PartMode  = =  PART_2Nx2N  &&  merge_flag[ x0 ][  y0 ] ) ) 

 

     rqt_root_cbf  ae(v) 

    if( rqt_root_cbf ) {  

     MaxTrafoDepth = ( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTRA ? 

            ( max_transform_hierarchy_depth_intra + IntraSplitFlag ) : 

            max_transform_hierarchy_depth_inter ) 

 

     transform_tree( x0, y0, x0, y0, log2CbSize, 0, 0 )  

    }   

   }   

  }   

 }   

}   

 

7.3.8.6 Prediction unit syntax 

 

prediction_unit( x0, y0, nPbW, nPbH ) {  Descriptor 

 if( cu_skip_flag[ x0 ][  y0 ] ) {   

  if( MaxNumMergeCand > 1 )  

   merge_idx[ x0 ][  y0 ] ae(v) 

 } else { /* MODE_INTER */  

  merge_flag[ x0 ][  y0 ] ae(v) 

  if( merge_flag[ x0 ][  y0 ] ) {   

   if( M axNumMergeCand > 1 )  

    merge_idx[ x0 ][  y0 ] ae(v) 

  } else {  

   if( slice_type  = =  B )  

    inter_pred_idc[ x0 ][  y0 ] ae(v) 

   if( inter_pred_idc[ x0 ][  y0 ]  !=  PRED_L1 ) {  

    if( num_ref_idx_l0_active_minus1 > 0 )  

     ref_idx_l0[ x0 ][  y0 ] ae(v) 

    mvd_coding( x0, y0, 0 )  

    mvp_l0_flag[ x0 ][  y0 ] ae(v) 

   }   

   if( inter_pred_idc[ x0 ][  y0 ]  !=  PRED_L0 ) {  

    if( num_ref_idx_l1_active_minus1 > 0 )  

     ref_idx_l1[ x0 ][  y0 ] ae(v) 



 

56 Rec. ITU-T H.265 v8 (08/2021) 

    if( mvd_l1_zero_flag  &&  inter_pred_idc[ x0 ][  y0 ]  = =  PRED_BI ) {   

     MvdL1[ x0 ][  y0 ][  0 ] = 0  

     MvdL1[ x0 ][  y0 ][  1 ] = 0  

    }  else  

     mvd_coding( x0, y0, 1 )  

    mvp_l1_flag[ x0 ][  y0 ] ae(v) 

   }   

  }   

 }   

}   

 

7.3.8.7 PCM sample syntax 

 

pcm_sample( x0, y0, log2CbSize ) {  Descriptor 

 for( i = 0; i < 1  <<  ( log2CbSize  <<  1 ); i++ )  

  pcm_sample_luma[ i ] u(v) 

 if( ChromaArrayType  !=  0 )  

  for( i = 0; i < ( ( 2  <<  ( log2CbSize  <<  1 ) ) / ( SubWidthC *  SubHeightC ) ); i++ )  

   pcm_sample_chroma[ i ] u(v) 

}   

 

7.3.8.8 Transform tree syntax 

 

transform_tree( x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx ) {  Descriptor 

 if( log2TrafoSize  <=  MaxTbLog2SizeY  && 

  log2TrafoSize > MinTbLog2SizeY  && 

  trafoDepth < MaxTrafoDepth  &&  !( IntraSplitFlag  &&  ( trafoDepth  = =  0 ) ) ) 

 

  split_transform_flag[ x0 ][  y0 ][  trafoDepth ] ae(v) 

 if( ( log2TrafoSize > 2  &&  ChromaArrayType  !=  0 )  | |  ChromaArrayType  = =  3 ) {   

  if( trafoDepth  = =  0  | |  cbf_cb[ xBase ][  yBase ][  trafoDepth ī 1 ] ) {   

   cbf_cb[ x0 ][  y0 ][  trafoDepth ] ae(v) 

   if( ChromaArrayType  = =  2  && 

    ( !split_transform_flag[ x0 ][  y0 ][  trafoDepth ]  | |  log2TrafoSize  = =  3 ) ) 

 

    cbf_cb[ x0 ][  y0 + ( 1  <<  ( log2TrafoSize ī 1 ) ) ][  trafoDepth ] ae(v) 

  }   

  if( trafoDepth  = =  0  | |  cbf_cr[ xBase ][  yBase ][  trafoDepth ī 1 ] ) {   

   cbf_cr[ x0 ][  y0 ][  trafoDepth ] ae(v) 

   if( ChromaArrayType  = =  2  && 

    ( !split_transform_flag[ x0 ][  y0 ][  trafoDepth ]  | |  log2TrafoSize  = =  3 ) ) 

 

    cbf_cr[ x0 ][  y0 + ( 1  <<  ( log2TrafoSize ī 1 ) ) ][  trafoDepth ] ae(v) 

  }   

 }   

 if( split_transform_flag[ x0 ][  y0 ][  trafoDepth ] ) {   

  x1 = x0 + ( 1  <<  ( log2TrafoSize ī 1 ) )  

  y1 = y0 + ( 1  <<  ( log2TrafoSize ī 1 ) )  



 

  Rec. ITU-T H.265 v8 (08/2021) 57 

  transform_tree( x0, y0, x0, y0, log2TrafoSize ī 1, trafoDepth + 1, 0 )  

  transform_tree( x1, y0, x0, y0, log2TrafoSize ī 1, trafoDepth + 1, 1 )  

  transform_tree( x0, y1, x0, y0, log2TrafoSize ī 1, trafoDepth + 1, 2 )  

  transform_tree( x1, y1, x0, y0, log2TrafoSize ī 1, trafoDepth + 1, 3 )  

 } else {  

  if( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTRA  | |  trafoDepth  !=  0  | | 

   cbf_cb[ x0 ][  y0 ][  trafoDepth ]  | |  cbf_cr[ x0 ][  y0 ][  trafoDepth ]  | | 

   ( ChromaArrayType  = =  2  && 

    ( cbf_cb[ x0 ][  y0 + ( 1  <<  ( log2TrafoSize ī 1 ) ) ][  trafoDepth ]  | | 

     cbf_cr[ x0 ][  y0 + ( 1  <<  ( log2TrafoSize ī 1 ) ) ][  trafoDepth ] ) ) ) 

 

   cbf_luma[ x0 ][  y0 ][  trafoDepth ] ae(v) 

  transform_unit( x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx )  

 }   

}   

 

7.3.8.9 Motion vector difference syntax 

 

mvd_coding( x0, y0, refList ) {  Descriptor 

 abs_mvd_greater0_flag[ 0 ] ae(v) 

 abs_mvd_greater0_flag[ 1 ] ae(v) 

 if( abs_mvd_greater0_flag[ 0 ] )  

  abs_mvd_greater1_flag[ 0 ] ae(v) 

 if( abs_mvd_greater0_flag[ 1 ] )  

  abs_mvd_greater1_flag[ 1 ] ae(v) 

 if( abs_mvd_greater0_flag[ 0 ] ) {   

  if( abs_mvd_greater1_flag[ 0 ] )  

   abs_mvd_minus2[ 0 ] ae(v) 

  mvd_sign_flag[ 0 ] ae(v) 

 }   

 if( abs_mvd_greater0_flag[ 1 ] ) {   

  if( abs_mvd_greater1_flag[ 1 ] )  

   abs_mvd_minus2[ 1 ] ae(v) 

  mvd_sign_flag[ 1 ] ae(v) 

 }   

}   

 

7.3.8.10 Transform unit  syntax 

 

transform_unit( x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx ) {  Descriptor 

 log2TrafoSizeC = Max( 2, log2TrafoSize ī ( ChromaArrayType  = =  3 ? 0 : 1 ) )  

 cbfDepthC = trafoDepth ī ( ChromaArrayType  !=  3  &&  log2TrafoSize  = =  2 ? 1 : 0 )  

 xC = ( ChromaArrayType  !=  3  &&  log2TrafoSize  = =  2 ) ? xBase : x0  

 yC = ( ChromaArrayType  !=  3  &&  log2TrafoSize  = =  2 ) ? yBase : y0  

 cbfLuma = cbf_luma[ x0 ][  y0 ][  trafoDepth ]  



 

58 Rec. ITU-T H.265 v8 (08/2021) 

 cbfChroma = 

  cbf_cb[ xC ][  yC ][  cbfDepthC ]  | | 

  cbf_cr[ xC ][  yC ][  cbfDepthC ]  | | 

  ( ChromaArrayType  = =  2  && 

   ( cbf_cb[ xC ][  yC + ( 1  <<  log2TrafoSizeC ) ][  cbfDepthC ]  | | 

   cbf_cr[ xC ][  yC + ( 1  <<  log2TrafoSizeC ) ][  cbfDepthC ] ) ) 

 

 if( cbfLuma  | |  cbfChroma ) {  

  xP = ( x0  >>  MinCbLog2SizeY )  <<  MinCbLog2SizeY  

  yP = ( y0  >>  MinCbLog2SizeY )  <<  MinCbLog2SizeY  

  nCbS = 1  <<  MinCbLog2SizeY  

  if( residual_adaptive_colour_transform_enabled_flag  && 

   ( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTER  | | 

   ( PartMode  = =  PART_2Nx2N  && 

   intra_chroma_pred_mode[ x0 ][  y0 ]  = =  4 )  | | 

   ( intra_chroma_pred_mode[ xP ][  yP ]  = =  4  && 

   intra_chroma_pred_mode[ xP + nCbS/2 ][  yP ]  = =  4  && 

   intra_chroma_pred_mode[ xP ][ yP + nCbS/2 ]  = =  4  && 

   intra_chroma_pred_mode[ xP + nCbS/2 ][  yP + nCbS/2 ]  = =  4 ) ) ) 

 

   tu_residual_act_flag[ x0 ][  y0 ] ae(v) 

  delta_qp( )  

  if( cbfChroma  &&  !cu_transquant_bypass_flag )  

   chroma_qp_offset( )  

  if( cbfLuma )  

   residual_coding( x0, y0, log2TrafoSize, 0 )  

  if( log2TrafoSize > 2  | |  ChromaArrayType  = =  3 ) {  

   if( cross_component_prediction_enabled_flag  &&  cbfLuma  && 

    ( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTER  | | 

     intra_chroma_pred_mode[ x0 ][  y0 ]  = =  4 ) ) 

 

    cross_comp_pred( x0, y0, 0 )  

   for( tIdx = 0; tIdx < ( ChromaArrayType  = =  2 ? 2 : 1 ); tIdx++ )  

    if( cbf_cb[ x0 ][  y0 + ( tIdx  <<  log2TrafoSizeC ) ][  trafoDepth ] )  

     residual_coding( x0, y0 + ( tIdx  <<  log2TrafoSizeC ), log2TrafoSizeC, 1 )  

   if( cross_component_prediction_enabled_flag  &&  cbfLuma  && 

    ( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTER  | | 

     intra_chroma_pred_mode[ x0 ][  y0 ]  = =  4 ) ) 

 

    cross_comp_pred( x0, y0, 1 )  

   for( tIdx = 0; tIdx < ( ChromaArrayType  = =  2 ? 2 : 1 ); tIdx++ )  

    if( cbf_cr[ x0 ][  y0 + ( tIdx  <<  log2TrafoSizeC ) ][  trafoDepth ] )  

     residual_coding( x0, y0 + ( tIdx  <<  log2TrafoSizeC ), log2TrafoSizeC, 2 )  

  } else if( blkIdx  = =  3 ) {  

   for( tIdx = 0; tIdx < ( ChromaArrayType  = =  2 ? 2 : 1 ); tIdx++ )  

    if( cbf_cb[ xBase ][  yBase + ( tIdx  <<  log2TrafoSizeC ) ][  trafoDepth ī 1 ] )  

     residual_coding( xBase, yBase + ( tIdx  <<  log2TrafoSizeC ), log2TrafoSize, 1 )  

   for( tIdx = 0; tIdx < ( ChromaArrayType  = =  2 ? 2 : 1 ); tIdx++ )  

    if( cbf_cr[ xBase ][  yBase + ( tIdx  <<  log2TrafoSizeC ) ][  trafoDepth ī 1 ] )  

     residual_coding( xBase, yBase + ( tIdx  <<  log2TrafoSizeC ), log2TrafoSize, 2 )  

  }   

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 59 

7.3.8.11 Residual coding syntax 

 

residual_coding( x0, y0, log2TrafoSize, cIdx ) {  Descriptor 

 if( transform_skip_enabled_flag  &&  !cu_transquant_bypass_flag  && 

  ( log2TrafoSize  <=  Log2MaxTransformSkipSize ) ) 

 

  transform_skip_flag[ x0 ][  y0 ][  cIdx ] ae(v) 

 if( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTER  &&  explicit_rdpcm_enabled_flag  && 

  ( transform_skip_flag[ x0 ][  y0 ][  cIdx ]  | |  cu_transquant_bypass_flag ) ) { 

 

  explicit_rdpcm_flag[ x0 ][  y0 ][  cIdx ] ae(v) 

  if( explicit_rdpcm_flag[ x0 ][  y0 ][  cIdx ] )  

   explicit_rdpcm_dir_flag [ x0 ][  y0 ][  cIdx ] ae(v) 

 }   

 last_sig_coeff_x_prefix ae(v) 

 last_sig_coeff_y_prefix ae(v) 

 if( last_sig_coeff_x_prefix > 3 )  

  last_sig_coeff_x_suffix ae(v) 

 if( last_sig_coeff_y_prefix > 3 )  

  last_sig_coeff_y_suffix ae(v) 

 lastScanPos = 16  

 lastSubBlock = ( 1  <<  ( log2TrafoSize ī 2 ) ) * ( 1  <<  ( log2TrafoSize ī 2 ) ) ī 1  

 do {  

  if( lastScanPos  = =  0 ) {  

   lastScanPos = 16  

   lastSubBlockī ī  

  }   

  lastScanPosī ī  

  xS = ScanOrder[ log2TrafoSize ī 2 ][  scanIdx ][  lastSubBlock ][  0 ]  

  yS = ScanOrder[ log2TrafoSize ī 2 ][  scanIdx ][  lastSubBlock ][  1 ]  

  xC = ( xS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  lastScanPos ][  0 ]   

  yC = ( yS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  lastScanPos ][  1 ]  

 } while( ( xC  !=  LastSignificantCoeffX )  | |  ( yC  !=  LastSignificantCoeffY ) )  

 for( i = lastSubBlock; i  >=  0; iī ī ) {  

  xS = ScanOrder[ log2TrafoSize ī 2 ][  scanIdx ][  i ][  0 ]  

  yS = ScanOrder[ log2TrafoSize ī 2 ][  scanIdx ][  i ][  1 ]  

  escapeDataPresent = 0  

  inferSbDcSigCoeffFlag = 0  

  if( ( i  < lastSubBlock )  &&  ( i > 0 ) ) {  

   coded_sub_block_flag[ xS ][  yS ] ae(v) 

   inferSbDcSigCoeffFlag = 1  

  }   

  for( n = ( i  = =  lastSubBlock ) ? lastScanPos ī 1 : 15; n  >=  0; nī ī ) {  

   xC = ( xS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  0 ]   

   yC = ( yS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  1 ]  

   if( coded_sub_block_flag[ xS ][  yS ]  &&  ( n > 0  | |  !inferSbDcSigCoeffFlag ) ) {  

    sig_coeff_flag[ xC ][  yC ] ae(v) 

    if( sig_coeff_flag[ xC ][  yC ] )  

     inferSbDcSigCoeffFlag = 0  

   }   

  }   



 

60 Rec. ITU-T H.265 v8 (08/2021) 

  firstSigScanPos = 16  

  lastSigScanPos = ī1  

  numGreater1Flag = 0  

  lastGreater1ScanPos = ī1  

  for( n = 15; n  >=  0; nī ī ) {  

   xC = ( xS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  0 ]   

   yC = ( yS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  1 ]  

   if( sig_coeff_flag[ xC ][  yC ] ) {   

    if( numGreater1Flag < 8 ) {   

     coeff_abs_level_greater1_flag[ n ] ae(v) 

     numGreater1Flag++  

     if(  coeff_abs_level_greater1_flag[ n ]  &&  lastGreater1ScanPos  = =  ī1 )  

      lastGreater1ScanPos = n  

     else if( coeff_abs_level_greater1_flag[ n ] )  

      escapeDataPresent = 1  

    } else  

     escapeDataPresent = 1  

    if( lastSigScanPos  = =  ī1 )  

     lastSigScanPos = n  

    firstSigScanPos = n  

   }   

  }   

  if( cu_transquant_bypass_flag  | | 

   ( CuPredMode[ x0 ][  y0 ]  = =  MODE_INTRA  && 

    implicit_rdpcm_enabled_flag  &&  transform_skip_flag[ x0 ][  y0 ][  cIdx ]  &&  

    ( predModeIntra  = =  10  | |  predModeIntra  = =  26 ) )  | | 

   explicit_rdpcm_flag[ x0 ][ y0 ][  cIdx ] ) 

 

   signHidden = 0  

  else  

   signHidden = lastSigScanPos ī firstSigScanPos > 3  

  if(  lastGreater1ScanPos  !=  ī1 ) {   

   coeff_abs_level_greater2_flag[ lastGreater1ScanPos ] ae(v) 

   if( coeff_abs_level_greater2_flag[ lastGreater1ScanPos ] )  

    escapeDataPresent = 1  

  }   

  for( n = 15; n  >=  0; nī ī ) {  

   xC = ( xS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  0 ]   

   yC = ( yS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  1 ]  

   if( sig_coeff_flag[ xC ][  yC ]  &&   

    ( !sign_data_hiding_enabled_flag  | |  !signHidden  | |  ( n  !=  firstSigScanPos ) ) ) 

 

    coeff_sign_flag[ n ] ae(v) 

  }   

  numSigCoeff = 0  

  sumAbsLevel = 0  

  for( n = 15; n  >=  0; nī ī ) {  

   xC = ( xS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  0 ]   

   yC = ( yS  <<  2 ) + ScanOrder[ 2 ][  scanIdx ][  n ][  1 ]  

   if( sig_coeff_flag[ xC ][  yC ] ) {   



 

  Rec. ITU-T H.265 v8 (08/2021) 61 

    baseLevel = 1 + coeff_abs_level_greater1_flag[ n ] + 

         coeff_abs_level_greater2_flag[ n ] 

 

    if(  baseLevel  = =  ( ( numSigCoeff < 8 ) ?  

           ( (n  = =  lastGreater1ScanPos) ? 3 : 2 ) : 1 ) ) 

 

     coeff_abs_level_remaining[ n ] ae(v) 

    TransCoeffLevel[ x0 ][  y0 ][  cIdx ][  xC ][  yC ] = 

     ( coeff_abs_level_remaining[ n ] + baseLevel ) * ( 1 ī 2 * coeff_sign_flag[ n ] ) 

 

    if(  sign_data_hiding_enabled_flag  &&   signHidden ) {   

     sumAbsLevel  +=  ( coeff_abs_level_remaining[ n ] + baseLevel )  

     if(  ( n  = =  firstSigScanPos )  &&  ( ( sumAbsLevel % 2 )  = =  1 ) )  

      TransCoeffLevel[ x0 ][  y0 ][  cIdx ][  xC ][  yC ] = 

         īTransCoeffLevel[ x0 ][  y0 ][  cIdx ][  xC ][  yC ] 

 

    }   

    numSigCoeff++  

   }   

  }   

 }   

}   

 

7.3.8.12 Cross-component prediction syntax 

 

cross_comp_pred( x0, y0, c ) {  Descriptor 

 log2_res_scale_abs_plus1[ c ] ae(v) 

 if( log2_res_scale_abs_plus1[ c ]  !=  0 )  

  res_scale_sign_flag[ c ] ae(v) 

}   

 

7.3.8.13 Palette syntax 

 

palette_coding( x0, y0, nCbS ) {  Descriptor 

 palettePredictionFinished = 0  

 NumPredictedPaletteEntries = 0  

 for( predictorEntryIdx = 0; predictorEntryIdx < PredictorPaletteSize  && 

  !palettePredictionFinished  &&  NumPredictedPaletteEntries < palette_max_size; 

  predictorEntryIdx++ ) { 

 

  palette_predictor_run ae(v) 

  if(  palette_predictor_run  !=  1 ) {   

   if( palette_predictor_run > 1 )   

    predictorEntryIdx  +=  palette_predictor_run ī 1  

   PalettePredictorEntryReuseFlags[ predictorEntryIdx ] = 1  

   NumPredictedPaletteEntries++  

  } else  

   palettePredictionFinished = 1  

 }   

 if( NumPredictedPaletteEntries < palette_max_size )  

  num_signalled_palette_entries ae(v) 

 numComps = ( ChromaArrayType  = =  0 ) ? 1 : 3  



 

62 Rec. ITU-T H.265 v8 (08/2021) 

 for( cIdx = 0; cIdx < numComps; cIdx++ )  

  for( i = 0; i < num_signalled_palette_entries; i++ )   

   new_palette_entries[ cIdx ][  i ] ae(v) 

 if( CurrentPaletteSize  !=  0 )  

  palette_escape_val_present_flag ae(v) 

 if( MaxPaletteIndex > 0) {  

  num_palette_indices_minus1 ae(v) 

  adjust = 0  

  for( i = 0; i  <=  num_palette_indices_minus1; i++ ) {  

   if( MaxPaletteIndex ī adjust > 0 ) {  

    palette_idx_idc ae(v) 

    PaletteIndexIdc[ i ] = palette_idx_idc  

   }   

   adjust = 1  

  }   

  copy_above_indices_for_final_run_flag ae(v) 

  palette_transpose_flag ae(v) 

 }   

 if( palette_escape_val_present_flag ) {   

  delta_qp( )  

  if( !cu_transquant_bypass_flag )  

   chroma_qp_offset( )  

 }   

 remainingNumIndices = num_palette_indices_minus1 + 1  

 PaletteScanPos = 0  

 log2BlockSize = Log2( nCbS )  

 while( PaletteScanPos < nCbS * nCbS ) {   

  xC = x0 + ScanOrder[ log2BlockSize ][  3 ][  PaletteScanPos ][  0 ]  

  yC = y0 + ScanOrder[ log2BlockSize ][  3 ][  PaletteScanPos ][  1 ]  

  if( PaletteScanPos > 0) {  

   xcPrev = x0 + ScanOrder[ log2BlockSize ][  3 ][  PaletteScanPos ī 1 ][  0 ]  

   ycPrev = y0 + ScanOrder[ log2BlockSize ][  3 ][  PaletteScanPos ī 1 ][  1 ]  

  }   

  PaletteRunMinus1 = nCbS * nCbS ī PaletteScanPos ī 1  

  RunToEnd = 1  

  CopyAboveIndicesFlag[ xC ][  yC ] = 0  

  if( MaxPaletteIndex > 0 )  

   if( PaletteScanPos  >=  nCbS  &&  CopyAboveIndicesFlag[ xcPrev ][  ycPrev ]  = =  0 )  

    if( remainingNumIndices > 0  &&  PaletteScanPos < nCbS * nCbS ī 1 ) {  

     copy_above_palette_indices_flag ae(v) 

     CopyAboveIndicesFlag[ xC ][  yC ] = copy_above_palette_indices_flag  

    } else  

     if( PaletteScanPos  = =  nCbS * nCbS ī 1  &&  remainingNumIndices > 0 )  

      CopyAboveIndicesFlag[ xC ][  yC ] = 0  

     else  

      CopyAboveIndicesFlag[ xC ][  yC ] = 1  



 

  Rec. ITU-T H.265 v8 (08/2021) 63 

  if( CopyAboveIndicesFlag[ xC ][  yC ]  = =  0 ) {  

   currNumIndices = num_palette_indices_minus1 + 1 ī remainingNumIndices  

   CurrPaletteIndex = PaletteIndexIdc[ currNumIndices ]  

  }   

  if( MaxPaletteIndex > 0 ) {  

   if( CopyAboveIndicesFlag[ xC ][  yC ]  = =  0 )  

    remainingNumIndices ī = 1  

   if( remainingNumIndices > 0  | |  CopyAboveIndicesFlag[ xC ][  yC ]  != 

     copy_above_indices_for_final_run_flag ) {  

 

    PaletteMaxRunMinus1 = nCbS * nCbS ī PaletteScanPos ī 1 ī 

     remainingNumIndices ī copy_above_indices_for_final_run_flag 

 

    RunToEnd = 0  

    if( PaletteMaxRunMinus1 > 0 ) {  

     palette_run_prefix ae(v) 

     if( ( palette_run_prefix > 1 )  &&  ( PaletteMaxRunMinus1  != 

      ( 1  <<  ( palette_run_prefix ī 1 ) ) ) ) 

 

      palette_run_suffix ae(v) 

    }   

   }   

  }   

  runPos = 0  

  while ( runPos  <=  PaletteRunMinus1 ) {  

   xR = x0 + ScanOrder[ log2BlockSize ][  3 ][  PaletteScanPos ][  0 ]  

   yR = y0 + ScanOrder[ log2BlockSize ][  3 ][  PaletteScanPos ][  1 ]  

   if( CopyAboveIndicesFlag[ xC ][  yC ]  = =  0 ) {  

    CopyAboveIndicesFlag[ xR ][  yR ] = 0  

    PaletteIndexMap[ xR ][  yR ] = CurrPaletteIndex  

   } else {  

    CopyAboveIndicesFlag[ xR ][  yR ] = 1  

    PaletteIndexMap[ xR ][  yR ] = PaletteIndexMap[ xR ][  yR ī 1 ]  

   }   

   runPos++  

   PaletteScanPos++  

  }   

 }   

 if( palette_escape_val_present_flag ) {   

  for( cIdx = 0; cIdx < numComps; cIdx++ )  

   for(sPos = 0; sPos < nCbS * nCbS; sPos++ ) {   

    xC = x0 + ScanOrder[ log2BlockSize ][  3 ][  sPos ][  0 ]  

    yC = y0 + ScanOrder[ log2BlockSize ][  3 ][  sPos ][  1 ]  

    if( PaletteIndexMap[ xC ][  yC ]  =  =  MaxPaletteIndex )  

     if(  cIdx  = =  0  | |  ( xC % 2  = =  0  &&  yC % 2  = =  0  &&  

      ChromaArrayType  = =  1 )  | |  ( xC % 2  = = 0  && 

      !palette_transpose_flag  &&  ChromaArrayType  = =  2 )  | | 

      ( yC % 2  = =  0  &&  palette_transpose_flag  && 

      ChromaArrayType  = =  2 )  | |  ChromaArrayType  = =  3 ) {  

 



 

64 Rec. ITU-T H.265 v8 (08/2021) 

       palette_escape_val ae(v) 

       PaletteEscapeVal[ cIdx ][  xC ][  yC ] = palette_escape_val  

     }   

   }   

 }   

}   

 

7.3.8.14 Delta QP syntax 

 

delta_qp( ) {  Descriptor 

 if( cu_qp_delta_enabled_flag  &&  !IsCuQpDeltaCoded ) {  

  IsCuQpDeltaCoded = 1  

  cu_qp_delta_abs ae(v) 

  if( cu_qp_delta_abs ) {   

   cu_qp_delta_sign_flag ae(v) 

   CuQpDeltaVal = cu_qp_delta_abs * ( 1 ī 2 * cu_qp_delta_sign_flag )  

  }   

 }   

}   

 

7.3.8.15 Chroma QP offset syntax 

 

chroma_qp_offset( ) {  Descriptor 

 if( cu_chroma_qp_offset_enabled_flag  &&  !IsCuChromaQpOffsetCoded ) {  

  cu_chroma_qp_offset_flag ae(v) 

  if( cu_chroma_qp_offset_flag  &&  chroma_qp_offset_list_len_minus1 > 0 )  

   cu_chroma_qp_offset_idx ae(v) 

 }   

}   

 

7.4 Semantics 

7.4.1 General 

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this 

clause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not specified 

in the table(s) shall not be present in the bitstream unless otherwise specified in this Specification. 

7.4.2 NAL unit semantics 

7.4.2.1 General NAL unit semantics 

NumBytesInNalUnit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit. Some 

form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNalUnit. One such 

demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified 

outside of this Specification. 

NOTE 1 ï The video coding layer (VCL) is specified to efficiently represent the content of the video data. The NAL is specified to 

format that data and provide header information in a manner appropriate for conveyance on a variety of communication channels or 

storage media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a 

generic format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport 

and byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte 

stream format specified in Annex B. 



 

  Rec. ITU-T H.265 v8 (08/2021) 65 

rbsp_byte[ i ] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows: 

The RBSP contains a string of data bits (SODB) as follows: 

ï If the SODB is empty (i.e., zero bits in length), the RBSP is also empty. 

ï Otherwise, the RBSP contains the SODB as follows: 

1) The first byte of the RBSP contains the first (most significant, left-most) eight bits of the SODB; the next byte 

of the RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain. 

2) The rbsp_trailing_bits( ) syntax structure is present after the SODB as follows: 

i) The first (most significant, left-most) bits of the final RBSP byte contain the remaining bits of the SODB 

(if any). 

ii)  The next bit consists of a single bit equal to 1 (i.e., rbsp_stop_one_bit). 

iii)  When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more zero-valued bits (i.e., 

instances of rbsp_alignment_zero_bit) are present to result in byte alignment. 

3) One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after the 

rbsp_trailing_bits( ) at the end of the RBSP. 

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures 

are carried within NAL units as the content of the rbsp_byte[ i ] data bytes. The association of the RBSP syntax structures 

to the NAL units is as specified in Table 7-1. 

NOTE 2 ï When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the 

bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, 

and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for 

the decoding process is contained in the SODB part of the RBSP. 

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the 

NAL unit, it shall be discarded by the decoding process. 

The last byte of the NAL unit shall not be equal to 0x00. 

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position: 

ï 0x000000 

ï 0x000001 

ï 0x000002 

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not occur 

at any byte-aligned position: 

ï 0x00000300 

ï 0x00000301 

ï 0x00000302 

ï 0x00000303 

7.4.2.2 NAL unit header semantics 

forbidden_zero_bit shall be equal to 0. 

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1. 

NAL units that have nal_unit_type in the range of UNSPEC48..UNSPEC63, inclusive, for which semantics are not 

specified, shall not affect the decoding process specified in this Specification. 

NOTE 1 ï NAL unit types in the range of UNSPEC48..UNSPEC63 may be used as determined by the application. No decoding 

process for these values of nal_unit_type is specified in this Specification. Since different applications might use these NAL unit 

types for different purposes, particular care must be exercised in the design of encoders that generate NAL units with these 

nal_unit_type values, and in the design of decoders that interpret the content of NAL units with these nal_unit_type values. This 

Specification does not define any management for these values. These nal_unit_type values might only be suitable for use in contexts 

in which "collisions" of usage (i.e., different definitions of the meaning of the NAL unit content for the same nal_unit_type value) 

are unimportant, or not possible, or are managed ï e.g., defined or managed in the controlling application or transport specification, 

or by controlling the environment in which bitstreams are distributed. 

For purposes other than determining the amount of data in the decoding units of the bitstream (as specified in Annex C), 

decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of 

nal_unit_type. 

NOTE 2 ï This requirement allows future definition of compatible extensions to this Specification. 



 

66 Rec. ITU-T H.265 v8 (08/2021) 

Table 7-1 ï NAL unit type codes and NAL unit type classes 

nal_unit_type Name of 

nal_unit_type 
Content of NAL unit and RBSP syntax structure NAL unit  

type class 

0 

1 
TRAIL_N 

TRAIL_R 
Coded slice segment of a non-TSA, non-STSA trailing 

picture 

slice_segment_layer_rbsp( ) 

VCL 

2 

3 
TSA_N 

TSA_R 
Coded slice segment of a TSA picture 

slice_segment_layer_rbsp( ) 
VCL 

4 

5 
STSA_N 

STSA_R 
Coded slice segment of an STSA picture 

slice_segment_layer_rbsp( ) 
VCL 

6 

7 
RADL_N 

RADL_R 
Coded slice segment of a RADL picture 

slice_segment_layer_rbsp( ) 
VCL 

8 

9 
RASL_N 

RASL_R 
Coded slice segment of a RASL picture 

slice_segment_layer_rbsp( ) 
VCL 

10 

12 

14 

RSV_VCL_N10 

RSV_VCL_N12 

RSV_VCL_N14 

Reserved non-IRAP SLNR VCL NAL unit types VCL 

11 

13 

15 

RSV_VCL_R11 

RSV_VCL_R13 

RSV_VCL_R15 

Reserved non-IRAP sub-layer reference VCL NAL unit 

types 
VCL 

16 

17 

18 

BLA_W_LP 

BLA_W_RADL 

BLA_N_LP 

Coded slice segment of a BLA picture 

slice_segment_layer_rbsp( ) 
VCL 

19 

20 
IDR_W_RADL 

IDR_N_LP 
Coded slice segment of an IDR picture 

slice_segment_layer_rbsp( ) 

VCL 

21 CRA_NUT Coded slice segment of a CRA picture 

slice_segment_layer_rbsp( ) 
VCL 

22 

23 
RSV_IRAP_VCL22 

RSV_IRAP_VCL23 
Reserved IRAP VCL NAL unit types VCL 

24..31 RSV_VCL24.. 

RSV_VCL31 
Reserved non-IRAP VCL NAL unit types VCL 

32 VPS_NUT Video parameter set 

video_parameter_set_rbsp( ) 

non-VCL 

33 SPS_NUT Sequence parameter set 

seq_parameter_set_rbsp( ) 

non-VCL 

34 PPS_NUT Picture parameter set 

pic_parameter_set_rbsp( ) 

non-VCL 

35 AUD_NUT Access unit delimiter 

access_unit_delimiter_rbsp( ) 

non-VCL 

36 EOS_NUT End of sequence 

end_of_seq_rbsp( ) 
non-VCL 

37 EOB_NUT End of bitstream 

end_of_bitstream_rbsp( ) 
non-VCL 

38 FD_NUT Filler data 

filler_data_rbsp( ) 

non-VCL 

39 

40 
PREFIX_SEI_NUT 

SUFFIX_SEI_NUT 
Supplemental enhancement information 

sei_rbsp( ) 

non-VCL 

41..47 RSV_NVCL41.. 

RSV_NVCL47 
Reserved non-VCL 

48..63 UNSPEC48.. 

UNSPEC63 
Unspecified non-VCL 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 67 

 

NOTE 3 ï A clean random access (CRA) picture may have associated random access skipped leading (RASL) or random access 

decodable leading (RADL) pictures present in the bitstream. 

NOTE 4 ï A broken link access (BLA) picture having nal_unit_type equal to BLA_W_LP may have associated RASL or RADL 

pictures present in the bitstream. A BLA picture having nal_unit_type equal to BLA_W_RADL does not have associated RASL 

pictures present in the bitstream, but may have associated RADL pictures in the bitstream. A BLA picture having nal_unit_type 

equal to BLA_N_LP does not have associated leading pictures present in the bitstream. 

NOTE 5 ï An instantaneous decoding refresh (IDR) picture having nal_unit_type equal to IDR_N_LP does not have associated 

leading pictures present in the bitstream. An IDR picture having nal_unit_type equal to IDR_W_RADL does not have associated 

RASL pictures present in the bitstream, but may have associated RADL pictures in the bitstream. 

NOTE 6 ï A sub-layer non-reference (SLNR) picture is not included in any of RefPicSetStCurrBefore, RefPicSetStCurrAfter and 

RefPicSetLtCurr of any picture with the same value of TemporalId, and may be discarded without affecting the decodability of other 

pictures with the same value of TemporalId. 

All coded slice segment NAL units of an access unit shall have the same value of nal_unit_type. A picture or an access 

unit is also referred to as having a nal_unit_type equal to the nal_unit_type of the coded slice segment NAL units of the 

picture or the access unit. 

If a picture has nal_unit_type equal to TRAIL_N, TSA_N, STSA_N, RADL_N, RASL_N, RSV_VCL_N10, 

RSV_VCL_N12 or RSV_VCL_N14, the picture is an SLNR picture. Otherwise, the picture is a sub-layer reference picture. 

Each picture, other than the first picture in the bitstream in decoding order, is considered to be associated with the previous 

intra random access point (IRAP) picture in decoding order. 

When a picture is a leading picture, it shall be a RADL or RASL picture. 

When a picture is a trailing picture, it shall not be a RADL or RASL picture. 

When a picture is a leading picture, it shall precede, in decoding order, all trailing pictures that are associated with the 

same IRAP picture. 

No RASL pictures shall be present in the bitstream that are associated with a BLA picture having nal_unit_type equal to 

BLA_W_RADL or BLA_N_LP. 

No RASL pictures shall be present in the bitstream that are associated with an IDR picture. 

No RADL pictures shall be present in the bitstream that are associated with a BLA picture having nal_unit_type equal to 

BLA_N_LP or that are associated with an IDR picture having nal_unit_type equal to IDR_N_LP. 

NOTE 7 ï It is possible to perform random access at the position of an IRAP access unit by discarding all access units before the 

IRAP access unit (and to correctly decode the IRAP picture and all the subsequent non-RASL pictures in decoding order), provided 

each parameter set is available (either in the bitstream or by external means not specified in this Specification) when it needs to be 

activated. 

Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture in decoding order shall precede the IRAP 

picture in output order and shall precede any RADL picture associated with the IRAP picture in output order. 

Any RASL picture associated with a CRA or BLA picture shall precede any RADL picture associated with the CRA or 

BLA picture in output order. 

Any RASL picture associated with a CRA picture shall follow, in output order, any IRAP picture that precedes the CRA 

picture in decoding order. 

When sps_temporal_id_nesting_flag is equal to 1 and TemporalId is greater than 0, the nal_unit_type shall be equal to 

TSA_R, TSA_N, RADL_R, RADL_N, RASL_R or RASL_N. 

nuh_layer_id specifies the identifier of the layer to which a VCL NAL unit belongs or the identifier of a layer to which a 

non-VCL NAL unit applies. The value of nuh_layer_id shall be in the range of 0 to 62, inclusive. The value of 63 may be 

specified in the future by ITU-T | ISO/IEC. For purposes other than determining the amount of data in the decoding units 

of the bitstream, decoders shall ignore all data that follow the value 63 for nuh_layer_id in a NAL unit, and decoders 

conforming to a profile specified in Annex A and not supporting the independent non-base layer decoding (INBLD) 

capability specified in Annex F shall ignore (i.e., remove from the bitstream and discard) all NAL units with values of 

nuh_layer_id not equal to 0. 

NOTE 8 ï The value of 63 for nuh_layer_id may be used to indicate an extended layer identifier in a future extension of this 

Specification. 

The value of nuh_layer_id shall be the same for all VCL NAL units of a coded picture. The value of nuh_layer_id of a 

coded picture is the value of the nuh_layer_id of the VCL NAL units of the coded picture. 

When nal_unit_type is equal to EOB_NUT, the value of nuh_layer_id shall be equal to 0. 



 

68 Rec. ITU-T H.265 v8 (08/2021) 

nuh_temporal_id_plus1 minus 1 specifies a temporal identifier for the NAL unit. The value of nuh_temporal_id_plus1 

shall not be equal to 0. 

The variable TemporalId is specified as follows: 

TemporalId = nuh_temporal_id_plus1 ī 1  (7-1) 

When nal_unit_type is in the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive, i.e., the coded slice segment belongs 

to an IRAP picture, TemporalId shall be equal to 0. 

When nal_unit_type is equal to TSA_R or TSA_N, TemporalId shall not be equal to 0. 

When nuh_layer_id is equal to 0 and nal_unit_type is equal to STSA_R or STSA_N, TemporalId shall not be equal to 0. 

The value of TemporalId shall be the same for all VCL NAL units of an access unit. The value of TemporalId of a coded 

picture or an access unit is the value of the TemporalId of the VCL NAL units of the coded picture or the access unit. The 

value of TemporalId of a sub-layer representation is the greatest value of TemporalId of all VCL NAL units in the sub-

layer representation. 

The value of TemporalId for non-VCL NAL units is constrained as follows: 

ï If nal_unit_type is equal to VPS_NUT or SPS_NUT, TemporalId shall be equal to 0 and the TemporalId of the access 

unit containing the NAL unit shall be equal to 0. 

ï Otherwise if nal_unit_type is equal to EOS_NUT or EOB_NUT, TemporalId shall be equal to 0. 

ï Otherwise, if nal_unit_type is equal to AUD_NUT or FD_NUT, TemporalId shall be equal to the TemporalId of the 

access unit containing the NAL unit. 

ï Otherwise, TemporalId shall be greater than or equal to the TemporalId of the access unit containing the NAL unit. 

NOTE 9 ï When the NAL unit is a non-VCL NAL unit, the value of TemporalId is equal to the minimum value of the TemporalId 

values of all access units to which the non-VCL NAL unit applies. When nal_unit_type is equal to PPS_NUT, TemporalId may be 

greater than or equal to the TemporalId of the containing access unit, as all picture parameter sets (PPSs) may be included in the 

beginning of a bitstream, wherein the first coded picture has TemporalId equal to 0. When nal_unit_type is equal to 

PREFIX_SEI_NUT or SUFFIX_SEI_NUT, TemporalId may be greater than or equal to the TemporalId of the containing access 

unit, as an SEI NAL unit may contain information, e.g., in a buffering period SEI message or a picture timing SEI message, that 

applies to a bitstream subset that includes access units for which the TemporalId values are greater than the TemporalId of the access 

unit containing the SEI NAL unit. 

7.4.2.3 Encapsulation of an SODB within an RBSP (informative) 

This clause does not form an integral part of this Specification. 

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three_byte for 

encapsulation of an RBSP within a NAL unit is described for the following purposes: 

ï To prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented within 

a NAL unit, 

ï To enable identification of the end of the SODB within the NAL unit by searching the RBSP for the rbsp_stop_one_bit 

starting at the end of the RBSP, 

ï To enable a NAL unit to have a size greater than that of the SODB under some circumstances (using one or more 

cabac_zero_word syntax elements). 

The encoder can produce a NAL unit from an RBSP by the following procedure: 

1. The RBSP data are searched for byte-aligned bits of the following binary patterns: 

 '00000000 00000000 000000xx' (where 'xx' represents any two-bit pattern: '00', '01', '10', or '11'), 

and a byte equal to 0x03 is inserted to replace the bit pattern with the pattern: 

 '00000000 00000000 00000011 000000xx', 

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in 

a cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data. The last zero byte of a 

byte-aligned three-byte sequence 0x000000 in the RBSP (which is replaced by the four-byte sequence 

0x00000300) is taken into account when searching the RBSP data for the next occurrence of byte-aligned bits 

with the binary patterns specified above. 

2. The resulting sequence of bytes is then prefixed with the NAL unit header, within which the nal_unit_type 

indicates the type of RBSP data structure in the NAL unit. 



 

  Rec. ITU-T H.265 v8 (08/2021) 69 

The process specified above results in the construction of the entire NAL unit. 

This process can allow any SODB to be represented in a NAL unit while ensuring both of the following: 

ï No byte-aligned start code prefix is emulated within the NAL unit. 

ï No sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within 

the NAL unit. 

7.4.2.4 Order of NAL units and association to coded pictures, access units and coded video sequences 

7.4.2.4.1 General 

This clause specifies constraints on the order of NAL units in the bitstream. 

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of NAL 

units. Within a NAL unit, the syntax in clauses 7.3, D.2 and E.2 specifies the decoding order of syntax elements. Decoders 

shall be capable of receiving NAL units and their syntax elements in decoding order. 

7.4.2.4.2 Order of VPS, SPS and PPS RBSPs and their activation 

This clause specifies the activation process of video parameter sets (VPSs), sequence parameter sets (SPSs) and PPSs. 

NOTE 1 ï The VPS, SPS and PPS mechanism decouples the transmission of infrequently changing information from the 

transmission of coded block data. VPSs, SPSs and PPSs may, in some applications, be conveyed "out-of-band". 

A PPS RBSP includes parameters that can be referred to by the coded slice segment NAL units of one or more coded 

pictures. Each PPS RBSP is initially considered not active for the base layer at the start of the operation of the decoding 

process. At most one PPS RBSP is considered active for the base layer at any given moment during the operation of the 

decoding process, and the activation of any particular PPS RBSP for the base layer results in the deactivation of the 

previously-active PPS RBSP for the base layer (if any). 

When a PPS RBSP (with a particular value of pps_pic_parameter_set_id) is not active for the base layer and it is referred 

to by a coded slice segment NAL unit with nuh_layer_id equal to 0 (using a value of slice_pic_parameter_set_id equal to 

the pps_pic_parameter_set_id value), it is activated for the base layer. This PPS RBSP is called the active PPS RBSP for 

the base layer until it is deactivated by the activation of another PPS RBSP for the base layer. A PPS RBSP, with that 

particular value of pps_pic_parameter_set_id, shall be available to the decoding process prior to its activation, included in 

at least one access unit with TemporalId less than or equal to the TemporalId of the PPS NAL unit or provided through 

external means, and the PPS NAL unit containing the PPS RBSP shall have nuh_layer_id equal to 0. 

Any PPS NAL unit containing the value of pps_pic_parameter_set_id for the active PPS RBSP for a coded picture (and 

consequently for the layer containing the coded picture) shall have the same content as that of the active PPS RBSP for the 

coded picture, unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another 

coded picture. 

An SPS RBSP includes parameters that can be referred to by one or more PPS RBSPs or one or more SEI NAL units 

containing an active parameter sets SEI message. Each SPS RBSP is initially considered not active for the base layer at 

the start of the operation of the decoding process. At most one SPS RBSP is considered active for the base layer at any 

given moment during the operation of the decoding process, and the activation of any particular SPS RBSP for the base 

layer results in the deactivation of the previously-active SPS RBSP for the base layer (if any). 

When an SPS RBSP (with a particular value of sps_seq_parameter_set_id) is not already active for the base layer and it is 

referred to by activation of a PPS RBSP (in which pps_seq_parameter_set_id is equal to the sps_seq_parameter_set_id 

value) for the base layer or, when vps_base_layer_internal_flag is equal to 1 and vps_base_layer_available_flag is equal 

to 1, is referred to by an SEI NAL unit containing an active parameter sets SEI message (in which 

active_seq_parameter_set_id[ 0 ] is equal to the sps_seq_parameter_set_id value), it is activated for the base layer. This 

SPS RBSP is called the active SPS RBSP for the base layer until it is deactivated by the activation of another SPS RBSP 

for the base layer. An SPS RBSP, with that particular value of sps_seq_parameter_set_id, shall be available to the decoding 

process prior to its activation, included in at least one access unit with TemporalId equal to 0 or provided through external 

means, and the SPS NAL unit containing the SPS RBSP shall have nuh_layer_id equal to 0. An activated SPS RBSP for 

the base layer shall remain active for the entire coded video sequence (CVS). 

NOTE 2 ï Because an IRAP access unit with NoRaslOutputFlag equal to 1 begins a new CVS and an activated SPS RBSP for the 

base layer must remain active for the entire CVS, an SPS RBSP can only be activated for the base layer by an active parameter sets 

SEI message when the active parameter sets SEI message is part of an IRAP access unit with NoRaslOutputFlag equal to 1. 

Any SPS NAL unit with nuh_layer_id equal to 0 containing the value of sps_seq_parameter_set_id for the active SPS 

RBSP for the base layer for a CVS shall have the same content as that of the active SPS RBSP for the base layer for the 

CVS, unless it follows the last access unit of the CVS and precedes the first VCL NAL unit and the first SEI NAL unit 

containing an active parameter sets SEI message (when present) of another CVS. 



 

70 Rec. ITU-T H.265 v8 (08/2021) 

A VPS RBSP includes parameters that can be referred to by one or more SPS RBSPs or one or more SEI NAL units 

containing an active parameter sets SEI message. Each VPS RBSP is initially considered not active at the start of the 

operation of the decoding process. At most one VPS RBSP is considered active at any given moment during the operation 

of the decoding process, and the activation of any particular VPS RBSP results in the deactivation of the previously-active 

VPS RBSP (if any). 

When a VPS RBSP (with a particular value of vps_video_parameter_set_id) is not already active and it is referred to by 

activation of an SPS RBSP (in which sps_video_parameter_set_id is equal to the vps_video_parameter_set_id value) for 

the base layer, or is referred to by an SEI NAL unit containing an active parameter sets SEI message (in which 

active_video_parameter_set_id is equal to the vps_video_parameter_set_id value), it is activated. This VPS RBSP is called 

the active VPS RBSP until it is deactivated by the activation of another VPS RBSP. A VPS RBSP, with that particular 

value of vps_video_parameter_set_id, shall be available to the decoding process prior to its activation, included in at least 

one access unit with TemporalId equal to 0 or provided through external means, and the VPS NAL unit containing the 

VPS RBSP shall have nuh_layer_id equal to 0. An activated VPS RBSP shall remain active for the entire CVS. 

NOTE 3 ï Because an IRAP access unit with NoRaslOutputFlag equal to 1 begins a new CVS and an activated VPS RBSP must 

remain active for the entire CVS, a VPS RBSP can only be activated by an active parameter sets SEI message when the active 

parameter sets SEI message is part of an IRAP access unit with NoRaslOutputFlag equal to 1. 

Any VPS NAL unit containing the value of vps_video_parameter_set_id for the active VPS RBSP for a CVS shall have 

the same content as that of the active VPS RBSP for the CVS, unless it follows the last access unit of the CVS and precedes 

the first VCL NAL unit, the first SPS NAL unit and the first SEI NAL unit containing an active parameter sets SEI message 

(when present) of another CVS. 

NOTE 4 ï If VPS RBSP, SPS RBSP or PPS RBSP are conveyed within the bitstream, these constraints impose an order constraint 

on the NAL units that contain the VPS RBSP, SPS RBSP or PPS RBSP, respectively. Otherwise (VPS RBSP, SPS RBSP or PPS 

RBSP are conveyed by other means not specified in this Specification), they must be available to the decoding process in a timely 

fashion such that these constraints are obeyed. 

All constraints that are expressed on the relationship between the values of the syntax elements and the values of variables 

derived from those syntax elements in VPSs, SPSs and PPSs and other syntax elements are expressions of constraints that 

apply only to the active VPS RBSP, the active SPS RBSP for the base layer and the active PPS RBSP for the base layer. 

If any VPS RBSP, SPS RBSP and PPS RBSP is present that is never activated in the bitstream, its syntax elements shall 

have values that would conform to the specified constraints if it was activated by reference in an otherwise conforming 

bitstream. 

NOTE 5 ï In the context of this clause, activation of a parameter set RBSP is for the base layer only. Thus, the constraint above on 

never-activated parameter set RBSPs applies to those parameter set RBSPs with nuh_layer_id equal to 0 only, because parameter 

set RBSPs with nuh_layer_id greater than 0 are not allowed to be referred to by the base layer. 

During operation of the decoding process (see clause 8), the values of parameters of the active VPS RBSP, the active SPS 

RBSP for the base layer and the active PPS RBSP for the base layer are considered in effect. For interpretation of SEI 

messages, the values of the active VPS RBSP, the active SPS RBSP for the base layer and the active PPS RBSP for the 

base layer for the operation of the decoding process for the VCL NAL units of the coded picture with nuh_layer_id equal 

to 0 in the same access unit are considered in effect unless otherwise specified in the SEI message semantics. 

7.4.2.4.3 Order of access units and association to CVSs 

A bitstream conforming to this Specification consists of one or more CVSs. 

A CVS consists of one or more access units. The order of NAL units and coded pictures and their association to access 

units is described in clause 7.4.2.4.4. 

The first access unit of a CVS is an IRAP access unit with NoRaslOutputFlag equal to 1. 

It is a requirement of bitstream conformance that, when present, the next access unit after an access unit that contains an 

end of sequence NAL unit shall be an IRAP access unit, which may be an IDR access unit, a BLA access unit, or a CRA 

access unit. 

7.4.2.4.4 Order of NAL units and coded pictures and their association to access units 

This clause specifies the order of NAL units and coded pictures and their association to access units for CVSs that conform 

to one or more of the profiles specified in Annex A and that are decoded using the decoding process specified in clauses 2 

through 10. 

An access unit consists of one coded picture with nuh_layer_id equal to 0, zero or more VCL NAL units with nuh_layer_id 

greater than 0 and zero or more non-VCL NAL units. The association of VCL NAL units to coded pictures is described in 

clause 7.4.2.4.5. 

The first access unit in the bitstream starts with the first NAL unit of the bitstream. 



 

  Rec. ITU-T H.265 v8 (08/2021) 71 

Let firstBlPicNalUnit be the first VCL NAL unit of a coded picture with nuh_layer_id equal to 0. The first of any of the 

following NAL units preceding firstBlPicNalUnit and succeeding the last VCL NAL unit preceding firstBlPicNalUnit, if 

any, specifies the start of a new access unit: 

NOTE 1 ï The last VCL NAL unit preceding firstBlPicNalUnit in decoding order may have nuh_layer_id greater than 0. 

ï access unit delimiter NAL unit with nuh_layer_id equal to 0 (when present), 

ï VPS NAL unit with nuh_layer_id equal to 0 (when present), 

ï SPS NAL unit with nuh_layer_id equal to 0 (when present), 

ï PPS NAL unit with nuh_layer_id equal to 0 (when present), 

ï Prefix SEI NAL unit with nuh_layer_id equal to 0 (when present), 

ï NAL units with nal_unit_type in the range of RSV_NVCL41..RSV_NVCL44 with nuh_layer_id equal to 0 (when 

present), 

ï NAL units with nal_unit_type in the range of UNSPEC48..UNSPEC55 with nuh_layer_id equal to 0 (when present). 

NOTE 2 ï The first NAL unit preceding firstBlPicNalUnit and succeeding the last VCL NAL unit preceding firstBlPicNalUnit, if 

any, can only be one of the above-listed NAL units. 

When there is none of the above NAL units preceding firstBlPicNalUnit and succeeding the last VCL NAL preceding 

firstBlPicNalUnit, if any, firstBlPicNalUnit starts a new access unit. 

The order of the coded pictures and non-VCL NAL units within an access unit shall obey the following constraints: 

ï When an access unit delimiter NAL unit with nuh_layer_id equal to 0 is present, it shall be the first NAL unit. There 

shall be at most one access unit delimiter NAL unit with nuh_layer_id equal to 0 in any access unit. 

ï When any VPS NAL units, SPS NAL units, PPS NAL units, prefix SEI NAL units, NAL units with nal_unit_type in 

the range of RSV_NVCL41..RSV_NVCL44, or NAL units with nal_unit_type in the range of 

UNSPEC48..UNSPEC55 are present, they shall not follow the last VCL NAL unit of the access unit. 

ï NAL units having nal_unit_type equal to FD_NUT or SUFFIX_SEI_NUT or in the range of 

RSV_NVCL45..RSV_NVCL47 or UNSPEC56..UNSPEC63 shall not precede the first VCL NAL unit of the access 

unit. 

ï When an end of sequence NAL unit with nuh_layer_id equal to 0 is present, it shall be the last NAL unit among all 

NAL units with nuh_layer_id equal to 0 in the access unit other than an end of bitstream NAL unit (when present). 

ï When an end of bitstream NAL unit is present, it shall be the last NAL unit in the access unit. 

NOTE 3 ï Decoders conforming to profiles specified in Annex A do not use NAL units with nuh_layer_id greater than 0, e.g., access 

unit delimiter NAL units with nuh_layer_id greater than 0, for access unit boundary detection, except for identification of a NAL 

unit as a VCL or non-VCL NAL unit. 

The structure of access units not containing any NAL units with nal_unit_type equal to FD_NUT, VPS_NUT, SPS_NUT, 

PPS_NUT, RSV_VCL_N10, RSV_VCL_R11, RSV_VCL_N12, RSV_VCL_R13, RSV_VCL_N14 or RSV_VCL_R15, 

RSV_IRAP_VCL22 or RSV_IRAP_VCL23, or in the range of RSV_VCL24..RSV_VCL31, 

RSV_NVCL41..RSV_NVCL47 or UNSPEC48..UNSPEC63 is shown in Figure 7-1. 



 

72 Rec. ITU-T H.265 v8 (08/2021) 

 

Figure 7-1 ï Structure of an access unit not containing any NAL units with nal_unit_type equal to FD_NUT, 

SUFFIX_SEI_NUT, VPS_NUT, SPS_NUT, PPS_NUT, RSV_VCL_N10, RSV_VCL_R11, RSV_VCL_N12, 

RSV_VCL_R13, RSV_VCL_N14, RSV_VCL_R15, RSV_IRAP_VCL22 or RSV_IRAP_VCL23, or in the range of 

RSV_VCL24..RSV_VCL31, RSV_NVCL41..RSV_NVCL47 or UNSPEC48..UNSPEC63 

 

7.4.2.4.5 Order of VCL NAL units and association to coded pictures 

This clause specifies the order of VCL NAL units and association to coded pictures. 

Each VCL NAL unit is part of a coded picture. 

The order of the VCL NAL units within a coded picture is constrained as follows: 

ï The first VCL NAL unit of the coded picture shall have first_slice_segment_in_pic_flag equal to 1. 

ï Let sliceSegAddrA and sliceSegAddrB be the slice_segment_address values of any two coded slice segment NAL 

units A and B within the same coded picture. When either of the following conditions is true, coded slice segment 

NAL unit A shall precede the coded slice segment NAL unit B: 

ï TileId[ CtbAddrRsToTs[ sliceSegAddrA ] ] is less than TileId[ CtbAddrRsToTs[ sliceSegAddrB ] ]. 

ï TileId[ CtbAddrRsToTs[ sliceSegAddrA ] ] is equal to TileId[ CtbAddrRsToTs[ sliceSegAddrB ] ] and 

CtbAddrRsToTs[ sliceSegAddrA ] is less than CtbAddrRsToTs[ sliceSegAddrB ]. 

7.4.3 Raw byte sequence payloads, trailing bits and byte alignment semantics 

7.4.3.1 Video parameter set RBSP semantics 

NOTE 1 ï VPS NAL units are required to be available to the decoding process prior to their activation (either in the bitstream or by 

external means), as specified in clause 7.4.2.4.2. However, the VPS RBSP contains information that is not necessary for operation 

of the decoding process specified in clauses 2 through 10 of this Specification. For purposes other than determining the amount of 

data in the decoding units of the bitstream (as specified in Annex C), decoders conforming to a profile specified in Annex A but not 

supporting the INBLD capability specified in Annex F may ignore (remove from the bitstream and discard) the content of all VPS 

NAL units. 

Any two instances of the syntax structure hrd_parameters( ) included in a VPS RBSP shall not have the same content. 

vps_video_parameter_set_id identifies the VPS for reference by other syntax elements. 



 

  Rec. ITU-T H.265 v8 (08/2021) 73 

vps_base_layer_internal_flag and vps_base_layer_available_flag specify the following: 

ï If vps_base_layer_internal_flag is equal to 1 and vps_base_layer_available_flag is equal to 1, the base layer is present 

in the bitstream. 

ï Otherwise, if vps_base_layer_internal_flag is equal to 0 and vps_base_layer_available_flag is equal to 1, the base 

layer is provided by an external means not specified in this Specification. 

ï Otherwise, if vps_base_layer_internal_flag is equal to 1 and vps_base_layer_available_flag is equal to 0, the base 

layer is not available (neither present in the bitstream nor provided by external means) but the VPS includes 

information of the base layer as if it were present in the bitstream. 

ï Otherwise (vps_base_layer_internal_flag is equal to 0 and vps_base_layer_available_flag is equal to 0), the base layer 

is not available (neither present in the bitstream nor provided by external means) but the VPS includes information of 

the base layer as if it were provided by an external means not specified in this Specification. 

vps_max_layers_minus1 plus 1 specifies the maximum allowed number of layers in each CVS referring to the VPS. It is 

a requirement of bitstream conformance that, when vps_base_layer_internal_flag is equal to 0, vps_max_layers_minus1 

shall be greater than 0. vps_max_layers_minus1 shall be less than 63 in bitstreams conforming to this version of this 

Specification. The value of 63 for vps_max_layers_minus1 is reserved for future use by ITU-T | ISO/IEC. Although the 

value of vps_max_layers_minus1 is required to be less than 63 in this version of this Specification, decoders shall allow 

the value of vps_max_layers_minus1 equal to 63 to appear in the syntax. 

NOTE 2 ï The value of 63 for vps_max_layers_minus1 may be used to indicate an extended number of layers in a future extension 

where more than 63 layers in a bitstream need to be supported. 

The variable MaxLayersMinus1 is set equal to Min( 62, vps_max_layers_minus1 ). 

vps_max_sub_layers_minus1 plus 1 specifies the maximum number of temporal sub-layers that may be present in each 

CVS referring to the VPS. The value of vps_max_sub_layers_minus1 shall be in the range of 0 to 6, inclusive. 

vps_temporal_id_nesting_flag, when vps_max_sub_layers_minus1 is greater than 0, specifies whether inter prediction 

is additionally restricted for CVSs referring to the VPS. When vps_max_sub_layers_minus1 is equal to 0, 

vps_temporal_id_nesting_flag shall be equal to 1. 

NOTE 3 ï The syntax element vps_temporal_id_nesting_flag is used to indicate that temporal sub-layer up-switching, i.e., switching 

from decoding of up to any TemporalId tIdN to decoding up to any TemporalId tIdM that is greater than tIdN, is always possible. 

vps_reserved_0xffff_16bits shall be equal to 0xFFFF in bitstreams conforming to this version of this Specification. Other 

values for vps_reserved_0xffff_16bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the value of 

vps_reserved_0xffff_16bits. 

vps_sub_layer_ordering_info_present_flag equal to 1 specifies that vps_max_dec_pic_buffering_minus1[ i ], 

vps_max_num_reorder_pics[ i ] and vps_max_latency_increase_plus1[ i ] are present for vps_max_sub_layers_

minus1 + 1 sub-layers. vps_sub_layer_ordering_info_present_flag equal to 0 specifies that the values of 

vps_max_dec_pic_buffering_minus1[ vps_max_sub_layers_minus1 ], vps_max_num_reorder_pics[ vps_max_sub_

layers_minus1 ] and vps_max_latency_increase_plus1[ vps_max_sub_layers_minus1 ] apply to all sub-layers. When 

vps_base_layer_internal_flag is equal to 0, vps_sub_layer_ordering_info_present_flag shall be equal to 0 and decoders 

shall ignore the value of vps_sub_layer_ordering_info_present_flag. 

vps_max_dec_pic_buffering_minus1[ i ] plus 1 specifies the maximum required size of the decoded picture buffer for 

the CVS in units of picture storage buffers when HighestTid is equal to i. The value of 

vps_max_dec_pic_buffering_minus1[ i ] shall be in the range of 0 to MaxDpbSize ī 1 (as specified in clause A.4), 

inclusive. When i is greater than 0, vps_max_dec_pic_buffering_minus1[ i ] shall be greater than or equal to 

vps_max_dec_pic_buffering_minus1[ i ī 1 ]. When vps_max_dec_pic_buffering_minus1[ i ] is not present for i in the 

range of 0 to vps_max_sub_layers_minus1 ī 1, inclusive, due to vps_sub_layer_ordering_info_present_flag being equal 

to 0, it is inferred to be equal to vps_max_dec_pic_buffering_minus1[ vps_max_sub_layers_minus1 ]. When 

vps_base_layer_internal_flag is equal to 0, vps_max_dec_pic_buffering_minus1[ i ] shall be equal to 0 and decoders shall 

ignore the value of vps_max_dec_pic_buffering_minus1[ i ]. 

vps_max_num_reorder_pics[ i ] indicates the maximum allowed number of pictures with PicOutputFlag equal to 1 that 

can precede any picture with PicOutputFlag equal to 1 in the CVS in decoding order and follow that picture with 

PicOutputFlag equal to 1 in output order when HighestTid is equal to i. The value of vps_max_num_reorder_pics[ i ] shall 

be in the range of 0 to vps_max_dec_pic_buffering_minus1[ i ], inclusive. When i is greater than 0, 

vps_max_num_reorder_pics[ i ] shall be greater than or equal to vps_max_num_reorder_pics[ i ī 1 ]. When 

vps_max_num_reorder_pics[ i ] is not present for i in the range of 0 to vps_max_sub_layers_minus1 ī 1, inclusive, due to 

vps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 

vps_max_num_reorder_pics[ vps_max_sub_layers_minus1 ]. When vps_base_layer_internal_flag is equal to 0, 

vps_max_num_reorder_pics[ i ] shall be equal to 0 and decoders shall ignore the value of vps_max_num_reorder_pics[ i ]. 



 

74 Rec. ITU-T H.265 v8 (08/2021) 

vps_max_latency_increase_plus1[ i ] not equal to 0 is used to compute the value of VpsMaxLatencyPictures[ i ], which 

specifies the maximum number of pictures with PicOutputFlag equal to 1 that can precede any picture with PicOutputFlag 

equal to 1 in the CVS in output order and follow that picture with PicOutputFlag equal to 1 in decoding order when 

HighestTid is equal to i. 

When vps_max_latency_increase_plus1[ i ] is not equal to 0, the value of VpsMaxLatencyPictures[ i ] is specified as 

follows: 

VpsMaxLatencyPictures[ i ] = vps_max_num_reorder_pics[ i ] + (7-2) 

  vps_max_latency_increase_plus1[ i ] ī 1 

When vps_max_latency_increase_plus1[ i ] is equal to 0, no corresponding limit is expressed. 

The value of vps_max_latency_increase_plus1[ i ] shall be in the range of 0 to 232 ī 2, inclusive. When 

vps_max_latency_increase_plus1[ i ] is not present for i in the range of 0 to vps_max_sub_layers_minus1 ī 1, inclusive, 

due to vps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 

vps_max_latency_increase_plus1[ vps_max_sub_layers_minus1 ]. 

When vps_base_layer_internal_flag is equal to 0, vps_max_latency_increase_plus1[ i ] shall be equal to 0 and decoders 

shall ignore the value of vps_max_latency_increase_plus1[ i ]. 

vps_max_layer_id specifies the maximum allowed value of nuh_layer_id of all NAL units in each CVS referring to the 

VPS. vps_max_layer_id shall be less than 63 in bitstreams conforming to this version of this Specification. The value of 63 

for vps_max_layer_id is reserved for future use by ITU-T | ISO/IEC. Although the value of vps_max_layer_id is required 

to be less than 63 in this version of this Specification, decoders shall allow a value of vps_max_layer_id equal to 63 to 

appear in the syntax. 

vps_num_layer_sets_minus1 plus 1 specifies the number of layer sets that are specified by the VPS. The value of 

vps_num_layer_sets_minus1 shall be in the range of 0 to 1 023, inclusive. 

layer_id_included_flag[ i ][  j ] equal to 1 specifies that the value of nuh_layer_id equal to j is included in the layer 

identifier list LayerSetLayerIdList[ i ]. layer_id_included_flag[ i ][  j ] equal to 0 specifies that the value of nuh_layer_id 

equal to j is not included in the layer identifier list LayerSetLayerIdList[ i ]. 

The value of NumLayersInIdList[ 0 ] is set equal to 1 and the value of LayerSetLayerIdList[ 0 ][  0 ] is set equal to 0. 

For each value of i in the range of 1 to vps_num_layer_sets_minus1, inclusive, the variable NumLayersInIdList[ i ] and 

the layer identifier list LayerSetLayerIdList[ i ] are derived as follows: 

n = 0 

for( m = 0; m  <=  vps_max_layer_id; m++ ) 

 if( layer_id_included_flag[ i ][  m ] )  (7-3) 

  LayerSetLayerIdList[ i ][  n++ ] = m 

NumLayersInIdList[ i ] = n 

For each value of i in the range of 1 to vps_num_layer_sets_minus1, inclusive, NumLayersInIdList[ i ] shall be in the range 

of 1 to vps_max_layers_minus1 + 1, inclusive. 

When NumLayersInIdList[ iA  ] is equal to NumLayersInIdList[ iB ] for any iA and iB in the range of 0 to 

vps_num_layer_sets_minus1, inclusive, with iA not equal to iB, the value of LayerSetLayerIdList[ iA ][  n ] shall not be 

equal to LayerSetLayerIdList[ iB ][  n ] for at least one value of n in the range of 0 to NumLayersInIdList[ iA  ], inclusive. 

A layer set is identified by the associated layer identifier list. The i-th layer set specified by the VPS is associated with the 

layer identifier list LayerSetLayerIdList[ i ], for i in the range of 0 to vps_num_layer_sets_minus1, inclusive. 

A layer set consists of all operation points that are associated with the same layer identifier list. 

Each operation point is identified by the associated layer identifier list, denoted as OpLayerIdList, which consists of the 

list of nuh_layer_id values of all NAL units included in the operation point, in increasing order of nuh_layer_id values, 

and a variable OpTid, which is equal to the highest TemporalId of all NAL units included in the operation point. The 

bitstream subset associated with the operation point identified by OpLayerIdList and OpTid is the output of the sub-

bitstream extraction process as specified in clause 10 with the bitstream, the target highest TemporalId equal to OpTid, 

and the target layer identifier list equal to OpLayerIdList as inputs. The OpLayerIdList and OpTid that identify an operation 

point are also referred to as the OpLayerIdList and OpTid associated with the operation point, respectively. 

vps_timing_info_present_flag equal to 1 specifies that vps_num_units_in_tick, vps_time_scale, 

vps_poc_proportional_to_timing_flag and vps_num_hrd_parameters are present in the VPS. 



 

  Rec. ITU-T H.265 v8 (08/2021) 75 

vps_timing_info_present_flag equal to 0 specifies that vps_num_units_in_tick, vps_time_scale, 

vps_poc_proportional_to_timing_flag and vps_num_hrd_parameters are not present in the VPS. 

vps_num_units_in_tick is the number of time units of a clock operating at the frequency vps_time_scale Hz that 

corresponds to one increment (called a clock tick) of a clock tick counter. The value of vps_num_units_in_tick shall be 

greater than 0. A clock tick, in units of seconds, is equal to the quotient of vps_num_units_in_tick divided by 

vps_time_scale. For example, when the picture rate of a video signal is 25 Hz, vps_time_scale may be equal to 27 000 000 

and vps_num_units_in_tick may be equal to 1 080 000, and consequently a clock tick may be 0.04 seconds. 

vps_time_scale is the number of time units that pass in one second. For example, a time coordinate system that measures 

time using a 27 MHz clock has a vps_time_scale of 27 000 000. The value of vps_time_scale shall be greater than 0. 

vps_poc_proportional_to_timing_flag equal to 1 indicates that the picture order count value for each picture in the CVS 

that is not the first picture in the CVS, in decoding order, is proportional to the output time of the picture relative to the 

output time of the first picture in the CVS. vps_poc_proportional_to_timing_flag equal to 0 indicates that the picture order 

count value for each picture in the CVS that is not the first picture in the CVS, in decoding order, may or may not be 

proportional to the output time of the picture relative to the output time of the first picture in the CVS. 

vps_num_ticks_poc_diff_one_minus1 plus 1 specifies the number of clock ticks corresponding to a difference of picture 

order count values equal to 1. The value of vps_num_ticks_poc_diff_one_minus1 shall be in the range of 0 to 232 ī 2, 

inclusive. 

vps_num_hrd_parameters specifies the number of hrd_parameters( ) syntax structures present in the VPS RBSP before 

the vps_extension_flag syntax element. The value of vps_num_hrd_parameters shall be in the range of 0 to 

vps_num_layer_sets_minus1 + 1, inclusive. 

hrd_layer_set_idx[ i ] specifies the index, into the list of layer sets specified by the VPS, of the layer set to which the i-th 

hrd_parameters( ) syntax structure in the VPS applies. The value of hrd_layer_set_idx[ i ] shall be in the range of 

( vps_base_layer_internal_flag ? 0 : 1 ) to vps_num_layer_sets_minus1, inclusive. 

It is a requirement of bitstream conformance that the value of hrd_layer_set_idx[ i ] shall not be equal to the value of 

hrd_layer_set_idx[ j ] for any value of j not equal to i. 

cprms_present_flag[ i ] equal to 1 specifies that the HRD parameters that are common for all sub-layers are present in the 

i-th hrd_parameters( ) syntax structure in the VPS. cprms_present_flag[ i ] equal to 0 specifies that the HRD parameters 

that are common for all sub-layers are not present in the i-th hrd_parameters( ) syntax structure in the VPS and are derived 

to be the same as the ( i ī 1 )-th hrd_parameters( ) syntax structure in the VPS. cprms_present_flag[ 0 ] is inferred to be 

equal to 1. 

vps_extension_flag equal to 0 specifies that no vps_extension_data_flag syntax elements are present in the VPS RBSP 

syntax structure. vps_extension_flag equal to 1 specifies that there are vps_extension_data_flag syntax elements present 

in the VPS RBSP syntax structure. Decoders conforming to a profile specified in Annex A but not supporting the INBLD 

capability specified in Annex F shall ignore all data that follow the value 1 for vps_extension_flag in a VPS NAL unit. 

vps_extension_data_flag may have any value. Its presence and value do not affect the decoding process of the profiles 

specified in Annex A. Decoders conforming to a profile specified in Annex A but not supporting the INBLD capability 

specified in Annex F shall ignore all vps_extension_data_flag syntax elements. 

7.4.3.2 Sequence parameter set RBSP semantics 

7.4.3.2.1 General sequence parameter set RBSP semantics 

sps_video_parameter_set_id specifies the value of the vps_video_parameter_set_id of the active VPS. 

sps_max_sub_layers_minus1 plus 1 specifies the maximum number of temporal sub-layers that may be present in each 

CVS referring to the SPS. The value of sps_max_sub_layers_minus1 shall be in the range of 0 to 6, inclusive. The value 

of sps_max_sub_layers_minus1 shall be less than or equal to vps_max_sub_layers_minus1. 

sps_temporal_id_nesting_flag, when sps_max_sub_layers_minus1 is greater than 0, specifies whether inter prediction is 

additionally restricted for CVSs referring to the SPS. When vps_temporal_id_nesting_flag is equal to 1, 

sps_temporal_id_nesting_flag shall be equal to 1. When sps_max_sub_layers_minus1 is equal to 0, 

sps_temporal_id_nesting_flag shall be equal to 1. 

NOTE 1 ï The syntax element sps_temporal_id_nesting_flag is used to indicate that temporal up-switching, i.e., switching from 

decoding up to any TemporalId tIdN to decoding up to any TemporalId tIdM that is greater than tIdN, is always possible in the CVS. 

sps_seq_parameter_set_id provides an identifier for the SPS for reference by other syntax elements. The value of 

sps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in clause 6.2. The value of 

chroma_format_idc shall be in the range of 0 to 3, inclusive. 



 

76 Rec. ITU-T H.265 v8 (08/2021) 

separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are coded 

separately. separate_colour_plane_flag equal to 0 specifies that the colour components are not coded separately. When 

separate_colour_plane_flag is not present, it is inferred to be equal to 0. When separate_colour_plane_flag is equal to 1, 

the coded picture consists of three separate components, each of which consists of coded samples of one colour plane (Y, 

Cb, or Cr) and uses the monochrome coding syntax. In this case, each colour plane is associated with a specific 

colour_plane_id value. 

NOTE 2 ï There is no dependency in decoding processes between the colour planes having different colour_plane_id values. For 

example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any data from monochrome 

pictures having different values of colour_plane_id for inter prediction. 

Depending on the value of separate_colour_plane_flag, the value of the variable ChromaArrayType is assigned as follows: 

ï If separate_colour_plane_flag is equal to 0, ChromaArrayType is set equal to chroma_format_idc. 

ï Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0. 

pic_width_in_luma_samples specifies the width of each decoded picture in units of luma samples. 

pic_width_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY. 

pic_height_in_luma_samples specifies the height of each decoded picture in units of luma samples. 

pic_height_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY. 

conformance_window_flag equal to 1 indicates that the conformance cropping window offset parameters follow next in 

the SPS. conformance_window_flag equal to 0 indicates that the conformance cropping window offset parameters are not 

present. 

conf_win_left_offset, conf_win_right_offset, conf_win_top_offset and conf_win_bottom_offset specify the samples of 

the pictures in the CVS that are output from the decoding process, in terms of a rectangular region specified in picture 

coordinates for output. When conformance_window_flag is equal to 0, the values of conf_win_left_offset, 

conf_win_right_offset, conf_win_top_offset and conf_win_bottom_offset are inferred to be equal to 0. 

The conformance cropping window contains the luma samples with horizontal picture coordinates from 

SubWidthC *  conf_win_left_offset to pic_width_in_luma_samples ī ( SubWidthC *  conf_win_right_offset + 1 ) and 

vertical picture coordinates from SubHeightC *  conf_win_top_offset to 

pic_height_in_luma_samples ī ( SubHeightC *  conf_win_bottom_offset + 1 ), inclusive. 

The value of SubWidthC *  ( conf_win_left_offset + conf_win_right_offset ) shall be less than 

pic_width_in_luma_samples, and the value of SubHeightC *  ( conf_win_top_offset + conf_win_bottom_offset ) shall be 

less than pic_height_in_luma_samples. 

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the samples 

having picture coordinates ( x / SubWidthC, y / SubHeightC ), where ( x, y ) are the picture coordinates of the specified 

luma samples. 

NOTE 3 ï The conformance cropping window offset parameters are only applied at the output. All internal decoding processes are 

applied to the uncropped picture size. 

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array BitDepthY and the value of the luma 

quantization parameter range offset QpBdOffsetY as follows: 

BitDepthY      = 8 + bit_depth_luma_minus8  (7-4) 

QpBdOffsetY = 6 * bit_depth_luma_minus8  (7-5) 

bit_depth_luma_minus8 shall be in the range of 0 to 8, inclusive. 

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays BitDepthC and the value of the 

chroma quantization parameter range offset QpBdOffsetC as follows: 

BitDepthC      = 8 + bit_depth_chroma_minus8 

 (7-6) 

QpBdOffsetC = 6 * bit_depth_chroma_minus8 

 (7-7) 

bit_depth_chroma_minus8 shall be in the range of 0 to 8, inclusive. 

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the decoding 

process for picture order count as follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 77 

MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 ) (7-8) 

The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive. 

sps_sub_layer_ordering_info_present_flag equal to 1 specifies that sps_max_dec_pic_buffering_minus1[ i ], 

sps_max_num_reorder_pics[ i ] and sps_max_latency_increase_plus1[ i ] are present for sps_max_sub_layers_minus1 + 1 sub-

layers. sps_sub_layer_ordering_info_present_flag equal to 0 specifies that the values of sps_max_dec_pic_

buffering_minus1[ sps_max_sub_layers_minus1 ], sps_max_num_reorder_pics[ sps_max_sub_layers_minus1 ] and sps_max_

latency_increase_plus1[ sps_max_sub_layers_minus1 ] apply to all sub-layers. 

sps_max_dec_pic_buffering_minus1[ i ] plus 1 specifies the maximum required size of the decoded picture buffer for 

the CVS in units of picture storage buffers when HighestTid is equal to i. The value of 

sps_max_dec_pic_buffering_minus1[ i ] shall be in the range of 0 to MaxDpbSize ī 1, inclusive, where MaxDpbSize is 

as specified in clause A.4. When i is greater than 0, sps_max_dec_pic_buffering_minus1[ i ] shall be greater than or equal 

to sps_max_dec_pic_buffering_minus1[ i ī 1 ]. The value of sps_max_dec_pic_buffering_minus1[ i ] shall be less than or 

equal to vps_max_dec_pic_buffering_minus1[ i ] for each value of i. When sps_max_dec_pic_buffering_minus1[ i ] is not 

present for i in the range of 0 to sps_max_sub_layers_minus1 ī 1, inclusive, due to sps_sub_layer

_ordering_info_present_flag being equal to 0, it is inferred to be equal to sps_max_dec_pic_buffering_

minus1[ sps_max_sub_layers_minus1 ]. 

sps_max_num_reorder_pics[ i ] indicates the maximum allowed number of pictures with PicOutputFlag equal to 1 that 

can precede any picture with PicOutputFlag equal to 1 in the CVS in decoding order and follow that picture with 

PicOutputFlag equal to 1 in output order when HighestTid is equal to i. The value of sps_max_num_reorder_pics[ i ] shall 

be in the range of 0 to sps_max_dec_pic_buffering_minus1[ i ], inclusive. When i is greater than 0, 

sps_max_num_reorder_pics[ i ] shall be greater than or equal to sps_max_num_reorder_pics[ i ī 1 ]. The value of 

sps_max_num_reorder_pics[ i ] shall be less than or equal to vps_max_num_reorder_pics[ i ] for each value of i. When 

sps_max_num_reorder_pics[ i ] is not present for i in the range of 0 to sps_max_sub_layers_minus1 ī 1, inclusive, due to 

sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 

sps_max_num_reorder_pics[ sps_max_sub_layers_minus1 ]. 

sps_max_latency_increase_plus1[ i ] not equal to 0 is used to compute the value of SpsMaxLatencyPictures[ i ], which 

specifies the maximum number of pictures with PicOutputFlag equal to 1 that can precede any picture with PicOutputFlag 

equal to 1 in the CVS in output order and follow that picture with PicOutputFlag equal to 1 in decoding order when 

HighestTid is equal to i. 

When sps_max_latency_increase_plus1[ i ] is not equal to 0, the value of SpsMaxLatencyPictures[ i ] is specified as 

follows: 

SpsMaxLatencyPictures[ i ] = sps_max_num_reorder_pics[ i ] + (7-9) 

  sps_max_latency_increase_plus1[ i ] ī 1 

When sps_max_latency_increase_plus1[ i ] is equal to 0, no corresponding limit is expressed. 

The value of sps_max_latency_increase_plus1[ i ] shall be in the range of 0 to 232 ī 2, inclusive. When 

vps_max_latency_increase_plus1[ i ] is not equal to 0, the value of sps_max_latency_increase_plus1[ i ] shall not be equal 

to 0 and shall be less than or equal to vps_max_latency_increase_plus1[ i ] for each value of i. When 

sps_max_latency_increase_plus1[ i ] is not present for i in the range of 0 to sps_max_sub_layers_minus1 ī 1, inclusive, 

due to sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 

sps_max_latency_increase_plus1[ sps_max_sub_layers_minus1 ]. 

log2_min_luma_coding_block_size_minus3 plus 3 specifies the minimum luma coding block size. 

log2_diff_max_min_luma_coding_block_size specifies the difference between the maximum and minimum luma coding 

block size. 

The variables MinCbLog2SizeY, CtbLog2SizeY, MinCbSizeY, CtbSizeY, PicWidthInMinCbsY, PicWidthInCtbsY, 

PicHeightInMinCbsY, PicHeightInCtbsY, PicSizeInMinCbsY, PicSizeInCtbsY, PicSizeInSamplesY, 

PicWidthInSamplesC and PicHeightInSamplesC are derived as follows: 

MinCbLog2SizeY = log2_min_luma_coding_block_size_minus3 + 3 (7-10) 

CtbLog2SizeY = MinCbLog2SizeY + log2_diff_max_min_luma_coding_block_size (7-11) 

MinCbSizeY = 1  <<  MinCbLog2SizeY  (7-12) 

CtbSizeY = 1  <<  CtbLog2SizeY  (7-13) 



 

78 Rec. ITU-T H.265 v8 (08/2021) 

PicWidthInMinCbsY = pic_width_in_luma_samples / MinCbSizeY (7-14) 

PicWidthInCtbsY = Ceil( pic_width_in_luma_samples ÷ CtbSizeY ) (7-15) 

PicHeightInMinCbsY = pic_height_in_luma_samples / MinCbSizeY (7-16) 

PicHeightInCtbsY = Ceil( pic_height_in_luma_samples ÷ CtbSizeY ) (7-17) 

PicSizeInMinCbsY = PicWidthInMinCbsY *  PicHeightInMinCbsY (7-18) 

PicSizeInCtbsY = PicWidthInCtbsY *  PicHeightInCtbsY (7-19) 

PicSizeInSamplesY = pic_width_in_luma_samples *  pic_height_in_luma_samples (7-20) 

PicWidthInSamplesC = pic_width_in_luma_samples / SubWidthC (7-21) 

PicHeightInSamplesC = pic_height_in_luma_samples / SubHeightC (7-22) 

The variables CtbWidthC and CtbHeightC, which specify the width and height, respectively, of the array for each chroma 

CTB, are derived as follows: 

ï If chroma_format_idc is equal to 0 (monochrome) or separate_colour_plane_flag is equal to 1, CtbWidthC and 

CtbHeightC are both equal to 0. 

ï Otherwise, CtbWidthC and CtbHeightC are derived as follows: 

CtbWidthC = CtbSizeY / SubWidthC  (7-23) 

CtbHeightC = CtbSizeY / SubHeightC  (7-24) 

log2_min_luma_transform_block_size_minus2 plus 2 specifies the minimum luma transform block size. 

The variable MinTbLog2SizeY is set equal to log2_min_luma_transform_block_size_minus2 + 2. The CVS shall not 

contain data that result in MinTbLog2SizeY greater than or equal to MinCbLog2SizeY. 

log2_diff_max_min_luma_transform_block_size specifies the difference between the maximum and minimum luma 

transform block size. 

The variable MaxTbLog2SizeY is set equal to log2_min_luma_transform_block_size_minus2 + 2 + 

log2_diff_max_min_luma_transform_block_size. 

The CVS shall not contain data that result in MaxTbLog2SizeY greater than Min( CtbLog2SizeY, 5 ). 

The array ScanOrder[ log2BlockSize ][  scanIdx ][  sPos ][  sComp ] specifies the mapping of the scan position sPos, 

ranging from 0 to ( 1  <<  log2BlockSize ) *  ( 1  <<  log2BlockSize ) ī 1, inclusive, to horizontal and vertical components 

of the scan-order matrix. The array index scanIdx equal to 0 specifies an up-right diagonal scan order, scanIdx equal to 1 

specifies a horizontal scan order, scanIdx equal to 2 specifies a vertical scan order, and scanIdx equal to 3 specifies a 

traverse scan order. The array index sComp equal to 0 specifies the horizontal component and the array index sComp equal 

to 1 specifies the vertical component. The array ScanOrder is derived as follows: 

For the variable log2BlockSize ranging from 0 to 5, inclusive, the scanning order array ScanOrder is derived as follows: 

ï For log2BlockSize ranging from 0 to 3, inclusive, the up-right diagonal scan order array initialization process as 

specified in clause 6.5.3 is invoked with 1  <<  log2BlockSize as input, and the output is assigned to 

ScanOrder[ log2BlockSize ][  0 ]. 

ï For log2BlockSize ranging from 0 to 3, inclusive, the horizontal scan order array initialization process as specified in 

clause 6.5.4 is invoked with 1  <<  log2BlockSize as input, and the output is assigned to 

ScanOrder[ log2BlockSize ][  1 ]. 

ï For log2BlockSize ranging from 0 to 3, inclusive, the vertical scan order array initialization process as specified in 

clause 6.5.5 is invoked with 1  <<  log2BlockSize as input, and the output is assigned to 

ScanOrder[ log2BlockSize ][  2 ]. 

ï For log2BlockSize ranging from 2 to 5, inclusive, the traverse scan order array initialization process as specified in 

clause 6.5.6 is invoked with 1  <<  log2BlockSize as input, and the output is assigned to 

ScanOrder[ log2BlockSize ][  3 ]. 



 

  Rec. ITU-T H.265 v8 (08/2021) 79 

max_transform_hierarchy_depth_inter specifies the maximum hierarchy depth for transform units of coding units 

coded in inter prediction mode. The value of max_transform_hierarchy_depth_inter shall be in the range of 0 to 

CtbLog2SizeY ī MinTbLog2SizeY, inclusive. 

max_transform_hierarchy_depth_intra specifies the maximum hierarchy depth for transform units of coding units 

coded in intra prediction mode. The value of max_transform_hierarchy_depth_intra shall be in the range of 0 to 

CtbLog2SizeY ī MinTbLog2SizeY, inclusive. 

scaling_list_enabled_flag equal to 1 specifies that a scaling list is used for the scaling process for transform coefficients. 

scaling_list_enabled_flag equal to 0 specifies that scaling list is not used for the scaling process for transform coefficients. 

sps_scaling_list_data_present_flag equal to 1 specifies that the scaling_list_data( ) syntax structure is present in the SPS. 

sps_scaling_list_data_present_flag equal to 0 specifies that the scaling_list_data( ) syntax structure is not present in the 

SPS. When not present, the value of sps_scaling_list_data_present_flag is inferred to be equal to 0. 

amp_enabled_flag equal to 1 specifies that asymmetric motion partitions, i.e., PartMode equal to PART_2NxnU, 

PART_2NxnD, PART_nLx2N or PART_nRx2N, may be used in CTBs. amp_enabled_flag equal to 0 specifies that 

asymmetric motion partitions cannot be used in CTBs. 

sample_adaptive_offset_enabled_flag equal to 1 specifies that the sample adaptive offset process is applied to the 

reconstructed picture after the deblocking filter process. sample_adaptive_offset_enabled_flag equal to 0 specifies that the 

sample adaptive offset process is not applied to the reconstructed picture after the deblocking filter process. 

pcm_enabled_flag equal to 0 specifies that PCM-related syntax (pcm_sample_bit_depth_luma_minus1, pcm_sample_

bit_depth_chroma_minus1, log2_min_pcm_luma_coding_block_size_minus3, log2_diff_max_min_pcm_luma_

coding_block_size, pcm_loop_filter_disabled_flag, pcm_flag, pcm_alignment_zero_bit syntax elements and 

pcm_sample( ) syntax structure) is not present in the CVS. 

NOTE 4 ï When MinCbLog2SizeY is equal to 6 and pcm_enabled_flag is equal to 1, PCM sample data-related syntax (pcm_flag, 

pcm_alignment_zero_bit syntax elements and pcm_sample( ) syntax structure) is not present in the CVS, because the maximum size 

of coding blocks that can convey PCM sample data-related syntax is restricted to be less than or equal to Min( CtbLog2SizeY, 5 ). 

Hence, MinCbLog2SizeY equal to 6 with pcm_enabled_flag equal to 1 is not an appropriate setting to convey PCM sample data in 

the CVS. 

pcm_sample_bit_depth_luma_minus1 specifies the number of bits used to represent each of PCM sample values of the 

luma component as follows: 

PcmBitDepthY = pcm_sample_bit_depth_luma_minus1 + 1 (7-25) 

The value of PcmBitDepthY shall be less than or equal to the value of BitDepthY. 

pcm_sample_bit_depth_chroma_minus1 specifies the number of bits used to represent each of PCM sample values of 

the chroma components as follows: 

PcmBitDepthC = pcm_sample_bit_depth_chroma_minus1 + 1 (7-26) 

The value of PcmBitDepthC shall be less than or equal to the value of BitDepthC. When ChromaArrayType is equal to 0, 

pcm_sample_bit_depth_chroma_minus1 is not used in the decoding process and decoders shall ignore its value. 

log2_min_pcm_luma_coding_block_size_minus3 plus 3 specifies the minimum size of coding blocks with pcm_flag 

equal to 1. 

The variable Log2MinIpcmCbSizeY is set equal to log2_min_pcm_luma_coding_block_size_minus3 + 3. The value of 

Log2MinIpcmCbSizeY shall be in the range of Min( MinCbLog2SizeY, 5 ) to Min( CtbLog2SizeY, 5 ), inclusive. 

log2_diff_max_min_pcm_luma_coding_block_size specifies the difference between the maximum and minimum size 

of coding blocks with pcm_flag equal to 1. 

The variable Log2MaxIpcmCbSizeY is set equal to log2_diff_max_min_pcm_luma_coding_block_size + 

Log2MinIpcmCbSizeY. The value of Log2MaxIpcmCbSizeY shall be less than or equal to Min( CtbLog2SizeY, 5 ). 

pcm_loop_filter_disabled_flag specifies whether the loop filter process is disabled on reconstructed samples in a coding 

unit with pcm_flag equal to 1 as follows: 

ï If pcm_loop_filter_disabled_flag is equal to 1, the deblocking filter and sample adaptive offset filter processes on the 

reconstructed samples in a coding unit with pcm_flag equal to 1 are disabled. 

ï Otherwise (pcm_loop_filter_disabled_flag value is equal to 0), the deblocking filter and sample adaptive offset filter 

processes on the reconstructed samples in a coding unit with pcm_flag equal to 1 are not disabled. 

When pcm_loop_filter_disabled_flag is not present, it is inferred to be equal to 0. 



 

80 Rec. ITU-T H.265 v8 (08/2021) 

num_short_term_ref_pic_sets specifies the number of st_ref_pic_set( ) syntax structures included in the SPS. The value 

of num_short_term_ref_pic_sets shall be in the range of 0 to 64, inclusive. 

NOTE 5 ï A decoder should allocate memory for a total number of num_short_term_ref_pic_sets + 1 st_ref_pic_set( ) syntax 

structures since there may be a st_ref_pic_set( ) syntax structure directly signalled in the slice headers of a current picture. A 

st_ref_pic_set( ) syntax structure directly signalled in the slice headers of a current picture has an index equal to 

num_short_term_ref_pic_sets. 

long_term_ref_pics_present_flag equal to 0 specifies that no long-term reference picture is used for inter prediction of 

any coded picture in the CVS. long_term_ref_pics_present_flag equal to 1 specifies that long-term reference pictures may 

be used for inter prediction of one or more coded pictures in the CVS. 

num_long_term_ref_pics_sps specifies the number of candidate long-term reference pictures that are specified in the 

SPS. The value of num_long_term_ref_pics_sps shall be in the range of 0 to 32, inclusive. 

lt_ref_pic_poc_lsb_sps[ i ] specifies the picture order count modulo MaxPicOrderCntLsb of the i-th candidate long-term 

reference picture specified in the SPS. The number of bits used to represent lt_ref_pic_poc_lsb_sps[ i ] is equal to 

log2_max_pic_order_cnt_lsb_minus4 + 4. 

used_by_curr_pic_lt_sps_flag[ i ] equal to 0 specifies that the i-th candidate long-term reference picture specified in the 

SPS is not used for reference by a picture that includes in its long-term reference picture set (RPS) the i-th candidate long-

term reference picture specified in the SPS. 

sps_temporal_mvp_enabled_flag equal to 1 specifies that slice_temporal_mvp_enabled_flag is present in the slice 

headers of non-IDR pictures in the CVS. sps_temporal_mvp_enabled_flag equal to 0 specifies that 

slice_temporal_mvp_enabled_flag is not present in slice headers and that temporal motion vector predictors are not used 

in the CVS. 

strong_intra_smoothing_enabled_flag equal to 1 specifies that bi-linear interpolation is conditionally used in the intra 

prediction filtering process in the CVS as specified in clause 8.4.4.2.3. strong_intra_smoothing_enabled_flag equal to 0 

specifies that the bi-linear interpolation is not used in the CVS. 

vui_parameters_present_flag equal to 1 specifies that the vui_parameters( ) syntax structure as specified in Annex E is 

present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters( ) syntax structure as specified in 

Annex E is not present. 

sps_extension_present_flag equal to 1 specifies that the syntax elements sps_range_extension_flag, 

sps_multilayer_extension_flag, sps_3d_extension_flag, sps_scc_extension_flag, and sps_extension_4bits are present in 

the SPS RBSP syntax structure. sps_extension_present_flag equal to 0 specifies that these syntax elements are not present. 

sps_range_extension_flag equal to 1 specifies that the sps_range_extension( ) syntax structure is present in the SPS RBSP 

syntax structure. sps_range_extension_flag equal to 0 specifies that this syntax structure is not present. When not present, 

the value of sps_range_extension_flag is inferred to be equal to 0. 

sps_multilayer_extension_flag equal to 1 specifies that the sps_multilayer_extension( ) syntax structure (specified in 

Annex F) is present in the SPS RBSP syntax structure. sps_multilayer_extension_flag equal to 0 specifies that the 

sps_multilayer_extension( ) syntax structure is not present. When not present, the value of sps_multilayer_extension_flag 

is inferred to be equal to 0. 

sps_3d_extension_flag equal to 1 specifies that the sps_3d_extension( ) syntax structure (specified in Annex I) is present 

in the SPS RBSP syntax structure. sps_3d_extension_flag equal to 0 specifies that the sps_3d_extension( ) syntax structure 

is not present. When not present, the value of sps_3d_extension_flag is inferred to be equal to 0. 

sps_scc_extension_flag equal to 1 specifies that the sps_scc_extension( ) syntax structure is present in the SPS RBSP 

syntax structure. sps_scc_extension_flag equal to 0 specifies that this syntax structure is not present. When not present, the 

value of sps_scc_extension_flag is inferred to be equal to 0. 

sps_extension_4bits equal to 0 specifies that no sps_extension_data_flag syntax elements are present in the SPS RBSP 

syntax structure. When present, sps_extension_4bits shall be equal to 0 in bitstreams conforming to this version of this 

Specification. Values of sps_extension_4bits not equal to 0 are reserved for future use by ITU-T | ISO/IEC. Decoders shall 

allow the value of sps_extension_4bits to be not equal to 0 and shall ignore all sps_extension_data_flag syntax elements 

in an SPS NAL unit. When not present, the value of sps_extension_4bits is inferred to be equal to 0. 

sps_extension_data_flag may have any value. Its presence and value do not affect the decoding process specified in this 

version of this Specification. Decoders conforming to this version of this Specification shall ignore all 

sps_extension_data_flag syntax elements. 



 

  Rec. ITU-T H.265 v8 (08/2021) 81 

7.4.3.2.2 Sequence parameter set range extension semantics 

transform_skip_rotation_enabled_flag equal to 1 specifies that a rotation is applied to the residual data block for intra 

4x4 blocks coded using a transform skip operation. transform_skip_rotation_enabled_flag equal to 0 specifies that this 

rotation is not applied. When not present, the value of transform_skip_rotation_enabled_flag is inferred to be equal to 0. 

transform_skip_context_enabled_flag equal to 1 specifies that a particular context is used for the parsing of the 

sig_coeff_flag for transform blocks with a skipped transform. transform_skip_context_enabled_flag equal to 0 specifies 

that the presence or absence of transform skipping or a transform bypass for transform blocks is not used in the context 

selection for this flag. When not present, the value of transform_skip_context_enabled_flag is inferred to be equal to 0. 

implicit_rdpcm_enabled_flag equal to 1 specifies that the residual modification process for blocks using a transform 

bypass may be used for intra blocks in the CVS. implicit_rdpcm_enabled_flag equal to 0 specifies that the residual 

modification process is not used for intra blocks in the CVS. When not present, the value of implicit_rdpcm_enabled_flag 

is inferred to be equal to 0. 

explicit_rdpcm_enabled_flag equal to 1 specifies that the residual modification process for blocks using a transform 

bypass may be used for inter blocks in the CVS. explicit_rdpcm_enabled_flag equal to 0 specifies that the residual 

modification process is not used for inter blocks in the CVS. When not present, the value of explicit_rdpcm_enabled_flag 

is inferred to be equal to 0. 

extended_precision_processing_flag equal to 1 specifies that an extended dynamic range is used for transform 

coefficients and transform processing. extended_precision_processing_flag equal to 0 specifies that the extended dynamic 

range is not used. When not present, the value of extended_precision_processing_flag is inferred to be equal to 0. 

The variables CoeffMinY, CoeffMinC, CoeffMaxY and CoeffMaxC are derived as follows: 

CoeffMinY = ī( 1  <<  ( extended_precision_processing_flag ? Max( 15, BitDepthY + 6 ) : 15 ) ) (7-27) 

CoeffMinC = ī( 1  <<  ( extended_precision_processing_flag ? Max( 15, BitDepthC + 6 ) : 15 ) ) (7-28) 

CoeffMaxY = ( 1  <<  ( extended_precision_processing_flag ? Max( 15, BitDepthY + 6 ) : 15 ) ) ī 1 (7-29) 

CoeffMaxC = ( 1  <<  ( extended_precision_processing_flag ? Max( 15, BitDepthC + 6 ) : 15 ) ) ī 1 (7-30) 

intra_smoothing_disabled_flag equal to 1 specifies that the filtering process of neighbouring samples is unconditionally 

disabled for intra prediction. intra_smoothing_disabled_flag equal to 0 specifies that the filtering process of neighbouring 

samples is not disabled. When not present, the value of intra_smoothing_disabled_flag is inferred to be equal to 0. 

high_precision_offsets_enabled_flag equal to 1 specifies that weighted prediction offset values are signalled using a bit-

depth-dependent precision. high_precision_offsets_enabled_flag equal to 0 specifies that weighted prediction offset values 

are signalled with a precision equivalent to eight bit processing. 

The variables WpOffsetBdShiftY, WpOffsetBdShiftC, WpOffsetHalfRangeY and WpOffsetHalfRangeC are derived as 

follows: 

WpOffsetBdShiftY = high_precision_offsets_enabled_flag ? 0 : ( BitDepthY ī 8 ) (7-31) 

WpOffsetBdShiftC = high_precision_offsets_enabled_flag ? 0 : ( BitDepthC ī 8 ) (7-32) 

WpOffsetHalfRangeY = 1  <<  ( high_precision_offsets_enabled_flag ? ( BitDepthY ī 1 ) : 7 ) (7-33) 

WpOffsetHalfRangeC = 1  <<  ( high_precision_offsets_enabled_flag ? ( BitDepthC ī 1 ) : 7 ) (7-34) 

persistent_rice_adaptation_enabled_flag equal to 1 specifies that the Rice parameter derivation for the binarization of 

coeff_abs_level_remaining[ ] is initialized at the start of each sub-block using mode dependent statistics accumulated from 

previous sub-blocks. persistent_rice_adaptation_enabled_flag equal to 0 specifies that no previous sub-block state is used 

in Rice parameter derivation. When not present, the value of persistent_rice_adaptation_enabled_flag is inferred to be 

equal to 0. 

cabac_bypass_alignment_enabled_flag equal to 1 specifies that a context-based adaptive binary arithmetic coding 

(CABAC) alignment process is used prior to bypass decoding of the syntax elements coeff_sign_flag[ ] and 

coeff_abs_level_remaining[ ]. cabac_bypass_alignment_enabled_flag equal to 0 specifies that no CABAC alignment 

process is used prior to bypass decoding. When not present, the value of cabac_bypass_alignment_enabled_flag is inferred 

to be equal to 0. 

7.4.3.2.3 Sequence parameter set screen content coding extension semantics 

sps_curr_pic_ref_enabled_flag equal to 1 specifies that a picture in the CVS may be included in a reference picture list 

of a slice of the picture itself. sps_curr_pic_ref_enabled_flag equal to 0 specifies that a picture in the CVS is never included 



 

82 Rec. ITU-T H.265 v8 (08/2021) 

in a reference picture list of a slice of the picture itself. When not present, the value of sps_curr_pic_ref_enabled_flag is 

inferred to be equal to 0. 

palette_mode_enabled_flag equal to 1 specifies that the decoding process for palette mode may be used for intra blocks. 

palette_mode_enabled_flag equal to 0 specifies that the decoding process for palette mode is not applied. When not present, 

the value of palette_mode_enabled_flag is inferred to be equal to 0. 

palette_max_size specifies the maximum allowed palette size. When not present, the value of palette_max_size is inferred 

to be 0. 

delta_palette_max_predictor_size specifies the difference between the maximum allowed palette predictor size and the 

maximum allowed palette size. When not present, the value of delta_palette_max_predictor_size is inferred to be 0. The 

variable PaletteMaxPredictorSize is derived as follows: 

PaletteMaxPredictorSize = palette_max_size + delta_palette_max_predictor_size (7-35) 

It is a requirement of bitstream conformance that, when palette_max_size is equal to 0, the value of 

delta_palette_max_predictor_size shall be equal to 0. 

sps_palette_predictor_initializers_present_flag equal to 1 specifies that the sequence palette predictors are initialized 

using the sps_palette_predictor_initializers. sps_palette_predictor_initializers_present_flag equal to 0 specifies that the 

entries in the sequence palette predictor are initialized to 0. When not present, the value of 

sps_palette_predictor_initializers_present_flag is inferred to be equal to 0. 

It is a requirement of bitstream conformance that, when palette_max_size is equal to 0, the value of 

sps_palette_predictor_initializers_present_flag shall be equal to 0. 

sps_num_palette_predictor_initializers_minus1 plus 1 specifies the number of entries in the sequence palette predictor 

initializer. 

It is a requirement of bitstream conformance that the value of sps_num_palette_predictor_initializers_minus1 plus 1 shall 

be less than or equal to PaletteMaxPredictorSize. 

sps_palette_predictor_initializer[ comp ][  i ] specifies the value of the comp-th component of the i-th palette entry in the 

SPS that is used to initialize the array PredictorPaletteEntries. For values of i in the range of 0 to 

sps_num_palette_predictor_initializers_minus1, inclusive, the value of the sps_palette_predictor_initializer[ 0 ][  i ] shall 

be in the range of 0 to (1  <<  BitDepthY) ī 1, inclusive, and the values of sps_palette_predictor_initializer[ 1 ][  i ] and 

sps_palette_predictor_initializer[ 2 ][  i ] shall be in the range of 0 to (1  <<  BitDepthC) ī 1, inclusive. 

motion_vector_resolution_control_idc controls the presence and inference of the use_integer_mv_flag that specifies the 

resolution of motion vectors for inter prediction. The value of motion_vector_resolution_control_idc shall not be equal to 

3 in bitstreams conforming to this version of this Specification. The value of 3 for motion_vector_resolution_control_idc 

is reserved for future use by ITU-T | ISO/IEC. When not present, the value of motion_vector_resolution_control_idc is 

inferred to be equal to 0. 

intra_boundary_filtering_disabled_flag equal to 1 specifies that the intra boundary filtering process is unconditionally 

disabled for intra prediction. intra_boundary_filtering_disabled_flag equal to 0 specifies that the intra boundary filtering 

process may be used. When not present, the value of intra_boundary_filtering_disabled_flag is inferred to be equal to 0. 

7.4.3.3 Picture parameter set RBSP semantics 

7.4.3.3.1 General picture parameter set RBSP semantics 

pps_pic_parameter_set_id identifies the PPS for reference by other syntax elements. The value of 

pps_pic_parameter_set_id shall be in the range of 0 to 63, inclusive. 

pps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active SPS. The value of 

pps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

dependent_slice_segments_enabled_flag equal to 1 specifies the presence of the syntax element 

dependent_slice_segment_flag in the slice segment headers for coded pictures referring to the PPS. 

dependent_slice_segments_enabled_flag equal to 0 specifies the absence of the syntax element 

dependent_slice_segment_flag in the slice segment headers for coded pictures referring to the PPS. 

output_flag_present_flag equal to 1 indicates that the pic_output_flag syntax element is present in the associated slice 

headers. output_flag_present_flag equal to 0 indicates that the pic_output_flag syntax element is not present in the 

associated slice headers. 

num_extra_slice_header_bits specifies the number of extra slice header bits that are present in the slice header RBSP for 

coded pictures referring to the PPS. The value of num_extra_slice_header_bits shall be in the range of 0 to 2, inclusive, in 



 

  Rec. ITU-T H.265 v8 (08/2021) 83 

bitstreams conforming to this version of this Specification. Other values for num_extra_slice_header_bits are reserved for 

future use by ITU-T | ISO/IEC. However, decoders shall allow num_extra_slice_header_bits to have any value. 

sign_data_hiding_enabled_flag equal to 0 specifies that sign bit hiding is disabled. sign_data_hiding_enabled_flag equal 

to 1 specifies that sign bit hiding is enabled. 

cabac_init_present_flag equal to 1 specifies that cabac_init_flag is present in slice headers referring to the PPS. 

cabac_init_present_flag equal to 0 specifies that cabac_init_flag is not present in slice headers referring to the PPS. 

num_ref_idx_l0_default_active_minus1 specifies the inferred value of num_ref_idx_l0_active_minus1 for P and B 

slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l0_default_active_minus1 shall be in 

the range of 0 to 14, inclusive. 

num_ref_idx_l1_default_active_minus1 specifies the inferred value of num_ref_idx_l1_active_minus1 for B slices with 

num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l1_default_active_minus1 shall be in the range 

of 0 to 14, inclusive. 

init_qp_minus26 plus 26 specifies the initial value of SliceQpY for each slice referring to the PPS. The initial value of 

SliceQpY is modified at the slice segment layer when a non-zero value of slice_qp_delta is decoded. The value of 

init_qp_minus26 shall be in the range of ī( 26 + QpBdOffsetY ) to +25, inclusive. 

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded samples 

of neighbouring coding blocks coded using either intra or inter prediction modes. constrained_intra_pred_flag equal to 1 

specifies constrained intra prediction, in which case intra prediction only uses residual data and decoded samples from 

neighbouring coding blocks coded using intra prediction modes. 

NOTE 1 ï Encoders that operate in error-prone environments should be designed with consideration of the potential for error 

propagation caused by references to other pictures and references to areas within the current picture that use other pictures as 

references. 

transform_skip_enabled_flag equal to 1 specifies that transform_skip_flag may be present in the residual coding syntax. 

transform_skip_enabled_flag equal to 0 specifies that transform_skip_flag is not present in the residual coding syntax. 

cu_qp_delta_enabled_flag equal to 1 specifies that the diff_cu_qp_delta_depth syntax element is present in the PPS and 

that cu_qp_delta_abs may be present in the transform unit syntax and the palette syntax. cu_qp_delta_enabled_flag equal 

to 0 specifies that the diff_cu_qp_delta_depth syntax element is not present in the PPS and that cu_qp_delta_abs is not 

present in the transform unit syntax and the palette syntax. 

diff_cu_qp_delta_depth specifies the difference between the luma CTB size and the minimum luma coding block size of 

coding units that convey cu_qp_delta_abs and cu_qp_delta_sign_flag. The value of diff_cu_qp_delta_depth shall be in the 

range of 0 to log2_diff_max_min_luma_coding_block_size, inclusive. When not present, the value of 

diff_cu_qp_delta_depth is inferred to be equal to 0. 

The variable Log2MinCuQpDeltaSize is derived as follows: 

Log2MinCuQpDeltaSize = CtbLog2SizeY ī diff_cu_qp_delta_depth (7-36) 

pps_cb_qp_offset and pps_cr_qp_offset specify the offsets to the luma quantization parameter QpǋY used for deriving 

QpǋCb and QpǋCr, respectively. The values of pps_cb_qp_offset and pps_cr_qp_offset shall be in the range of ī12 to +12, 

inclusive. When ChromaArrayType is equal to 0, pps_cb_qp_offset and pps_cr_qp_offset are not used in the decoding 

process and decoders shall ignore their value. 

pps_slice_chroma_qp_offsets_present_flag equal to 1 indicates that the slice_cb_qp_offset and slice_cr_qp_offset 

syntax elements are present in the associated slice headers. pps_slice_chroma_qp_offsets_present_flag equal to 0 indicates 

that these syntax elements are not present in the associated slice headers. When ChromaArrayType is equal to 0, 

pps_slice_chroma_qp_offsets_present_flag shall be equal to 0. 

weighted_pred_flag equal to 0 specifies that weighted prediction is not applied to P slices. weighted_pred_flag equal to 1 

specifies that weighted prediction is applied to P slices. 

weighted_bipred_flag equal to 0 specifies that the default weighted prediction is applied to B slices. weighted_bipred_flag 

equal to 1 specifies that weighted prediction is applied to B slices. 

transquant_bypass_enabled_flag equal to 1 specifies that cu_transquant_bypass_flag is present. 

transquant_bypass_enabled_flag equal to 0 specifies that cu_transquant_bypass_flag is not present. 

tiles_enabled_flag equal to 1 specifies that there is more than one tile in each picture referring to the PPS. 

tiles_enabled_flag equal to 0 specifies that there is only one tile in each picture referring to the PPS. 

It is a requirement of bitstream conformance that the value of tiles_enabled_flag shall be the same for all PPSs that are 

activated within a CVS. 



 

84 Rec. ITU-T H.265 v8 (08/2021) 

entropy_coding_sync_enabled_flag equal to 1 specifies that a specific synchronization process for context variables, and 

when applicable, Rice parameter initialization states and palette predictor variables, is invoked before decoding the CTU 

which includes the first CTB of a row of CTBs in each tile in each picture referring to the PPS, and a specific storage 

process for context variables, and when applicable, Rice parameter initialization states and palette predictor variables, is 

invoked after decoding the CTU which includes the second CTB of a row of CTBs in each tile in each picture referring to 

the PPS. entropy_coding_sync_enabled_flag equal to 0 specifies that no specific synchronization process for context 

variables, and when applicable, Rice parameter initialization states and palette predictor variables, is required to be invoked 

before decoding the CTU which includes the first CTB of a row of CTBs in each tile in each picture referring to the PPS, 

and no specific storage process for context variables, and when applicable, Rice parameter initialization states and palette 

predictor variables, is required to be invoked after decoding the CTU which includes the second CTB of a row of CTBs in 

each tile in each picture referring to the PPS. 

It is a requirement of bitstream conformance that the value of entropy_coding_sync_enabled_flag shall be the same for all 

PPSs that are activated within a CVS. 

When entropy_coding_sync_enabled_flag is equal to 1 and the first CTB in a slice is not the first CTB of a row of CTBs 

in a tile, it is a requirement of bitstream conformance that the last CTB in the slice shall belong to the same row of CTBs 

as the first CTB in the slice. 

When entropy_coding_sync_enabled_flag is equal to 1 and the first CTB in a slice segment is not the first CTB of a row 

of CTBs in a tile, it is a requirement of bitstream conformance that the last CTB in the slice segment shall belong to the 

same row of CTBs as the first CTB in the slice segment. 

num_tile_columns_minus1 plus 1 specifies the number of tile columns partitioning the picture. 

num_tile_columns_minus1 shall be in the range of 0 to PicWidthInCtbsY ī 1, inclusive. When not present, the value of 

num_tile_columns_minus1 is inferred to be equal to 0. 

num_tile_rows_minus1 plus 1 specifies the number of tile rows partitioning the picture. num_tile_rows_minus1 shall be 

in the range of 0 to PicHeightInCtbsY ī 1, inclusive. When not present, the value of num_tile_rows_minus1 is inferred to 

be equal to 0. 

When tiles_enabled_flag is equal to 1, num_tile_columns_minus1 and num_tile_rows_minus1 shall not be both equal to 0. 

uniform_spacing_flag equal to 1 specifies that tile column boundaries and likewise tile row boundaries are distributed 

uniformly across the picture. uniform_spacing_flag equal to 0 specifies that tile column boundaries and likewise tile row 

boundaries are not distributed uniformly across the picture but signalled explicitly using the syntax elements 

column_width_minus1[ i ] and row_height_minus1[ i ]. When not present, the value of uniform_spacing_flag is inferred 

to be equal to 1. 

column_width_minus1[ i ] plus 1 specifies the width of the i-th tile column in units of CTBs. 

row_height_minus1[ i ] plus 1 specifies the height of the i-th tile row in units of CTBs. 

The following variables are derived by invoking the CTB raster and tile scanning conversion process as specified in 

clause 6.5.1: 

ï The list CtbAddrRsToTs[ ctbAddrRs ] for ctbAddrRs ranging from 0 to PicSizeInCtbsY ī 1, inclusive, specifying the 

conversion from a CTB address in the CTB raster scan of a picture to a CTB address in the tile scan, 

ï the list CtbAddrTsToRs[ ctbAddrTs ] for ctbAddrTs ranging from 0 to PicSizeInCtbsY ī 1, inclusive, specifying the 

conversion from a CTB address in the tile scan to a CTB address in the CTB raster scan of a picture, 

ï the list TileId[ ctbAddrTs ] for ctbAddrTs ranging from 0 to PicSizeInCtbsY ī 1, inclusive, specifying the conversion 

from a CTB address in tile scan to a tile ID, 

ï the list ColumnWidthInLumaSamples[ i ] for i ranging from 0 to num_tile_columns_minus1, inclusive, specifying 

the width of the i-th tile column in units of luma samples, 

ï the list RowHeightInLumaSamples[ j ] for j ranging from 0 to num_tile_rows_minus1, inclusive, specifying the height 

of the j-th tile row in units of luma samples. 

The values of ColumnWidthInLumaSamples[ i ] for i ranging from 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] for j ranging from 0 to num_tile_rows_minus1, inclusive, shall all be greater than 0. 

The array MinTbAddrZs with elements MinTbAddrZs[ x ][  y ] for x ranging from 0 to 

( PicWidthInCtbsY  <<  ( CtbLog2SizeY ī MinTbLog2SizeY ) ) ī 1, inclusive, and y ranging from 0 to 

( PicHeightInCtbsY  <<  ( CtbLog2SizeY ī MinTbLog2SizeY ) ) ī 1, inclusive, specifying the conversion from a location 

( x, y ) in units of minimum transform blocks to a transform block address in z-scan order, is derived by invoking the z-

scan order array initialization process as specified in clause 6.5.2. 

loop_filter_across_tiles_enabled_flag equal to 1 specifies that in-loop filtering operations may be performed across tile 

boundaries in pictures referring to the PPS. loop_filter_across_tiles_enabled_flag equal to 0 specifies that in-loop filtering 



 

  Rec. ITU-T H.265 v8 (08/2021) 85 

operations are not performed across tile boundaries in pictures referring to the PPS. The in-loop filtering operations include 

the deblocking filter and sample adaptive offset filter operations. When not present, the value of 

loop_filter_across_tiles_enabled_flag is inferred to be equal to 1. 

pps_loop_filter_across_slices_enabled_flag equal to 1 specifies that in-loop filtering operations may be performed across 

left and upper boundaries of slices referring to the PPS. pps_loop_filter_across_slices_enabled_flag equal to 0 specifies 

that in-loop filtering operations are not performed across left and upper boundaries of slices referring to the PPS. The in-

loop filtering operations include the deblocking filter and sample adaptive offset filter operations. 

NOTE 2 ï Loop filtering across slice boundaries can be enabled while loop filtering across tile boundaries is disabled and vice versa. 

deblocking_filter_control_present_flag equal to 1 specifies the presence of deblocking filter control syntax elements in 

the PPS. deblocking_filter_control_present_flag equal to 0 specifies the absence of deblocking filter control syntax 

elements in the PPS. 

deblocking_filter_override_enabled_flag equal to 1 specifies the presence of deblocking_filter_override_flag in the slice 

headers for pictures referring to the PPS. deblocking_filter_override_enabled_flag equal to 0 specifies the absence of 

deblocking_filter_override_flag in the slice headers for pictures referring to the PPS. When not present, the value of 

deblocking_filter_override_enabled_flag is inferred to be equal to 0. 

pps_deblocking_filter_disabled_flag equal to 1 specifies that the operation of deblocking filter is not applied for slices 

referring to the PPS in which slice_deblocking_filter_disabled_flag is not present. pps_deblocking_filter_disabled_flag 

equal to 0 specifies that the operation of the deblocking filter is applied for slices referring to the PPS in which 

slice_deblocking_filter_disabled_flag is not present. When not present, the value of pps_deblocking_filter_disabled_flag 

is inferred to be equal to 0. 

pps_beta_offset_div2 and pps_tc_offset_div2 specify the default deblocking parameter offsets for ɓ and tC (divided by 2) 

that are applied for slices referring to the PPS, unless the default deblocking parameter offsets are overridden by the 

deblocking parameter offsets present in the slice headers of the slices referring to the PPS. The values of 

pps_beta_offset_div2 and pps_tc_offset_div2 shall both be in the range of ī6 to 6, inclusive. When not present, the value 

of pps_beta_offset_div2 and pps_tc_offset_div2 are inferred to be equal to 0. 

pps_scaling_list_data_present_flag equal to 1 specifies that the scaling list data used for the pictures referring to the PPS 

are derived based on the scaling lists specified by the active SPS and the scaling lists specified by the PPS. 

pps_scaling_list_data_present_flag equal to 0 specifies that the scaling list data used for the pictures referring to the PPS 

are inferred to be equal to those specified by the active SPS. When scaling_list_enabled_flag is equal to 0, the value of 

pps_scaling_list_data_present_flag shall be equal to 0. When scaling_list_enabled_flag is equal to 1, 

sps_scaling_list_data_present_flag is equal to 0 and pps_scaling_list_data_present_flag is equal to 0, the default scaling 

list data are used to derive the array ScalingFactor as described in the scaling list data semantics as specified in clause 7.4.5. 

lists_modification_present_flag equal to 1 specifies that the syntax structure ref_pic_lists_modification( ) is present in 

the slice segment header. lists_modification_present_flag equal to 0 specifies that the syntax structure 

ref_pic_lists_modification( ) is not present in the slice segment header. 

log2_parallel_merge_level_minus2 plus 2 specifies the value of the variable Log2ParMrgLevel, which is used in the 

derivation process for luma motion vectors for merge mode as specified in clause 8.5.3.2.2 and the derivation process for 

spatial merging candidates as specified in clause 8.5.3.2.3. The value of log2_parallel_merge_level_minus2 shall be in the 

range of 0 to CtbLog2SizeY ī 2, inclusive. 

The variable Log2ParMrgLevel is derived as follows: 

Log2ParMrgLevel = log2_parallel_merge_level_minus2 + 2 (7-37) 

NOTE 3 ï The value of Log2ParMrgLevel indicates the built-in capability of parallel derivation of the merging candidate lists. For 

example, when Log2ParMrgLevel is equal to 6, the merging candidate lists for all the prediction units (PUs) and coding units (CUs) 

contained in a 64x64 block can be derived in parallel. 

slice_segment_header_extension_present_flag equal to 0 specifies that no slice segment header extension syntax 

elements are present in the slice segment headers for coded pictures referring to the PPS. 

slice_segment_header_extension_present_flag equal to 1 specifies that slice segment header extension syntax elements are 

present in the slice segment headers for coded pictures referring to the PPS. 

pps_extension_present_flag equal to 1 specifies that the syntax elements pps_range_extension_flag, 

pps_multilayer_extension_flag, pps_3d_extension_flag, pps_scc_extension_flag, and pps_extension_4bits are present in 

the picture parameter set RBSP syntax structure. pps_extension_present_flag equal to 0 specifies that these syntax elements 

are not present. 



 

86 Rec. ITU-T H.265 v8 (08/2021) 

pps_range_extension_flag equal to 1 specifies that the pps_range_extension( ) syntax structure is present in the PPS 

RBSP syntax structure. pps_range_extension_flag equal to 0 specifies that this syntax structure is not present. When not 

present, the value of pps_range_extension_flag is inferred to be equal to 0. 

pps_multilayer_extension_flag equal to 1 specifies that the pps_multilayer_extension( ) syntax structure is present in the 

PPS RBSP syntax structure. pps_multilayer_extension_flag equal to 0 specifies that the pps_multilayer_extension( ) syntax 

structure is not present. When not present, the value of pps_multilayer_extension_flag is inferred to be equal to 0. 

pps_3d_extension_flag equal to 1 specifies that the pps_3d_extension( ) syntax structure (specified in Annex I) is present 

in the PPS RBSP syntax structure. pps_3d_extension_flag equal to 0 specifies that the pps_3d_extension( ) syntax structure 

is not present. When not present, the value of pps_3d_extension_flag is inferred to be equal to 0. 

pps_scc_extension_flag equal to 1 specifies that the pps_scc_extension( ) syntax structure is present in the PPS RBSP 

syntax structure. pps_scc_extension_flag equal to 0 specifies that this syntax structure is not present. When not present, 

the value of pps_scc_extension_flag is inferred to be equal to 0. 

pps_extension_4bits equal to 0 specifies that no pps_extension_data_flag syntax elements are present in the PPS RBSP 

syntax structure. When present, pps_extension_4bits shall be equal to 0 in bitstreams conforming to this version of this 

Specification. Values of pps_extension_4bits not equal to 0 are reserved for future use by ITU-T | ISO/IEC. Decoders shall 

allow the value of pps_extension_4bits to be not equal to 0 and shall ignore all pps_extension_data_flag syntax elements 

in a PPS NAL unit. When not present, the value of pps_extension_4bits is inferred to be equal to 0. 

pps_extension_data_flag may have any value. Its presence and value do not affect the decoding process specified in this 

version of this Specification. Decoders conforming to this version of this Specification shall ignore all 

pps_extension_data_flag syntax elements. 

7.4.3.3.2 Picture parameter set range extension semantics 

log2_max_transform_skip_block_size_minus2 plus 2 specifies the maximum transform block size for which 

transform_skip_flag may be present in coded pictures referring to the PPS. When not present, the value of 

log2_max_transform_skip_block_size_minus2 is inferred to be equal to 0. When present, the value of 

log2_max_transform_skip_block_size_minus2 shall be less than or equal to MaxTbLog2SizeY ī 2. 

The variable Log2MaxTransformSkipSize is derived as follows: 

Log2MaxTransformSkipSize = log2_max_transform_skip_block_size_minus2 + 2 (7-38) 

cross_component_prediction_enabled_flag equal to 1 specifies that log2_res_scale_abs_plus1 and res_scale_sign_flag 

may be present in the transform unit syntax for pictures referring to the PPS. cross_component_prediction_enabled_flag 

equal to 0 specifies that log2_res_scale_abs_plus1 and res_scale_sign_flag are not present for pictures referring to the PPS. 

When not present, the value of cross_component_prediction_enabled_flag is inferred to be equal to 0. When 

ChromaArrayType is not equal to 3, it is a requirement of bitstream conformance that the value of 

cross_component_prediction_enabled_flag shall be equal to 0. 

chroma_qp_offset_list_enabled_flag equal to 1 specifies that the cu_chroma_qp_offset_flag may be present in the 

transform unit syntax. chroma_qp_offset_list_enabled_flag equal to 0 specifies that the cu_chroma_qp_offset_flag is not 

present in the transform unit syntax. When ChromaArrayType is equal to 0, it is a requirement of bitstream conformance 

that the value of chroma_qp_offset_list_enabled_flag shall be equal to 0. 

diff_cu_chroma_qp_offset_depth specifies the difference between the luma CTB size and the minimum luma coding 

block size of coding units that convey cu_chroma_qp_offset_flag. The value of diff_cu_chroma_qp_offset_depth shall be 

in the range of 0 to log2_diff_max_min_luma_coding_block_size, inclusive. 

The variable Log2MinCuChromaQpOffsetSize is derived as follows: 

Log2MinCuChromaQpOffsetSize = CtbLog2SizeY ī diff_cu_chroma_qp_offset_depth (7-39) 

chroma_qp_offset_list_len_minus1 plus 1 specifies the number of cb_qp_offset_list[ i ] and cr_qp_offset_list[ i ] syntax 

elements that are present in the PPS. The value of chroma_qp_offset_list_len_minus1 shall be in the range of 0 to 5, 

inclusive. 

cb_qp_offset_list[ i ] and cr_qp_offset_list[ i ] specify offsets used in the derivation of QpǋCb and QpǋCr, respectively. The 

values of cb_qp_offset_list[ i ] and cr_qp_offset_list[ i ] shall be in the range of ī12 to +12, inclusive. 

log2_sao_offset_scale_luma is the base 2 logarithm of the scaling parameter that is used to scale sample adaptive offset 

(SAO) offset values for luma samples. The value of log2_sao_offset_scale_luma shall be in the range of 0 to 

Max( 0, BitDepthY ī 10 ), inclusive. When not present, the value of log2_sao_offset_scale_luma is inferred to be equal to 

0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 87 

log2_sao_offset_scale_chroma is the base 2 logarithm of the scaling parameter that is used to scale SAO offset values for 

chroma samples. The value of log2_sao_offset_scale_chroma shall be in the range of 0 to Max( 0, BitDepthC ī 10 ), 

inclusive. When not present, the value of log2_sao_offset_scale_chroma is inferred to be equal to 0. 

7.4.3.3.3 Picture parameter set screen content coding extension semantics 

pps_curr_pic_ref_enabled_flag equal to 1 specifies that a picture referring to the PPS may be included in a reference 

picture list of a slice of the picture itself. pps_curr_pic_ref_enabled_flag equal to 0 specifies that a picture referring to the 

PPS is never included in a reference picture list of a slice of the picture itself. When not present, the value of 

pps_curr_pic_ref_enabled_flag is inferred to be equal to 0. 

It is a requirement of bitstream conformance that when sps_curr_pic_ref_enabled_flag is equal to 0, the value of 

pps_curr_pic_ref_enabled_flag shall be equal to 0. 

The variable TwoVersionsOfCurrDecPicFlag is derived as follows: 

TwoVersionsOfCurrDecPicFlag = pps_curr_pic_ref_enabled_flag  &&  

 ( sample_adaptive_offset_enabled_flag  | |  !pps_deblocking_filter_disabled_flag  | | (7-40) 

 deblocking_filter_override_enabled_flag ) 

When sps_max_dec_pic_buffering_minus1[ TemporalId ] is equal to 0, the value of TwoVersionsOfCurrDecPicFlag shall 

be equal to 0. 

residual_adaptive_colour_transform_enabled_flag equal to 1 specifies that an adaptive colour transform may be 

applied to the residual in the decoding process. residual_adaptive_colour_transform_enabled_flag equal to 0 specifies that 

adaptive colour transform is not applied to the residual. When not present, the value of 

residual_adaptive_colour_transform_enabled_flag is inferred to be equal to 0. 

When ChromaArrayType is not equal to 3, residual_adaptive_colour_transform_enabled_flag shall be equal to 0. 

pps_slice_act_qp_offsets_present_flag equal to 1 specifies that slice_act_y_qp_offset, slice_act_cb_qp_offset, 

slice_act_cr_qp_offset are present in the slice header. pps_slice_act_qp_offsets_present_flag equal to 0 specifies that 

slice_act_y_qp_offset, slice_act_cb_qp_offset, slice_act_cr_qp_offset are not present in the slice header. When not 

present, the value of pps_slice_act_qp_offsets_present_flag is inferred to be equal to 0. 

pps_act_y_qp_offset_plus5, pps_act_cb_qp_offset_plus5 and pps_act_cr_qp_offset_plus3 are used to determine the 

offsets that are applied to the quantization parameter values qP derived in clause 8.6.2 for the luma, Cb and Cr components, 

respectively, when tu_residual_act_flag[ xTbY ][  yTbY ] is equal to 1. When not present, the values of 

pps_act_y_qp_offset_plus5, pps_act_cb_qp_offset_plus5 and pps_act_cr_qp_offset_plus3 are inferred to be equal to 0. 

The variable PpsActQpOffsetY is set equal to pps_act_y_qp_offset_plus5 ī 5. 

The variable PpsActQpOffsetCb is set equal to pps_act_cb_qp_offset_plus5 ī 5. 

The variable PpsActQpOffsetCr is set equal to pps_act_cb_qp_offset_plus3 ī 3. 

NOTE ï The constant offset values of 5, 5, and 3 above are applied because the adaptive colour transformation that is applied to the 

residual when tu_residual_act_flag[ xTbY ][  yTbY ] is equal to 1 is not an orthonormal transformation. 

It is a requirement of bitstream conformance that the values of PpsActQpOffsetY, PpsActQpOffsetCb, and 

PpsActQpOffsetCr shall be in the range of ī12 to +12, inclusive. 

pps_palette_predictor_initializers_present_flag equal to 1 specifies that the palette predictor initializers used for the 

pictures referring to the PPS are derived based on the palette predictor initializers specified by the PPS. 

pps_palette_predictor_initializer_flag equal to 0 specifies that the palette predictor initializers used for the pictures 

referring to the PPS are inferred to be equal to those specified by the active SPS. When not present, the value of 

pps_palette_predictor_initializers_present_flag is inferred to be equal to 0. 

It is a requirement of bitstream conformance that the value of pps_palette_predictor_initializers_present_flag shall be equal 

to 0 when either palette_max_size is equal to 0 or palette_mode_enabled_flag is equal to 0. 

pps_num_palette_predictor_initializers specifies the number of entries in the picture palette predictor initializer. 

It is a requirement of bitstream conformance that the value of pps_num_palette_predictor_initializers shall be less than or 

equal to PaletteMaxPredictorSize. 

monochrome_palette_flag equal to 1 specifies that the pictures that refer to this PPS are monochrome. 

monochrome_palette_flag equal to 0 specifies that the pictures that refer to this PPS have multiple components. 

It is a requirement of bitstream conformance that the value of the monochrome_palette_flag shall be equal to 

( chroma_format_idc  = =  0 ). 



 

88 Rec. ITU-T H.265 v8 (08/2021) 

luma_bit_depth_entry_minus8 plus 8 specifies the bit depth of the luma component of the entries of the palette predictor 

initializer. It is a requirement of bitstream conformance that the value of luma_bit_depth_entry_minus8 shall be equal to 

the value of bit_depth_luma_minus8. 

chroma_bit_depth_entry_minus8 plus 8 specifies the bit depth of the chroma components of the entries of the palette 

predictor initializer. It is a requirement of bitstream conformance that the value of chroma_bit_depth_entry_minus8 shall 

be equal to the value of bit_depth_chroma_minus8. 

pps_palette_predictor_initializer[ comp ][  i ] specifies the value of the comp-th component of the i-th palette entry in 

the PPS that is used to initialize the array PredictorPaletteEntries. For values of i in the range of 0 to 

pps_num_palette_predictor_initializers ī 1, inclusive, the number of bits used to represent 

pps_palette_predictor_initializer[ 0 ][  i ] is luma_bit_depth_entry_minus8 + 8, and the number of bits used to represent 

pps_palette_predictor_initializer[ 1 ][  i ] and pps_palette_predictor_initializer[ 2 ][  i ] is chroma_bit_depth_entry_

minus8 + 8. 

7.4.3.4 Supplemental enhancement information RBSP semantics 

Supplemental enhancement information (SEI) contains information that is not necessary to decode the samples of coded 

pictures from VCL NAL units. An SEI RBSP contains one or more SEI messages. 

7.4.3.5 Access unit delimiter RBSP semantics 

The access unit delimiter may be used to indicate the type of slices present in the coded pictures in the access unit containing 

the access unit delimiter NAL unit and to simplify the detection of the boundary between access units. There is no 

normative decoding process associated with the access unit delimiter. 

pic_type indicates that the slice_type values for all slices of the coded pictures in the access unit containing the access unit 

delimiter NAL unit are members of the set listed in Table 7-2 for the given value of pic_type. The value of pic_type shall 

be equal to 0, 1 or 2 in bitstreams conforming to this version of this Specification. Other values of pic_type are reserved 

for future use by ITU-T | ISO/IEC. Decoders conforming to this version of this Specification shall ignore reserved values 

of pic_type. 

Table 7-2 ï Interpretation of pic_type 

pic_type slice_type values that may be present in the coded picture 

0 I 

1 P, I 

2 B, P, I 

 

7.4.3.6 End of sequence RBSP semantics 

When included in a NAL unit with nuh_layer_id equal to 0, the end of sequence RBSP specifies that the current access 

unit is the last access unit in the coded video sequence in decoding order and the next subsequent access unit in the bitstream 

in decoding order (if any) is an IRAP access unit with NoRaslOutputFlag equal to 1. The syntax content of the SODB and 

RBSP for the end of sequence RBSP are empty. 

7.4.3.7 End of bitstream RBSP semantics 

The end of bitstream RBSP indicates that no additional NAL units are present in the bitstream that are subsequent to the 

end of bitstream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of bitstream RBSP are 

empty. 

NOTE ï When an elementary stream contains more than one bitstream, the last NAL unit of the last access unit of a bitstream must 

contain an end of bitstream NAL unit and the first access unit of the subsequent bitstream must be an IRAP access unit. This IRAP 

access unit may be a CRA, BLA or IDR access unit. 

7.4.3.8 Filler data RBSP semantics 

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for a 

filler data RBSP. 

ff_byte is a byte equal to 0xFF. 

7.4.3.9 Slice segment layer RBSP semantics 

The slice segment layer RBSP consists of a slice segment header and slice segment data. 



 

  Rec. ITU-T H.265 v8 (08/2021) 89 

7.4.3.10 RBSP slice segment trailing bits semantics 

cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000. 

Let NumBytesInVclNalUnits be the sum of the values of NumBytesInNalUnit for all VCL NAL units of a coded picture. 

Let BinCountsInNalUnits be the number of times that the parsing process function DecodeBin( ), specified in 

clause 9.3.4.3, is invoked to decode the contents of all VCL NAL units of a coded picture. 

Let the variable RawMinCuBits be derived as follows: 

RawMinCuBits = MinCbSizeY *  MinCbSizeY *  

    ( BitDepthY + 2 * BitDepthC / ( SubWidthC * SubHeightC ) ) (7-41) 

The value of BinCountsInNalUnits shall be less than or equal to ( 32 ÷ 3 ) *  NumBytesInVclNalUnits + 

( RawMinCuBits *  PicSizeInMinCbsY ) · 32. 

NOTE ï The constraint on the maximum number of bins resulting from decoding the contents of the coded slice segment NAL units 

can be met by inserting a number of cabac_zero_word syntax elements to increase the value of NumBytesInVclNalUnits. Each 

cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit 

contents that result in requiring inclusion of an emulation_prevention_three_byte for each cabac_zero_word). 

7.4.3.11 RBSP trailing bits semantics 

rbsp_stop_one_bit shall be equal to 1. 

rbsp_alignment_zero_bit shall be equal to 0. 

7.4.3.12 Byte alignment semantics 

alignment_bit_equal_to_one shall be equal to 1. 

alignment_bit_equal_to_zero shall be equal to 0. 

7.4.4 Profile, tier and level semantics 

general_profile_space specifies the context for the interpretation of general_profile_idc and 

general_profile_compatibility_flag[ j ] for all values of j in the range of 0 to 31, inclusive. The value of 

general_profile_space shall be equal to 0 in bitstreams conforming to this version of this Specification. Other values for 

general_profile_space are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the CVS when 

general_profile_space is not equal to 0. 

general_tier_flag specifies the tier context for the interpretation of general_level_idc as specified in Annex A. 

general_profile_idc, when general_profile_space is equal to 0, indicates a profile to which the CVS conforms as specified 

in Annex A. Bitstreams shall not contain values of general_profile_idc other than those specified in Annex A. Other values 

of general_profile_idc are reserved for future use by ITU-T | ISO/IEC. 

general_profile_compatibility_flag[ j ] equal to 1, when general_profile_space is equal to 0, indicates that the CVS 

conforms to the profile indicated by general_profile_idc equal to j as specified in Annex A. When general_profile_space 

is equal to 0, general_profile_compatibility_flag[ general_profile_idc ] shall be equal to 1. The value of 

general_profile_compatibility_flag[  j ] shall be equal to 0 for any value of j that is not specified as an allowed value of 

general_profile_idc in Annex A. 

general_progressive_source_flag and general_interlaced_source_flag are interpreted as follows: 

ï If general_progressive_source_flag is equal to 1 and general_interlaced_source_flag is equal to 0, the source scan 

type of the pictures in the CVS should be interpreted as progressive only. 

ï Otherwise, if general_progressive_source_flag is equal to 0 and general_interlaced_source_flag is equal to 1, the 

source scan type of the pictures in the CVS should be interpreted as interlaced only. 

ï Otherwise, if general_progressive_source_flag is equal to 0 and general_interlaced_source_flag is equal to 0, the 

source scan type of the pictures in the CVS should be interpreted as unknown or unspecified. 

ï Otherwise (general_progressive_source_flag is equal to 1 and general_interlaced_source_flag is equal to 1), the 

source scan type of each picture in the CVS is indicated at the picture level using the syntax element source_scan_type 

in a picture timing SEI message. 

NOTE 1 ï Decoders may ignore the values of general_progressive_source_flag and general_interlaced_source_flag for purposes 

other than determining the value to be inferred for frame_field_info_present_flag when vui_parameters_present_flag is equal to 0, 

as there are no other decoding process requirements associated with the values of these flags. Moreover, the actual source scan type 

of the pictures is outside the scope of this Specification and the method by which the encoder selects the values of 

general_progressive_source_flag and general_interlaced_source_flag is unspecified. 



 

90 Rec. ITU-T H.265 v8 (08/2021) 

general_non_packed_constraint_flag equal to 1 specifies that there are no frame packing arrangement SEI messages, 

segmented rectangular frame packing arrangement SEI messages, equirectangular projection SEI messages, or cubemap 

projection SEI messages present in the CVS. general_non_packed_constraint_flag equal to 0 indicates that there may or 

may not be one or more frame packing arrangement SEI messages, segmented rectangular frame packing arrangement SEI 

messages, equirectangular projection SEI messages, or cubemap projection SEI messages present in the CVS. 

NOTE 2 ï Decoders may ignore the value of general_non_packed_constraint_flag, as there are no decoding process requirements 

associated with the presence or interpretation of frame packing arrangement SEI messages, segmented rectangular frame packing 

arrangement SEI messages, equirectangular projection SEI messages, or cubemap projection SEI messages. 

general_frame_only_constraint_flag equal to 1 specifies that field_seq_flag is equal to 0. 

general_frame_only_constraint_flag equal to 0 indicates that field_seq_flag may or may not be equal to 0. 

NOTE 3 ï Decoders may ignore the value of general_frame_only_constraint_flag, as there are no decoding process requirements 

associated with the value of field_seq_flag. 

NOTE 4 ï When general_progressive_source_flag is equal to 1, general_frame_only_constraint_flag may or may not be equal to 1. 

general_max_12bit_constraint_flag, general_max_10bit_constraint_flag, general_max_8bit_constraint_flag, 

general_max_422chroma_constraint_flag, general_max_420chroma_constraint_flag, general_max_monochrome_

constraint_flag, general_intra_constraint_flag, general_one_picture_only_constraint_flag general_lower_

bit_rate_constraint_flag, and general_max_14bit_constraint_flag, when present, have semantics specified in Annex A 

when the profile indicated by general_profile_idc or general_profile_compatibility_flag[  j ] is a profile specified in 

Annex A. 

general_reserved_zero_33bits, when present, shall be equal to 0 in bitstreams conforming to this version of this 

Specification. Other values for general_reserved_zero_33bits are reserved for future use by ITU-T | ISO/IEC. Decoders 

shall ignore the value of general_reserved_zero_33bits. 

general_reserved_zero_34bits, when present, shall be equal to 0 in bitstreams conforming to this version of this 

Specification. Other values for general_reserved_zero_34bits are reserved for future use by ITU-T | ISO/IEC. Decoders 

shall ignore the value of general_reserved_zero_34bits. 

general_reserved_zero_7bits, when present, shall be equal to 0 in bitstreams conforming to this version of this 

Specification. Other values for general_reserved_zero_7bits are reserved for future use by ITU-T | ISO/IEC. Decoders 

shall ignore the value of general_reserved_zero_7bits. 

general_reserved_zero_35bits, when present, shall be equal to 0 in bitstreams conforming to this version of this 

Specification. Other values for general_reserved_zero_35bits are reserved for future use by ITU-T | ISO/IEC. Decoders 

shall ignore the value of general_reserved_zero_35bits. 

general_reserved_zero_43bits, when present, shall be equal to 0 in bitstreams conforming to this version of this 

Specification. Other values for general_reserved_zero_43bits are reserved for future use by ITU-T | ISO/IEC. Decoders 

shall ignore the value of general_reserved_zero_43bits. 

general_inbld_flag equal to 1 specifies that the INBLD capability as specified in Annex F is required for decoding of the 

layer to which the profile_tier_level( ) syntax structure applies. general_inbld_flag equal to 0 specifies that the INBLD 

capability as specified in Annex F is not required for decoding of the layer to which the profile_tier_level( ) syntax structure 

applies. When profilePresentFlag is equal to 1, general_profile_idc is not equal to 9 or 11 and is not in the range of 1 to 5, 

inclusive, general_profile_compatibility_flag[ 9 ] is not equal to 1, general_profile_compatibility_flag[ 11 ] is not equal to 

1, and general_profile_compatibility_flag[ j ] is not equal to 1 for any value of j in the range of 1 to 5, inclusive, the value 

of general_inbld_flag is inferred to be equal to 0. 

general_reserved_zero_bit, when present, shall be equal to 0 in bitstreams conforming to this version of this 

Specification. The value 1 for general_reserved_zero_1bit is reserved for future use by ITU-T | ISO/IEC. Decoders shall 

ignore the value of general_reserved_zero_bit. 

general_level_idc indicates a level to which the CVS conforms as specified in Annex A. Bitstreams shall not contain 

values of general_level_idc other than those specified in Annex A. Other values of general_level_idc are reserved for 

future use by ITU-T | ISO/IEC. 

NOTE 5 ï A greater value of general_level_idc indicates a higher level. The maximum level signalled in the VPS for a CVS may 

be higher than the level signalled in the SPS for the same CVS. 

NOTE 6 ï When the coded video sequence conforms to multiple profiles, general_profile_idc should indicate the profile that 

provides the preferred decoded result or the preferred bitstream identification, as determined by the encoder (in a manner not 

specified in this Specification). 

NOTE 7 ï The syntax elements general_reserved_zero_33bits, general_reserved_zero_34bits and general_reserved_zero_43bits 

may be used in future versions of this Specification to indicate further constraints on the bitstream (e.g., that a particular syntax 

combination that would otherwise be permitted by the indicated values of general_profile_compatibility_flag[  j ], is not used). 

sub_layer_profile_present_flag[ i ] equal to 1, specifies that profile information is present in the profile_tier_level( ) 

syntax structure for the sub-layer representation with TemporalId equal to i. sub_layer_profile_present_flag[ i ] equal to 0 



 

  Rec. ITU-T H.265 v8 (08/2021) 91 

specifies that profile information is not present in the profile_tier_level( ) syntax structure for the sub-layer representation 

with TemporalId equal to i. When profilePresentFlag is equal to 0, sub_layer_profile_present_flag[ i ] shall be equal to 0. 

sub_layer_level_present_flag[ i ] equal to 1 specifies that level information is present in the profile_tier_level( ) syntax 

structure for the sub-layer representation with TemporalId equal to i. sub_layer_level_present_flag[ i ] equal to 0 specifies 

that level information is not present in the profile_tier_level( ) syntax structure for the sub-layer representation with 

TemporalId equal to i. 

reserved_zero_2bits[ i ] shall be equal to 0 in bitstreams conforming to this version of this Specification. Other values for 

reserved_zero_2bits[ i ] are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the value of 

reserved_zero_2bits[ i ]. 

Each of the following syntax elements: 

ï sub_layer_profile_space[ i ], 

ï sub_layer_tier_flag[ i ], 

ï sub_layer_profile_idc[ i ], 

ï sub_layer_profile_compatibility_flag[ i ][ j ], 

ï sub_layer_progressive_source_flag[ i ], 

ï sub_layer_interlaced_source_flag[ i ], 

ï sub_layer_non_packed_constraint_flag[ i ], 

ï sub_layer_frame_only_constraint_flag[ i ], 

ï sub_layer_max_12bit_constraint_flag[ i ], 

ï sub_layer_max_10bit_constraint_flag[ i ], 

ï sub_layer_max_8bit_constraint_flag[ i ], 

ï sub_layer_max_422chroma_constraint_flag[ i ], 

ï sub_layer_max_420chroma_constraint_flag[ i ], 

ï sub_layer_max_monochrome_constraint_flag[ i ], 

ï sub_layer_intra_constraint_flag[ i ], 

ï sub_layer_one_picture_only_constraint_flag[ i ], 

ï sub_layer_lower_bit_rate_constraint_flag[ i ], 

ï sub_layer_max_14bit_constraint_flag[ i ], 

ï sub_layer_reserved_zero_33bits[ i ], 

ï sub_layer_reserved_zero_34bits[ i ], 

ï sub_layer_reserved_zero_7bits[ i ], 

ï sub_layer_reserved_zero_35bits[ i ], 

ï sub_layer_reserved_zero_43bits[ i ], 

ï sub_layer_inbld_flag[ i ], 

ï sub_layer_reserved_zero_bit[ i ], and 

ï sub_layer_level_idc[ i ], 

is referred to as the i-th corresponding sub-layer syntax element of each of the following syntax elements: 

ï general_profile_space, 

ï general_tier_flag, 

ï general_profile_idc, 

ï general_profile_compatibility_flag[ j ], 

ï general_progressive_source_flag, 

ï general_interlaced_source_flag, 

ï general_non_packed_constraint_flag, 

ï general_frame_only_constraint_flag, 

ï general_max_12bit_constraint_flag, 

ï general_max_10bit_constraint_flag, 



 

92 Rec. ITU-T H.265 v8 (08/2021) 

ï general_max_8bit_constraint_flag, 

ï general_max_422chroma_constraint_flag, 

ï general_max_420chroma_constraint_flag, 

ï general_max_monochrome_constraint_flag, 

ï general_intra_constraint_flag, 

ï general_one_picture_only_constraint_flag, 

ï general_lower_bit_rate_constraint_flag, 

ï general_max_14bit_constraint_flag, 

ï general_reserved_zero_33bits, 

ï general_reserved_zero_34bits, 

ï general_reserved_zero_7bits, 

ï general_reserved_zero_35bits, 

ï general_reserved_zero_43bits, 

ï general_inbld_flag, 

ï general_reserved_zero_bit, and 

ï general_level_idc, 

respectively. 

The semantics of a particular syntax element's i-th corresponding sub-layer syntax element, apart from the specification of 

the inference of the value when not present, is the same as for the particular syntax element, but applies to the sub-layer 

representation with TemporalId equal to i. 

When not present, the value of sub_layer_tier_flag[ i ] is inferred to be equal to 0. 

NOTE 8 ï It is possible that sub_layer_tier_flag[ i ] is not present and sub_layer_level_idc[ i ] is present. In this case, a default value 

of sub_layer_tier_flag[ i ] is needed for interpretation of sub_layer_level_idc[ i ]. 

When the profile_tier_level( ) syntax structure is included in an SPS or is the first profile_tier_level( ) syntax structure in 

a VPS, and any of the syntax elements sub_layer_profile_space[ i ], sub_layer_profile_idc[ i ], 

sub_layer_profile_compatibility_flag[ i ][  j ], sub_layer_progressive_source_flag[ i ], sub_layer_interlaced_source_

flag[ i ], sub_layer_non_packed_constraint_flag[ i ], sub_layer_frame_only_constraint_flag[ i ], sub_layer_max_12bit_

constraint_flag[ i ], sub_layer_max_10bit_constraint_flag[ i ], sub_layer_max_8bit_constraint_flag[ i ], sub_layer_max_

422chroma_constraint_flag[ i ], sub_layer_max_420chroma_constraint_flag[ i ], sub_layer_max_monochrome_

constraint_flag[ i ], sub_layer_intra_constraint_flag[ i ], sub_layer_one_picture_only_constraint_flag[ i ], sub_layer_

lower_bit_rate_constraint_flag[ i ], sub_layer_max_14bit_constraint_flag, sub_layer_reserved_zero_33bits[ i ], 

sub_layer_reserved_zero_34bits[ i ], sub_layer_reserved_zero_43bits[ i ], sub_layer_inbld_flag[ i ], sub_layer_reserved_

zero_1bit[ i ] and sub_layer_level_idc[ i ] is not present for any value of i in the range of 0 to 

maxNumSubLayersMinus1 ī 1, inclusive, in the profile_tier_level( ) syntax structure, the value of the syntax element is 

inferred as follows (in decreasing order of i values from maxNumSubLayersMinus1 ī 1 to 0): 

ï If the value of i is equal to maxNumSubLayersMinus1, the value of the syntax element is inferred to be equal to the 

value of the corresponding syntax element prefixed with "general_" of the same profile_tier_level( ) syntax structure. 

NOTE 9 ï For example, in this case, if sub_layer_profile_space[ i ] is not present, the value is inferred to be equal to 

general_profile_space of the same profile_tier_level( ) syntax structure. 

ï Otherwise (the value of i is less than maxNumSubLayersMinus1), the value of the syntax element is inferred to be 

equal to the corresponding syntax element with i being replaced with i + 1 of the same profile_tier_level( ) syntax 

structure. 

NOTE 10 ï For example, in this case, if sub_layer_profile_space[ i ] is not present, the value is inferred to be equal to 

sub_layer_profile_space[ i + 1 ] of the same profile_tier_level( ) syntax structure. 

7.4.5 Scaling list data semantics 

scaling_list_pred_mode_flag[ sizeId ][  matrixId ] equal to 0 specifies that the values of the scaling list are the same as 

the values of a reference scaling list. The reference scaling list is specified by 

scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ]. scaling_list_pred_mode_flag[ sizeId ][  matrixId ] equal to 1 

specifies that the values of the scaling list are explicitly signalled. 

scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ] specifies the reference scaling list used to derive 

ScalingList[ sizeId ][  matrixId ] as follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 93 

ï If scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ] is equal to 0, the scaling list is inferred from the default 

scaling list ScalingList[ sizeId ][  matrixId ][  i ] as specified in Table 7-5 and Table 7-6 for 

i = 0..Min( 63, ( 1  <<  ( 4 + ( sizeId  <<  1 ) ) ) ī 1 ). 

ï Otherwise, the scaling list is inferred from the reference scaling list as follows: 

refMatrixId = matrixId ī 

 scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ] *  ( sizeId  = =  3 ? 3 : 1 ) (7-42) 

ScalingList[ sizeId ][  matrixId ][  i ] = ScalingList[ sizeId ][  refMatrixId ][  i ] 

with i =0..Min( 63, ( 1  <<  ( 4 + ( sizeId  <<  1 ) ) ) ī 1 ) (7-43) 

If sizeId is less than or equal to 2, the value of scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ] shall be in the range 

of 0 to matrixId, inclusive. Otherwise (sizeId is equal to 3), the value of 

scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ] shall be in the range of 0 to matrixId / 3, inclusive. 

Table 7-3 ï Specification of sizeId 

Size of quantization matrix sizeId 

4x4 0 

8x8 1 

16x16 2 

32x32 3 

 

Table 7-4 ï Specification of matrixId according to sizeId, prediction mode and colour component 

sizeId CuPredMode 

cIdx 

(Colour 

component) 

matrixId  

0, 1, 2, 3 MODE_INTRA 0 (Y) 0 

0, 1, 2, 3 MODE_INTRA 1 (Cb) 1 

0, 1, 2, 3 MODE_INTRA 2 (Cr) 2 

0, 1, 2, 3 MODE_INTER 0 (Y) 3 

0, 1, 2, 3 MODE_INTER 1 (Cb) 4 

0, 1, 2, 3 MODE_INTER 2 (Cr) 5 

 

scaling_list_dc_coef_minus8[ sizeId ī 2 ][  matrixId ] plus 8 specifies the value of the variable 

ScalingFactor[ 2 ][  matrixId ][  0 ][  0 ] for the scaling list for the 16x16 size when sizeId is equal to 2 and specifies the 

value of ScalingFactor[ 3 ][  matrixId ][  0 ][  0 ] for the scaling list for the 32x32 size when sizeId is equal to 3. The value 

of scaling_list_dc_coef_minus8[ sizeId ī 2 ][  matrixId ] shall be in the range of ī7 to 247, inclusive. 

When scaling_list_pred_mode_flag[ sizeId ][  matrixId ] is equal to 0, scaling_list_pred_matrix_id_

delta[ sizeId ][  matrixId ] is equal to 0 and sizeId is greater than 1, the value of 

scaling_list_dc_coef_minus8[ sizeId ī 2 ][  matrixId ] is inferred to be equal to 8. 

When scaling_list_pred_matrix_id_delta[ sizeId ][  matrixId ] is not equal to 0 and sizeId is greater than 1, the value of 

scaling_list_dc_coef_minus8[ sizeId ī 2 ][  matrixId ] is inferred to be equal to scaling_list_dc_coef_

minus8[ sizeId ī 2 ][  refMatrixId ], where the value of refMatrixId is given by Equation 7-42. 

scaling_list_delta_coef specifies the difference between the current matrix coefficient ScalingList[ sizeId ][  matrixId ][  i ] 

and the previous matrix coefficient ScalingList[ sizeId ][  matrixId ][  i ī 1 ], when scaling_list_pred_

mode_flag[ sizeId ][  matrixId ] is equal to 1. The value of scaling_list_delta_coef shall be in the range of ī128 to 127, 

inclusive. The value of ScalingList[ sizeId ][  matrixId ][  i ] shall be greater than 0. 



 

94 Rec. ITU-T H.265 v8 (08/2021) 

Table 7-5 ï Specification of default values of ScalingList[ 0 ][  matrixId  ][  i ] with i  = 0..15 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ScalingList[ 0 ][  0..5 ][  i ] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 

 

Table 7-6 ï Specification of default values of ScalingList[ 1..3 ][  matrixId  ][  i ] with i  = 0..63 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ScalingList[ 1..3 ][  0..2 ][  i ] 16 16 16 16 16 16 16 16 16 16 17 16 17 16 17 18 

ScalingList[ 1..3 ][  3..5 ][  i ] 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 18 

i ī 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ScalingList[ 1..3 ][  0..2 ][  i ] 17 18 18 17 18 21 19 20 21 20 19 21 24 22 22 24 

ScalingList[ 1..3 ][  3..5 ][  i ] 18 18 18 18 18 20 20 20 20 20 20 20 24 24 24 24 

i ī 32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ScalingList[ 1..3 ][  0..2 ][  i ] 24 22 22 24 25 25 27 30 27 25 25 29 31 35 35 31 

ScalingList[ 1..3 ][  3..5 ][  i ] 24 24 24 24 25 25 25 25 25 25 25 28 28 28 28 28 

i ī 48 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ScalingList[ 1..3 ][  0..2 ][  i ] 29 36 41 44 41 36 47 54 54 47 65 70 65 88 88 115 

ScalingList[ 1..3 ][  3..5 ][  i ] 28 33 33 33 33 33 41 41 41 41 54 54 54 71 71 91 

 

The four-dimensional array ScalingFactor[ sizeId ][  matrixId ][  x ][  y ], with x, y = 0..( 1  <<  ( 2 + sizeId ) ) ī 1, specifies 

the array of scaling factors according to the variables sizeId specified in Table 7-3 and matrixId specified in Table 7-4. 

The elements of the quantization matrix of size 4x4, ScalingFactor[ 0 ][  matrixId ][  ][  ], are derived as follows: 

ScalingFactor[ 0 ][  matrixId ][  x ][  y ] = ScalingList[ 0 ][  matrixId ][  i ] (7-44) 

with i = 0..15, matrixId = 0..5, x = ScanOrder[ 2 ][  0 ][ i ][  0 ], and y = ScanOrder[ 2 ][  0 ][ i ][  1 ] 

The elements of the quantization matrix of size 8x8, ScalingFactor[ 1 ][  matrixId ][  ][  ], are derived as follows: 

ScalingFactor[ 1 ][  matrixId ][  x ][  y ] = ScalingList[ 1 ][  matrixId ][  i ] (7-45) 

with i = 0..63, matrixId = 0..5, x = ScanOrder[ 3 ][  0 ][ i ][  0 ], and y = ScanOrder[ 3 ][  0 ][ i ][  1 ] 

The elements of the quantization matrix of size 16x16, ScalingFactor[ 2 ][  matrixId ][  ][ ], are derived as follows: 

ScalingFactor[ 2 ][  matrixId ][  x *  2 + k ][  y *  2 + j ] = ScalingList[ 2 ][  matrixId ][  i ] (7-46) 

with i = 0..63, j = 0..1, k = 0..1, matrixId = 0..5, x = ScanOrder[ 3 ][  0 ][ i ][  0 ], 

and y = ScanOrder[ 3 ][  0 ][ i ][  1 ] 

ScalingFactor[ 2 ][  matrixId ][  0 ][  0 ] = scaling_list_dc_coef_minus8[ 0 ][  matrixId ] + 8 (7-47) 

with matrixId = 0..5 

The elements of the quantization matrix of size 32x32, ScalingFactor[ 3 ][  matrixId ][  ][  ], are derived as follows: 

ScalingFactor[ 3 ][  matrixId ][  x *  4 + k ][  y *  4 + j ] = ScalingList[ 3 ][  matrixId ][  i ] (7-48) 

with i = 0..63, j = 0..3, k = 0..3, matrixId = 0, 3, x = ScanOrder[ 3 ][  0 ][ i ][  0 ], 

and y = ScanOrder[ 3 ][  0 ][ i ][  1 ] 

ScalingFactor[ 3 ][  matrixId ][  0 ][  0 ] = scaling_list_dc_coef_minus8[ 1 ][  matrixId ] + 8 (7-49) 

with matrixId = 0, 3 

When ChromaArrayType is equal to 3, the elements of the chroma quantization matrix of size 32x32, 

ScalingFactor[ 3 ][  matrixId ][  ][  ], with matrixId = 1, 2, 4 and 5 are derived as follows: 

ScalingFactor[ 3 ][  matrixId ][  x *  4 + k ][  y *  4 + j ] = ScalingList[ 2 ][  matrixId ][  i ] (7-50) 

with i = 0..63, j = 0..3, k = 0..3, x = ScanOrder[ 3 ][  0 ][ i ][  0 ], and y = ScanOrder[ 3 ][  0 ][ i ][  1 ] 



 

  Rec. ITU-T H.265 v8 (08/2021) 95 

ScalingFactor[ 3 ][  matrixId ][  0 ][  0 ] = scaling_list_dc_coef_minus8[ 0 ][  matrixId ] + 8 (7-51) 

7.4.6 Supplemental enhancement information message semantics 

Each SEI message consists of the variables specifying the type payloadType and size payloadSize of the SEI message 

payload. SEI message payloads are specified in Annex D. The derived SEI message payload size payloadSize is specified 

in bytes and shall be equal to the number of RBSP bytes in the SEI message payload. 

NOTE ï The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes 

(represented by emulation_prevention_three_byte syntax elements). Since the payload size of an SEI message is specified in RBSP 

bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload. 

ff_byte is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure that it is used within. 

last_payload_type_byte is the last byte of the payload type of an SEI message. 

last_payload_size_byte is the last byte of the payload size of an SEI message. 

7.4.7 Slice segment header semantics 

7.4.7.1 General slice segment header semantics 

When present, the value of the slice segment header syntax elements slice_pic_parameter_set_id, pic_output_flag, 

no_output_of_prior_pics_flag, slice_pic_order_cnt_lsb, short_term_ref_pic_set_sps_flag, short_term_ref_pic_set_idx, 

num_long_term_sps, num_long_term_pics and slice_temporal_mvp_enabled_flag shall be the same in all slice segment 

headers of a coded picture. When present, the value of the slice segment header syntax elements lt_idx_sps[ i ], 

poc_lsb_lt[ i ], used_by_curr_pic_lt_flag[ i ], delta_poc_msb_present_flag[ i ] and delta_poc_msb_cycle_lt[ i ] shall be 

the same in all slice segment headers of a coded picture for each possible value of i. 

first_slice_segment_in_pic_flag equal to 1 specifies that the slice segment is the first slice segment of the picture in 

decoding order. first_slice_segment_in_pic_flag equal to 0 specifies that the slice segment is not the first slice segment of 

the picture in decoding order. 

NOTE 1 ï This syntax element may be used for detection of the boundary between coded pictures that are consecutive in decoding 

order. However, when IDR pictures are consecutive in decoding order and have the same NAL unit type, loss of the first slice of an 

IDR picture can cause a problem with detection of the boundary between the coded pictures. This can occur, e.g., in the transmission 

of all-intra-coded video in an error-prone environment. This problem can be mitigated by alternately using the two different IDR 

NAL unit types (IDR_W_RADL and IDR_N_LP) for any two consecutive IDR pictures. The use of the temporal sub-layer zero 

index SEI message can also be helpful, as that SEI message includes the syntax element irap_pic_id, the value of which is different 

for IRAP pictures that are consecutive in decoding order. Some system environments have other provisions that can be helpful for 

picture boundary detection as well, such as the use of presentation timestamps in Rec. ITU-T H.222.0 | ISO/IEC 13818-1 systems, 

access unit framing in the ISO/IEC 14496-12 ISO base media file format, or the marker bit in IETF RFC 3550 real-time transport 

protocol headers. 

no_output_of_prior_pics_flag affects the output of previously-decoded pictures in the decoded picture buffer after the 

decoding of an IDR or a BLA picture that is not the first picture in the bitstream as specified in Annex C. 

slice_pic_parameter_set_id specifies the value of pps_pic_parameter_set_id for the PPS in use. The value of 

slice_pic_parameter_set_id shall be in the range of 0 to 63, inclusive. 

Let activePPS be the PPS that has pps_pic_parameter_set_id equal to slice_pic_parameter_set_id, and let activeSPS be the 

SPS that has sps_seq_parameter_set_id equal to pps_seq_parameter_set_id of activePPS. It is a requirement of bitstream 

conformance that the following constraints apply: 

ï The value of TemporalId of activePPS shall be less than or equal to the value of TemporalId of the current picture. 

ï The value of nuh_layer_id of activePPS shall be less than or equal to the value of nuh_layer_id of the current picture. 

ï The value of nuh_layer_id of activeSPS shall be less than or equal to the value of nuh_layer_id of the current picture. 

dependent_slice_segment_flag equal to 1 specifies that the value of each slice segment header syntax element that is not 

present is inferred to be equal to the value of the corresponding slice segment header syntax element in the slice header. 

When not present, the value of dependent_slice_segment_flag is inferred to be equal to 0. 

The variable SliceAddrRs is derived as follows: 

ï If dependent_slice_segment_flag is equal to 0, SliceAddrRs is set equal to slice_segment_address. 

ï Otherwise, SliceAddrRs is set equal to SliceAddrRs of the preceding slice segment containing the CTB for which the 

CTB address is CtbAddrTsToRs[ CtbAddrRsToTs[ slice_segment_address ] ī 1 ]. 

slice_segment_address specifies the address of the first CTB in the slice segment, in CTB raster scan of a picture. The 

length of the slice_segment_address syntax element is Ceil( Log2( PicSizeInCtbsY ) ) bits. The value of 



 

96 Rec. ITU-T H.265 v8 (08/2021) 

slice_segment_address shall be in the range of 0 to PicSizeInCtbsY ī 1, inclusive, and the value of slice_segment_address 

shall not be equal to the value of slice_segment_address of any other coded slice segment NAL unit of the same coded 

picture. When slice_segment_address is not present, it is inferred to be equal to 0. 

The variable CtbAddrInRs, specifying a CTB address in CTB raster scan of a picture, is set equal to slice_segment_address. 

The variable CtbAddrInTs, specifying a CTB address in tile scan, is set equal to CtbAddrRsToTs[ CtbAddrInRs ]. The 

variables CuQpOffsetCb and CuQpOffsetCr, specifying values to be used when determining the respective values of the 

QpǋCb and QpǋCr quantization parameters for the coding unit containing cu_chroma_qp_offset_flag, are both set equal to 0. 

slice_reserved_flag[ i ] has semantics and values that are reserved for future use by ITU-T | ISO/IEC. Decoders shall 

ignore the presence and value of slice_reserved_flag[ i ]. 

slice_type specifies the coding type of the slice according to Table 7-7. 

Table 7-7 ï Name association to slice_type 

slice_type Name of slice_type 

0 B (B slice) 

1 P (P slice) 

2 I (I slice) 

 

When nal_unit_type has a value in the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive, i.e., the picture is an IRAP 

picture, nuh_layer_id is equal to 0, and pps_curr_pic_ref_enabled_flag is equal to 0, slice_type shall be equal to 2. 

When sps_max_dec_pic_buffering_minus1[ TemporalId ] is equal to 0, nuh_layer_id is equal to 0, and 

pps_curr_pic_ref_enabled_flag is equal to 0, slice_type shall be equal to 2. 

pic_output_flag affects the decoded picture output and removal processes as specified in Annex C. When pic_output_flag 

is not present, it is inferred to be equal to 1. 

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag is 

equal to 1. The value of colour_plane_id shall be in the range of 0 to 2, inclusive. colour_plane_id values 0, 1 and 2 

correspond to the Y, Cb and Cr planes, respectively. 

NOTE 2 ï There is no dependency between the decoding processes of pictures having different values of colour_plane_id. 

slice_pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for the current picture. The length 

of the slice_pic_order_cnt_lsb syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits. The value of the 

slice_pic_order_cnt_lsb shall be in the range of 0 to MaxPicOrderCntLsb ī 1, inclusive. When slice_pic_order_cnt_lsb is 

not present, slice_pic_order_cnt_lsb is inferred to be equal to 0, except as specified in clause 8.3.3.1. 

short_term_ref_pic_set_sps_flag equal to 1 specifies that the short-term RPS of the current picture is derived based on 

one of the st_ref_pic_set( ) syntax structures in the active SPS that is identified by the syntax element 

short_term_ref_pic_set_idx in the slice header. short_term_ref_pic_set_sps_flag equal to 0 specifies that the short-term 

RPS of the current picture is derived based on the st_ref_pic_set( ) syntax structure that is directly included in the slice 

headers of the current picture. When num_short_term_ref_pic_sets is equal to 0, the value of 

short_term_ref_pic_set_sps_flag shall be equal to 0. 

short_term_ref_pic_set_idx specifies the index, into the list of the st_ref_pic_set( ) syntax structures included in the 

active SPS, of the st_ref_pic_set( ) syntax structure that is used for derivation of the short-term RPS of the current picture. 

The syntax element short_term_ref_pic_set_idx is represented by Ceil( Log2( num_short_term_ref_pic_sets ) ) bits. When 

not present, the value of short_term_ref_pic_set_idx is inferred to be equal to 0. The value of short_term_ref_pic_set_idx 

shall be in the range of 0 to num_short_term_ref_pic_sets ī 1, inclusive. 

The variable CurrRpsIdx is derived as follows: 

ï If short_term_ref_pic_set_sps_flag is equal to 1, CurrRpsIdx is set equal to short_term_ref_pic_set_idx. 

ï Otherwise, CurrRpsIdx is set equal to num_short_term_ref_pic_sets. 

num_long_term_sps specifies the number of entries in the long-term RPS of the current picture that are derived based on 

the candidate long-term reference pictures specified in the active SPS. The value of num_long_term_sps shall be in the 

range of 0 to num_long_term_ref_pics_sps, inclusive. When not present, the value of num_long_term_sps is inferred to 

be equal to 0. 

num_long_term_pics specifies the number of entries in the long-term RPS of the current picture that are directly signalled 

in the slice header. When not present, the value of num_long_term_pics is inferred to be equal to 0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 97 

When nuh_layer_id is equal to 0, the value of num_long_term_pics shall be less than or equal to 

sps_max_dec_pic_buffering_minus1[ TemporalId ] ī NumNegativePics[ CurrRpsIdx ] ī NumPositivePics[ CurrRpsIdx ] 

ī num_long_term_sps ī TwoVersionsOfCurrDecPicFlag. 

lt_idx_sps[ i ] specifies an index, into the list of candidate long-term reference pictures specified in the active SPS, of the 

i-th entry in the long-term RPS of the current picture. The number of bits used to represent lt_idx_sps[ i ] is equal to 

Ceil( Log2( num_long_term_ref_pics_sps ) ). When not present, the value of lt_idx_sps[ i ] is inferred to be equal to 0. 

The value of lt_idx_sps[ i ] shall be in the range of 0 to num_long_term_ref_pics_sps ī 1, inclusive. 

poc_lsb_lt[ i ] specifies the value of the picture order count modulo MaxPicOrderCntLsb of the i-th entry in the long-term 

RPS of the current picture. The length of the poc_lsb_lt[ i ] syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 

bits. 

used_by_curr_pic_lt_flag[ i ] equal to 0 specifies that the i-th entry in the long-term RPS of the current picture is not used 

for reference by the current picture. 

The variables PocLsbLt[ i ] and UsedByCurrPicLt[ i ] are derived as follows: 

ï If i is less than num_long_term_sps, PocLsbLt[ i ] is set equal to lt_ref_pic_poc_lsb_sps[ lt_idx_sps[ i ] ] and 

UsedByCurrPicLt[ i ] is set equal to used_by_curr_pic_lt_sps_flag[ lt_idx_sps[ i ] ]. 

ï Otherwise, PocLsbLt[ i ] is set equal to poc_lsb_lt[ i ] and UsedByCurrPicLt[ i ] is set equal to 

used_by_curr_pic_lt_flag[ i ]. 

delta_poc_msb_present_flag[ i ] equal to 1 specifies that delta_poc_msb_cycle_lt[ i ] is present. 

delta_poc_msb_present_flag[ i ] equal to 0 specifies that delta_poc_msb_cycle_lt[ i ] is not present. 

Let prevTid0Pic be the previous picture in decoding order that has TemporalId equal to 0 and is not a RASL, RADL or 

SLNR picture. Let setOfPrevPocVals be a set consisting of the following: 

ï the PicOrderCntVal of prevTid0Pic, 

ï the PicOrderCntVal of each picture in the RPS of prevTid0Pic, 

ï the PicOrderCntVal of each picture that follows prevTid0Pic in decoding order and precedes the current picture in 

decoding order. 

When there is more than one value in setOfPrevPocVals for which the value modulo MaxPicOrderCntLsb is equal to 

PocLsbLt[ i ], delta_poc_msb_present_flag[ i ] shall be equal to 1. 

delta_poc_msb_cycle_lt[ i ] is used to determine the value of the most significant bits of the picture order count value of 

the i-th entry in the long-term RPS of the current picture. The value of delta_poc_msb_cycle_lt[ i ] shall be in the range of 

0 to 2(32 ī log2_max_pic_order_cnt_lsb_minus4 ī 4 ), inclusive. When delta_poc_msb_cycle_lt[ i ] is not present, it is inferred to be equal 

to 0. 

The variable DeltaPocMsbCycleLt[ i ] is derived as follows: 

if( i  = =  0  | |  i  = =  num_long_term_sps ) 

 DeltaPocMsbCycleLt[ i ] = delta_poc_msb_cycle_lt[ i ] 

else     (7-52) 

 DeltaPocMsbCycleLt[ i ] = delta_poc_msb_cycle_lt[ i ] + DeltaPocMsbCycleLt[ i ī 1 ] 

slice_temporal_mvp_enabled_flag specifies whether temporal motion vector predictors can be used for inter prediction. 

If slice_temporal_mvp_enabled_flag is equal to 0, the syntax elements of the current picture shall be constrained such that 

no temporal motion vector predictor is used in decoding of the current picture. Otherwise 

(slice_temporal_mvp_enabled_flag is equal to 1), temporal motion vector predictors may be used in decoding of the current 

picture. When not present, the value of slice_temporal_mvp_enabled_flag is inferred to be equal to 0. 

Let currLayerId be equal to nuh_layer_id of the current NAL unit. When both slice_temporal_mvp_enabled_flag and 

TemporalId are equal to 0, the syntax elements for all coded pictures with nuh_layer_id equal to currLayerId that follow 

the current picture in decoding order shall be constrained such that no temporal motion vector from any picture with 

nuh_layer_id equal to currLayerId that precedes the current picture in decoding order is used in decoding of any coded 

picture that follows the current picture in decoding order. 

NOTE 3 ï When slice_temporal_mvp_enabled_flag is equal to 0 in an I slice, it has no impact on the normative decoding process 

of the picture but merely expresses a bitstream constraint. 

NOTE 4 ï When slice_temporal_mvp_enabled_flag is equal to 0 in a slice with TemporalId equal to 0, decoders may empty "motion 

vector storage" for all reference pictures with nuh_layer_id equal to currLayerId in the decoded picture buffer. 



 

98 Rec. ITU-T H.265 v8 (08/2021) 

slice_sao_luma_flag equal to 1 specifies that SAO is enabled for the luma component in the current slice; 

slice_sao_luma_flag equal to 0 specifies that SAO is disabled for the luma component in the current slice. When 

slice_sao_luma_flag is not present, it is inferred to be equal to 0. 

slice_sao_chroma_flag equal to 1 specifies that SAO is enabled for the chroma component in the current slice; 

slice_sao_chroma_flag equal to 0 specifies that SAO is disabled for the chroma component in the current slice. When 

slice_sao_chroma_flag is not present, it is inferred to be equal to 0. 

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_l0_active_minus1 is present 

for P and B slices and that the syntax element num_ref_idx_l1_active_minus1 is present for B slices. 

num_ref_idx_active_override_flag equal to 0 specifies that the syntax elements num_ref_idx_l0_active_minus1 and 

num_ref_idx_l1_active_minus1 are not present. 

num_ref_idx_l0_active_minus1 specifies the maximum reference index for reference picture list 0 that may be used to 

decode the slice. num_ref_idx_l0_active_minus1 shall be in the range of 0 to 14, inclusive. When the current slice is a P 

or B slice and num_ref_idx_l0_active_minus1 is not present, num_ref_idx_l0_active_minus1 is inferred to be equal to 

num_ref_idx_l0_default_active_minus1. 

num_ref_idx_l1_active_minus1 specifies the maximum reference index for reference picture list 1 that may be used to 

decode the slice. num_ref_idx_l1_active_minus1 shall be in the range of 0 to 14, inclusive. When 

num_ref_idx_l1_active_minus1 is not present, num_ref_idx_l1_active_minus1 is inferred to be equal to 

num_ref_idx_l1_default_active_minus1. 

mvd_l1_zero_flag equal to 1 indicates that the mvd_coding( x0, y0, 1 ) syntax structure is not parsed and 

MvdL1[ x0 ][  y0 ][  compIdx ] is set equal to 0 for compIdx = 0..1. mvd_l1_zero_flag equal to 0 indicates that the 

mvd_coding( x0, y0, 1 ) syntax structure is parsed. 

cabac_init_flag specifies the method for determining the initialization table used in the initialization process for context 

variables. When cabac_init_flag is not present, it is inferred to be equal to 0. 

collocated_from_l0_flag equal to 1 specifies that the collocated picture used for temporal motion vector prediction is 

derived from reference picture list 0. collocated_from_l0_flag equal to 0 specifies that the collocated picture used for 

temporal motion vector prediction is derived from reference picture list 1. When collocated_from_l0_flag is not present, 

it is inferred to be equal to 1. 

collocated_ref_idx specifies the reference index of the collocated picture used for temporal motion vector prediction. 

When slice_type is equal to P or when slice_type is equal to B and collocated_from_l0_flag is equal to 1, 

collocated_ref_idx refers to a picture in list 0, and the value of collocated_ref_idx shall be in the range of 0 to 

num_ref_idx_l0_active_minus1, inclusive. 

When slice_type is equal to B and collocated_from_l0_flag is equal to 0, collocated_ref_idx refers to a picture in list 1 and 

the value of collocated_ref_idx shall be in the range of 0 to num_ref_idx_l1_active_minus1, inclusive. 

When not present, the value of collocated_ref_idx is inferred to be equal to 0. 

When slice_temporal_mvp_enabled_flag is equal to 1, it is a requirement of bitstream conformance that, for all slices of 

the current picture that have slice_type not equal to 2 (if any), the picture referred to by collocated_ref_idx shall be the 

same and shall not be the current picture. 

NOTE 5 ï This implies that when pps_curr_pic_ref_enabled_flag is equal to 1 and the current picture is the only reference picture 

in the reference picture list, slice_temporal_mvp_enabled_flag would be constrained to be equal to 0. 

five_minus_max_num_merge_cand specifies the maximum number of merging motion vector prediction (MVP) 

candidates supported in the slice subtracted from 5. The maximum number of merging MVP candidates, 

MaxNumMergeCand is derived as follows: 

MaxNumMergeCand = 5 ī five_minus_max_num_merge_cand (7-53) 

The value of MaxNumMergeCand shall be in the range of 1 to 5, inclusive. 

use_integer_mv_flag equal to 1 specifies that the resolution of motion vectors for inter prediction in the current slice is 

integer. use_integer_mv_flag equal to 0 specifies that the resolution of motion vectors for inter prediction in the current 

slice that refer to pictures other than the current picture is fractional with quarter-sample precision in units of luma samples. 

When not present, the value of use_integer_mv_flag is inferred to be equal to motion_vector_resolution_control_idc. 

slice_qp_delta specifies the initial value of QpY to be used for the coding blocks in the slice until modified by the value 

of CuQpDeltaVal in the coding unit layer. The initial value of the QpY quantization parameter for the slice, SliceQpY, is 

derived as follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 99 

SliceQpY = 26 + init_qp_minus26 + slice_qp_delta (7-54) 

The value of SliceQpY shall be in the range of īQpBdOffsetY to +51, inclusive. 

slice_cb_qp_offset specifies a difference to be added to the value of pps_cb_qp_offset when determining the value of the 

QpǋCb quantization parameter. The value of slice_cb_qp_offset shall be in the range of ī12 to +12, inclusive. When 

slice_cb_qp_offset is not present, it is inferred to be equal to 0. The value of pps_cb_qp_offset + slice_cb_qp_offset shall 

be in the range of ī12 to +12, inclusive. 

slice_cr_qp_offset specifies a difference to be added to the value of pps_cr_qp_offset when determining the value of the 

QpǋCr quantization parameter. The value of slice_cr_qp_offset shall be in the range of ī12 to +12, inclusive. When 

slice_cr_qp_offset is not present, it is inferred to be equal to 0. The value of pps_cr_qp_offset + slice_cr_qp_offset shall 

be in the range of ī12 to +12, inclusive. 

slice_act_y_qp_offset, slice_act_cb_qp_offset and slice_act_cr_qp_offset specify offsets to the quantization parameter 

values qP derived in clause 8.6.2 for luma, Cb, and Cr components, respectively. The values of slice_act_y_qp_offset, 

slice_act_cb_qp_offset and slice_act_cr_qp_offset shall be in the range of ī12 to +12, inclusive. When not present, the 

values of slice_act_y_qp_offset, slice_act_cb_qp_offset, and slice_act_cr_qp_offset are inferred to be equal to 0. The value 

of PpsActQpOffsetY + slice_act_y_qp_offset shall be in the range of ī12 to +12, inclusive. The value of 

PpsActQpOffsetCb + slice_act_cb_qp_offset shall be in the range of ī12 to +12, inclusive. The value of PpsActQpOffsetCr 

+ slice_act_cr_qp_offset shall be in the range of ī12 to +12, inclusive. 

cu_chroma_qp_offset_enabled_flag equal to 1 specifies that the cu_chroma_qp_offset_flag may be present in the 

transform unit syntax. cu_chroma_qp_offset_enabled_flag equal to 0 specifies that the cu_chroma_qp_offset_flag is not 

present in the transform unit syntax. When not present, the value of cu_chroma_qp_offset_enabled_flag is inferred to be 

equal to 0. 

deblocking_filter_override_flag equal to 1 specifies that deblocking parameters are present in the slice header. 

deblocking_filter_override_flag equal to 0 specifies that deblocking parameters are not present in the slice header. When 

not present, the value of deblocking_filter_override_flag is inferred to be equal to 0. 

slice_deblocking_filter_disabled_flag equal to 1 specifies that the operation of the deblocking filter is not applied for the 

current slice. slice_deblocking_filter_disabled_flag equal to 0 specifies that the operation of the deblocking filter is applied 

for the current slice. When slice_deblocking_filter_disabled_flag is not present, it is inferred to be equal to 

pps_deblocking_filter_disabled_flag. 

slice_beta_offset_div2 and slice_tc_offset_div2 specify the deblocking parameter offsets for ɓ and tC (divided by 2) for 

the current slice. The values of slice_beta_offset_div2 and slice_tc_offset_div2 shall both be in the range of ī6 to 6, 

inclusive. When not present, the values of slice_beta_offset_div2 and slice_tc_offset_div2 are inferred to be equal to 

pps_beta_offset_div2 and pps_tc_offset_div2, respectively. 

slice_loop_filter_across_slices_enabled_flag equal to 1 specifies that in-loop filtering operations may be performed 

across the left and upper boundaries of the current slice. slice_loop_filter_across_slices_enabled_flag equal to 0 specifies 

that in-loop operations are not performed across left and upper boundaries of the current slice. The in-loop filtering 

operations include the deblocking filter and sample adaptive offset filter. When 

slice_loop_filter_across_slices_enabled_flag is not present, it is inferred to be equal to 

pps_loop_filter_across_slices_enabled_flag. 

num_entry_point_offsets specifies the number of entry_point_offset_minus1[ i ] syntax elements in the slice header. 

When not present, the value of num_entry_point_offsets is inferred to be equal to 0. 

The value of num_entry_point_offsets is constrained as follows: 

ï If tiles_enabled_flag is equal to 0 and entropy_coding_sync_enabled_flag is equal to 1, the value of 

num_entry_point_offsets shall be in the range of 0 to PicHeightInCtbsY ī 1, inclusive. 

ï Otherwise, if tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 0, the value of 

num_entry_point_offsets shall be in the range of 0 to ( num_tile_columns_minus1 + 1 ) * 

( num_tile_rows_minus1 + 1 ) ī 1, inclusive. 

ï Otherwise, when tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 1, the value of 

num_entry_point_offsets shall be in the range of 0 to ( num_tile_columns_minus1 + 1 ) *  PicHeightInCtbsY ī 1, 

inclusive. 

offset_len_minus1 plus 1 specifies the length, in bits, of the entry_point_offset_minus1[ i ] syntax elements. The value of 

offset_len_minus1 shall be in the range of 0 to 31, inclusive. 

entry_point_offset_minus1[ i ] plus 1 specifies the i-th entry point offset in bytes, and is represented by 

offset_len_minus1 plus 1 bits. The slice segment data that follow the slice segment header consists of 

num_entry_point_offsets + 1 subsets, with subset index values ranging from 0 to num_entry_point_offsets, inclusive. The 



 

100 Rec. ITU-T H.265 v8 (08/2021) 

first byte of the slice segment data is considered byte 0. When present, emulation prevention bytes that appear in the slice 

segment data portion of the coded slice segment NAL unit are counted as part of the slice segment data for purposes of 

subset identification. Subset 0 consists of bytes 0 to entry_point_offset_minus1[ 0 ], inclusive, of the coded slice segment 

data, subset k, with k in the range of 1 to num_entry_point_offsets ī 1, inclusive, consists of bytes firstByte[ k ] to 

lastByte[ k ], inclusive, of the coded slice segment data with firstByte[ k ] and lastByte[ k ] defined as: 

ä
=

-
k

1n

1)+1]1[nminusnt_offset_(entry_poi=]k  firstByte[  (7-55) 

lastByte[ k ] = firstByte[ k ] + entry_point_offset_minus1[ k ] (7-56) 

The last subset (with subset index equal to num_entry_point_offsets) consists of the remaining bytes of the coded slice 

segment data. 

When tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 0, each subset shall consist of all 

coded bits of all CTUs in the slice segment that are within the same tile, and the number of subsets (i.e., the value of 

num_entry_point_offsets + 1) shall be equal to the number of tiles that contain CTUs that are in the coded slice segment. 

NOTE 6 ï When tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 0, each slice must include either 

a subset of the CTUs of one tile (in which case the syntax element entry_point_offset_minus1[ i ] is not present) or must include all 

CTUs of an integer number of complete tiles. 

When tiles_enabled_flag is equal to 0 and entropy_coding_sync_enabled_flag is equal to 1, each subset k with k in the 

range of 0 to num_entry_point_offsets, inclusive, shall consist of all coded bits of all CTUs in the slice segment that include 

luma CTBs that are in the same luma CTB row of the picture, and the number of subsets (i.e., the value of 

num_entry_point_offsets + 1) shall be equal to the number of CTB rows of the picture that contain CTUs that are in the 

coded slice segment. 

NOTE 7 ï The last subset (i.e., subset k for k equal to num_entry_point_offsets) may or may not contain all CTUs that include luma 

CTBs that are in a luma CTB row of the picture. 

When tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 1, each subset k with k in the 

range of 0 to num_entry_point_offsets, inclusive, shall consist of all coded bits of all CTUs in the slice segment that include 

luma CTBs that are in the same luma CTB row within a tile, and the number of subsets ( i.e., the value of 

num_entry_point_offsets + 1 ) shall be equal to the number of luma CTB row scans in the tile scan for the CTUs of the 

coded slice segment. 

slice_segment_header_extension_length specifies the length of the slice segment header extension data in bytes, not 

including the bits used for signalling slice_segment_header_extension_length itself. The value of 

slice_segment_header_extension_length shall be in the range of 0 to 256, inclusive. When not present, the value of 

slice_segment_header_extension_length is inferred to be equal to 0. 

slice_segment_header_extension_data_byte may have any value. Decoders shall ignore the value of 

slice_segment_header_extension_data_byte. Its value does not affect the decoding process of the profiles specified in 

Annex A. 

7.4.7.2 Reference picture list modification semantics 

ref_pic_list_modification_flag_l0 equal to 1 indicates that reference picture list 0 is specified explicitly by a list of 

list_entry_l0[ i ] values. ref_pic_list_modification_flag_l0 equal to 0 indicates that reference picture list 0 is determined 

implicitly. When ref_pic_list_modification_flag_l0 is not present in the slice header, it is inferred to be equal to 0. 

list_entry_l0[ i ] specifies the index of the reference picture in RefPicListTemp0 to be placed at the current position of 

reference picture list 0. The length of the list_entry_l0[ i ] syntax element is Ceil( Log2( NumPicTotalCurr ) ) bits. The 

value of list_entry_l0[ i ] shall be in the range of 0 to NumPicTotalCurr ī 1, inclusive. When the syntax element 

list_entry_l0[ i ] is not present in the slice header, it is inferred to be equal to 0. 

The variable NumPicTotalCurr is derived as follows: 

NumPicTotalCurr = 0 

for( i = 0; i < NumNegativePics[ CurrRpsIdx ]; i++ ) 

 if( UsedByCurrPicS0[ CurrRpsIdx ][  i ] ) 

  NumPicTotalCurr++ 

for( i = 0; i < NumPositivePics[ CurrRpsIdx ]; i++) (7-57) 

 if( UsedByCurrPicS1[ CurrRpsIdx ][  i ] ) 

  NumPicTotalCurr++ 

for( i = 0; i < num_long_term_sps + num_long_term_pics; i++ ) 



 

  Rec. ITU-T H.265 v8 (08/2021) 101 

 if( UsedByCurrPicLt[ i ] ) 

  NumPicTotalCurr++ 

if( pps_curr_pic_ref_enabled_flag ) 

 NumPicTotalCurr++ 

ref_pic_list_modification_flag_l1 equal to 1 indicates that reference picture list 1 is specified explicitly by a list of 

list_entry_l1[ i ] values. ref_pic_list_modification_flag_l1 equal to 0 indicates that reference picture list 1 is determined 

implicitly. When ref_pic_list_modification_flag_l1 is not present in the slice header, it is inferred to be equal to 0. 

list_entry_l1[ i ] specifies the index of the reference picture in RefPicListTemp1 to be placed at the current position of 

reference picture list 1. The length of the list_entry_l1[ i ] syntax element is Ceil( Log2( NumPicTotalCurr ) ) bits. The 

value of list_entry_l1[ i ] shall be in the range of 0 to NumPicTotalCurr ī 1, inclusive. When the syntax element 

list_entry_l1[ i ] is not present in the slice header, it is inferred to be equal to 0. 

7.4.7.3 Weighted prediction parameters semantics 

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of 

luma_log2_weight_denom shall be in the range of 0 to 7, inclusive. 

delta_chroma_log2_weight_denom is the difference of the base 2 logarithm of the denominator for all chroma weighting 

factors. When delta_chroma_log2_weight_denom is not present, it is inferred to be equal to 0. 

The variable ChromaLog2WeightDenom is derived to be equal to luma_log2_weight_denom + 

delta_chroma_log2_weight_denom and the value shall be in the range of 0 to 7, inclusive. 

luma_weight_l0_flag[ i ] equal to 1 specifies that weighting factors for the luma component of list 0 prediction using 

RefPicList0[ i ] are present. luma_weight_l0_flag[ i ] equal to 0 specifies that these weighting factors are not present. 

When luma_weight_l0_flag[ i ] is not present, it is inferred to be equal to 0. 

chroma_weight_l0_flag[ i ] equal to 1 specifies that weighting factors for the chroma prediction values of list 0 prediction 

using RefPicList0[ i ] are present. chroma_weight_l0_flag[ i ] equal to 0 specifies that these weighting factors are not 

present. When chroma_weight_l0_flag[ i ] is not present, it is inferred to be equal to 0. 

delta_luma_weight_l0[ i ] is the difference of the weighting factor applied to the luma prediction value for list 0 prediction 

using RefPicList0[ i ]. 

The variable LumaWeightL0[ i ] is derived to be equal to ( 1  <<  luma_log2_weight_denom ) + 

delta_luma_weight_l0[ i ]. When luma_weight_l0_flag[ i ] is equal to 1, the value of delta_luma_weight_l0[ i ] shall be in 

the range of ī128 to 127, inclusive. When luma_weight_l0_flag[ i ] is equal to 0, LumaWeightL0[ i ] is inferred to be 

equal to 2luma_log2_weight_denom. 

luma_offset_l0[ i ] is the additive offset applied to the luma prediction value for list 0 prediction using RefPicList0[ i ]. 

The value of luma_offset_l0[ i ] shall be in the range of īWpOffsetHalfRangeY to WpOffsetHalfRangeY ī 1, inclusive. 

When luma_weight_l0_flag[ i ] is equal to 0, luma_offset_l0[ i ] is inferred to be equal to 0. 

delta_chroma_weight_l0[ i ][  j ] is the difference of the weighting factor applied to the chroma prediction values for list 

0 prediction using RefPicList0[ i ] with j equal to 0 for Cb and j equal to 1 for Cr. 

The variable ChromaWeightL0[ i ][  j ] is derived to be equal to ( 1  <<  ChromaLog2WeightDenom ) + 

delta_chroma_weight_l0[ i ][  j ]. When chroma_weight_l0_flag[ i ] is equal to 1, the value of 

delta_chroma_weight_l0[ i ][  j ] shall be in the range of ī128 to 127, inclusive. When chroma_weight_l0_flag[ i ] is equal 

to 0, ChromaWeightL0[ i ][  j ] is inferred to be equal to 2ChromaLog2WeightDenom. 

delta_chroma_offset_l0[ i ][  j ] is the difference of the additive offset applied to the chroma prediction values for list 0 

prediction using RefPicList0[ i ] with j equal to 0 for Cb and j equal to 1 for Cr. 

The variable ChromaOffsetL0[ i ][  j ] is derived as follows: 

ChromaOffsetL0[ i ][  j ] = Clip3( īWpOffsetHalfRangeC, WpOffsetHalfRangeC ī 1, 

 ( WpOffsetHalfRangeC + delta_chroma_offset_l0[ i ][  j ] ī (7-58) 

 ( ( WpOffsetHalfRangeC *  ChromaWeightL0[ i ][  j ] )  >>  ChromaLog2WeightDenom ) ) ) 

The value of delta_chroma_offset_l0[ i ][  j ] shall be in the range of ī4 *  WpOffsetHalfRangeC to 

4 *  WpOffsetHalfRangeC ī 1, inclusive. When chroma_weight_l0_flag[ i ] is equal to 0, ChromaOffsetL0[ i ][  j ] is 

inferred to be equal to 0. 

luma_weight_l1_flag[ i ], chroma_weight_l1_flag[ i ], delta_luma_weight_l1[ i ], luma_offset_l1[ i ], 

delta_chroma_weight_l1[ i ][  j ] and delta_chroma_offset_l1[ i ][  j ] have the same semantics as 

luma_weight_l0_flag[ i ], chroma_weight_l0_flag[ i ], delta_luma_weight_l0[ i ], luma_offset_l0[ i ], 



 

102 Rec. ITU-T H.265 v8 (08/2021) 

delta_chroma_weight_l0[ i ][  j ] and delta_chroma_offset_l0[ i ][  j ], respectively, with l0, L0, list 0 and List0 replaced by 

l1, L1, list 1 and List1, respectively. 

The variable sumWeightL0Flags is derived to be equal to the sum of 

luma_weight_l0_flag[ i ] + 2 *  chroma_weight_l0_flag[ i ], for i = 0..num_ref_idx_l0_active_minus1. 

When slice_type is equal to B, the variable sumWeightL1Flags is derived to be equal to the sum of 

luma_weight_l1_flag[ i ] + 2 *  chroma_weight_l1_flag[ i ], for i = 0..num_ref_idx_l1_active_minus1. 

It is a requirement of bitstream conformance that, when slice_type is equal to P, sumWeightL0Flags shall be less than or 

equal to 24 and when slice_type is equal to B, the sum of sumWeightL0Flags and sumWeightL1Flags shall be less than or 

equal to 24. 

7.4.8 Short-term reference picture set semantics 

The st_ref_pic_set( stRpsIdx ) syntax structure may be present in an SPS or in a slice header. Depending on whether the 

syntax structure is included in a slice header or an SPS, the following applies: 

ï If present in a slice header, the st_ref_pic_set( stRpsIdx ) syntax structure specifies the short-term RPS of the current 

picture (the picture containing the slice), and the following applies: 

ï The content of the st_ref_pic_set( stRpsIdx ) syntax structure shall be the same in all slice headers of the current 

picture. 

ï The value of stRpsIdx shall be equal to the syntax element num_short_term_ref_pic_sets in the active SPS. 

ï The short-term RPS of the current picture is also referred to as the num_short_term_ref_pic_sets-th candidate 

short-term RPS in the semantics specified in the remainder of this clause. 

ï Otherwise (present in an SPS), the st_ref_pic_set( stRpsIdx ) syntax structure specifies a candidate short-term RPS, 

and the term "the current picture" in the semantics specified in the remainder of this clause refers to each picture that 

has short_term_ref_pic_set_idx equal to stRpsIdx in a CVS that has the SPS as the active SPS. 

inter_ref_pic_set_prediction_flag equal to 1 specifies that the stRpsIdx-th candidate short-term RPS is predicted from 

another candidate short-term RPS, which is referred to as the source candidate short-term RPS. When 

inter_ref_pic_set_prediction_flag is not present, it is inferred to be equal to 0. 

delta_idx_minus1 plus 1 specifies the difference between the value of stRpsIdx and the index, into the list of the candidate 

short-term RPSs specified in the SPS, of the source candidate short-term RPS. The value of delta_idx_minus1 shall be in 

the range of 0 to stRpsIdx ī 1, inclusive. When delta_idx_minus1 is not present, it is inferred to be equal to 0. 

The variable RefRpsIdx is derived as follows: 

RefRpsIdx = stRpsIdx ī ( delta_idx_minus1 + 1 ) 

 (7-59) 

delta_rps_sign and abs_delta_rps_minus1 together specify the value of the variable deltaRps as follows: 

deltaRps = ( 1 ī 2 * delta_rps_sign ) * ( abs_delta_rps_minus1 + 1 ) (7-60) 

The variable deltaRps represents the value to be added to the picture order count difference values of the source candidate 

short-term RPS to obtain the picture order count difference values of the stRpsIdx-th candidate short-term RPS. The value 

of abs_delta_rps_minus1 shall be in the range of 0 to 215 ī 1, inclusive. 

used_by_curr_pic_flag[ j ] equal to 0 specifies that the j-th entry in the source candidate short-term RPS is not used for 

reference by the current picture. 

use_delta_flag[ j ] equal to 1 specifies that the j-th entry in the source candidate short-term RPS is included in the stRpsIdx-

th candidate short-term RPS. use_delta_flag[ j ] equal to 0 specifies that the j-th entry in the source candidate short-term 

RPS is not included in the stRpsIdx-th candidate short-term RPS. When use_delta_flag[ j ] is not present, its value is 

inferred to be equal to 1. 

When inter_ref_pic_set_prediction_flag is equal to 1, the variables DeltaPocS0[ stRpsIdx ][  i ], 

UsedByCurrPicS0[ stRpsIdx ][  i ], NumNegativePics[ stRpsIdx ], DeltaPocS1[ stRpsIdx ][  i ], 

UsedByCurrPicS1[ stRpsIdx ][  i ] and NumPositivePics[ stRpsIdx ] are derived as follows: 

i = 0 

for( j = NumPositivePics[ RefRpsIdx ] ī 1; j  >=  0; jī ī ) { 

 dPoc = DeltaPocS1[ RefRpsIdx ][  j ] + deltaRps 



 

  Rec. ITU-T H.265 v8 (08/2021) 103 

 if( dPoc < 0  &&  use_delta_flag[ NumNegativePics[ RefRpsIdx ] + j ] ) {  

  DeltaPocS0[ stRpsIdx ][  i ] = dPoc 

  UsedByCurrPicS0[ stRpsIdx ][  i++ ] = 

used_by_curr_pic_flag[ NumNegativePics[ RefRpsIdx ] + j ] 

 }  

}  

if( deltaRps < 0  &&  use_delta_flag[ NumDeltaPocs[ RefRpsIdx ] ] ) {  (7-61) 

 DeltaPocS0[ stRpsIdx ][  i ] = deltaRps 

 UsedByCurrPicS0[ stRpsIdx ][  i++ ] = used_by_curr_pic_flag[ NumDeltaPocs[ RefRpsIdx ] ]  

}  

for( j = 0; j < NumNegativePics[ RefRpsIdx ]; j++ ) {  

 dPoc = DeltaPocS0[ RefRpsIdx ][  j ] + deltaRps 

 if( dPoc < 0  &&  use_delta_flag[ j ] ) {  

  DeltaPocS0[ stRpsIdx ][  i ] = dPoc 

  UsedByCurrPicS0[ stRpsIdx ][  i++ ] = used_by_curr_pic_flag[ j ] 

 }  

}  

NumNegativePics[ stRpsIdx ] = i 

i = 0 

for( j = NumNegativePics[ RefRpsIdx ] ī 1; j  >=  0; jī ī ) { 

 dPoc = DeltaPocS0[ RefRpsIdx ][  j ] + deltaRps 

 if( dPoc > 0  &&  use_delta_flag[ j ] ) {  

  DeltaPocS1[ stRpsIdx ][  i ] = dPoc 

  UsedByCurrPicS1[ stRpsIdx ][  i++ ] = used_by_curr_pic_flag[ j ] 

 }  

}  

if( deltaRps > 0  &&  use_delta_flag[ NumDeltaPocs[ RefRpsIdx ] ] ) {  (7-62) 

 DeltaPocS1[ stRpsIdx ][  i ] = deltaRps 

 UsedByCurrPicS1[ stRpsIdx ][  i++ ] = used_by_curr_pic_flag[ NumDeltaPocs[ RefRpsIdx ] ] 

}  

for( j = 0; j < NumPositivePics[ RefRpsIdx ]; j++) {  

 dPoc = DeltaPocS1[ RefRpsIdx ][  j ] + deltaRps 

 if( dPoc > 0  &&  use_delta_flag[ NumNegativePics[ RefRpsIdx ] + j ] ) {  

  DeltaPocS1[ stRpsIdx ][  i ] = dPoc 

  UsedByCurrPicS1[ stRpsIdx ][  i++ ] = 

used_by_curr_pic_flag[ NumNegativePics[ RefRpsIdx ] + j ] 

 }  

}  

NumPositivePics[ stRpsIdx ] = i 

num_negative_pics specifies the number of entries in the stRpsIdx-th candidate short-term RPS that have picture order 

count values less than the picture order count value of the current picture. When nuh_layer_id of the current picture is 

equal to 0, the value of num_negative_pics shall be in the range of 0 to 

sps_max_dec_pic_buffering_minus1[ sps_max_sub_layers_minus1 ], inclusive. 

num_positive_pics specifies the number of entries in the stRpsIdx-th candidate short-term RPS that have picture order 

count values greater than the picture order count value of the current picture. When nuh_layer_id of the current picture is 

equal to 0, the value of num_positive_pics shall be in the range of 0 to 

sps_max_dec_pic_buffering_minus1[ sps_max_sub_layers_minus1 ] ī num_negative_pics, inclusive. 

delta_poc_s0_minus1[ i ] plus 1, when i is equal to 0, specifies the difference between the picture order count values of 

the current picture and the i-th entry in the stRpsIdx-th candidate short-term RPS that has picture order count value less 

than that of the current picture, or, when i is greater than 0, specifies the difference between the picture order count values 

of the ( i ī 1 )-th entry and the i-th entry in the stRpsIdx-th candidate short-term RPS that have picture order count values 

less than the picture order count value of the current picture. The value of delta_poc_s0_minus1[ i ] shall be in the range 

of 0 to 215 ī 1, inclusive. 

used_by_curr_pic_s0_flag[ i ] equal to 0 specifies that the i-th entry in the stRpsIdx-th candidate short-term RPS that has 

picture order count value less than that of the current picture is not used for reference by the current picture. 



 

104 Rec. ITU-T H.265 v8 (08/2021) 

delta_poc_s1_minus1[ i ] plus 1, when i is equal to 0, specifies the difference between the picture order count values of 

the current picture and the i-th entry in the stRpsIdx-th candidate short-term RPS that has picture order count value greater 

than that of the current picture, or, when i is greater than 0, specifies the difference between the picture order count values 

of the i-th entry and the ( i ī 1 )-th entry in the current candidate short-term RPS that have picture order count values 

greater than the picture order count value of the current picture. The value of delta_poc_s1_minus1[ i ] shall be in the range 

of 0 to 215 ī 1, inclusive. 

used_by_curr_pic_s1_flag[ i ] equal to 0 specifies that the i-th entry in the current candidate short-term RPS that has 

picture order count value greater than that of the current picture is not used for reference by the current picture. 

When inter_ref_pic_set_prediction_flag is equal to 0, the variables NumNegativePics[ stRpsIdx ], 

NumPositivePics[ stRpsIdx ], UsedByCurrPicS0[ stRpsIdx ][ i ], UsedByCurrPicS1[ stRpsIdx ][  i ], 

DeltaPocS0[ stRpsIdx ][ i ] and DeltaPocS1[ stRpsIdx ][  i ] are derived as follows: 

NumNegativePics[ stRpsIdx ] = num_negative_pics 

 (7-63) 

NumPositivePics[ stRpsIdx ] = num_positive_pics 

 (7-64) 

UsedByCurrPicS0[ stRpsIdx ][ i ] = used_by_curr_pic_s0_flag[ i ] (7-65) 

UsedByCurrPicS1[ stRpsIdx ][  i ] = used_by_curr_pic_s1_flag[ i ] (7-66) 

ï If i is equal to 0, the following applies: 

DeltaPocS0[ stRpsIdx ][  i ] = ī( delta_poc_s0_minus1[ i ] + 1 ) (7-67) 

DeltaPocS1[ stRpsIdx ][  i ] = delta_poc_s1_minus1[ i ] + 1 (7-68) 

ï Otherwise, the following applies: 

DeltaPocS0[ stRpsIdx ][  i ] = DeltaPocS0[ stRpsIdx ][  i ī 1 ] ī ( delta_poc_s0_minus1[ i ] + 1 )

 (7-69) 

DeltaPocS1[ stRpsIdx ][  i ] = DeltaPocS1[ stRpsIdx ][  i ī 1 ] + ( delta_poc_s1_minus1[ i ] + 1 )

 (7-70) 

The variable NumDeltaPocs[ stRpsIdx ] is derived as follows: 

NumDeltaPocs[ stRpsIdx ] = NumNegativePics[ stRpsIdx ] + NumPositivePics[ stRpsIdx ] (7-71) 

7.4.9 Slice segment data semantics 

7.4.9.1 General slice segment data semantics 

end_of_slice_segment_flag equal to 0 specifies that another CTU is following in the slice. end_of_slice_segment_flag 

equal to 1 specifies the end of the slice segment, i.e., that no further CTU follows in the slice segment. 

end_of_subset_one_bit shall be equal to 1. 

7.4.9.2 Coding tree unit semantics 

The CTU is the root node of the coding quadtree structure. 

7.4.9.3 Sample adaptive offset semantics 

sao_merge_left_flag equal to 1 specifies that the syntax elements sao_type_idx_luma, sao_type_idx_chroma, 

sao_band_position, sao_eo_class_luma, sao_eo_class_chroma, sao_offset_abs and sao_offset_sign are derived from the 

corresponding syntax elements of the left CTB. sao_merge_left_flag equal to 0 specifies that these syntax elements are not 

derived from the corresponding syntax elements of the left CTB. When sao_merge_left_flag is not present, it is inferred to 

be equal to 0. 

sao_merge_up_flag equal to 1 specifies that the syntax elements sao_type_idx_luma, sao_type_idx_chroma, 

sao_band_position, sao_eo_class_luma, sao_eo_class_chroma, sao_offset_abs and sao_offset_sign are derived from the 

corresponding syntax elements of the above CTB. sao_merge_up_flag equal to 0 specifies that these syntax elements are 



 

  Rec. ITU-T H.265 v8 (08/2021) 105 

not derived from the corresponding syntax elements of the above CTB. When sao_merge_up_flag is not present, it is 

inferred to be equal to 0. 

sao_type_idx_luma specifies the offset type for the luma component. The array SaoTypeIdx[ cIdx ][  rx ][  ry ] specifies 

the offset type as specified in Table 7-8 for the CTB at the location ( rx, ry ) for the colour component cIdx. The value of 

SaoTypeIdx[ 0 ][  rx ][  ry ] is derived as follows: 

ï If sao_type_idx_luma is present, SaoTypeIdx[ 0 ][  rx ][  ry ] is set equal to sao_type_idx_luma. 

ï Otherwise (sao_type_idx_luma is not present), SaoTypeIdx[ 0 ][  rx ][  ry ] is derived as follows: 

ï If sao_merge_left_flag is equal to 1, SaoTypeIdx[ 0 ][  rx ][  ry ] is set equal to SaoTypeIdx[ 0 ][  rx ī 1 ][  ry ]. 

ï Otherwise, if sao_merge_up_flag is equal to 1, SaoTypeIdx[ 0 ][  rx ][  ry ] is set equal to 

SaoTypeIdx[ 0 ][  rx ][  ry ī 1 ]. 

ï Otherwise, SaoTypeIdx[ 0 ][  rx ][  ry ] is set equal to 0. 

sao_type_idx_chroma specifies the offset type for the chroma components. The values of SaoTypeIdx[ cIdx ][  rx ][  ry ] 

are derived as follows for cIdx equal to 1..2: 

ï If sao_type_idx_chroma is present, SaoTypeIdx[ cIdx ][  rx ][  ry ] is set equal to sao_type_idx_chroma. 

ï Otherwise (sao_type_idx_chroma is not present), SaoTypeIdx[ cIdx ][  rx ][  ry ] is derived as follows: 

ï If sao_merge_left_flag is equal to 1, SaoTypeIdx[ cIdx ][  rx ][  ry ] is set equal to 

SaoTypeIdx[ cIdx ][  rx ī 1 ][  ry ]. 

ï Otherwise, if sao_merge_up_flag is equal to 1, SaoTypeIdx[ cIdx ][  rx ][  ry ] is set equal to 

SaoTypeIdx[ cIdx ][  rx ][  ry ī 1 ]. 

ï Otherwise, SaoTypeIdx[ cIdx ][  rx ][  ry ] is set equal to 0. 

Table 7-8 ï Specification of the SAO type 

SaoTypeIdx[ cIdx ][  rx  ][  ry  ] SAO type (informative) 

0 Not applied 

1 Band offset 

2 Edge offset 

 

sao_offset_abs[ cIdx ][  rx ][  ry ][  i ] specifies the offset value of i-th category for the CTB at the location ( rx, ry ) for the 

colour component cIdx. 

When sao_offset_abs[ cIdx ][  rx ][  ry ][  i ] is not present, it is inferred as follows: 

ï If sao_merge_left_flag is equal to 1, sao_offset_abs[ cIdx ][  rx ][  ry ][  i ] is inferred to be equal to 

sao_offset_abs[ cIdx ][  rx ī 1 ][  ry ][  i ]. 

ï Otherwise, if sao_merge_up_flag is equal to 1, sao_offset_abs[ cIdx ][  rx ][  ry ][  i ] is inferred to be equal to 

sao_offset_abs[ cIdx ][  rx ][  ry ī 1 ][  i ]. 

ï Otherwise, sao_offset_abs[ cIdx ][  rx ][  ry ][  i ] is inferred to be equal to 0. 

sao_offset_sign[ cIdx ][  rx ][  ry ][ i ] specifies the sign of the offset value of i-th category for the CTB at the location 

( rx, ry ) for the colour component cIdx. 

When sao_offset_sign[ cIdx ][  rx ][  ry ][  i ] is not present, it is inferred as follows: 

ï If sao_merge_left_flag is equal to 1, sao_offset_sign[ cIdx ][  rx ][  ry ][ i ] is inferred to be equal to 

sao_offset_sign[ cIdx ][  rx ī 1 ][  ry ][ i ]. 

ï Otherwise, if sao_merge_up_flag is equal to 1, sao_offset_sign[ cIdx ][  rx ][  ry ][  i ] is inferred to be equal to 

sao_offset_sign[ cIdx ][  rx ][  ry ī 1 ][  i ]. 

ï Otherwise, if SaoTypeIdx[ cIdx ][  rx ][  ry ] is equal to 2, the following applies: 

ï If i is equal to 0 or 1, sao_offset_sign[ cIdx ][  rx ][  ry ][  i ] is inferred to be equal 0. 

ï Otherwise (i is equal to 2 or 3), sao_offset_sign[ cIdx ][  rx ][  ry ][  i ] is inferred to be equal 1. 

ï Otherwise, sao_offset_sign[ cIdx ][  rx ][  ry ][  i ] is inferred to be equal 0. 



 

106 Rec. ITU-T H.265 v8 (08/2021) 

The variable log2OffsetScale is derived as follows: 

ï If cIdx is equal to 0, log2OffsetScale is set equal to log2_sao_offset_scale_luma. 

ï Otherwise (cIdx is equal to 1 or 2), log2OffsetScale is set equal to log2_sao_offset_scale_chroma. 

The list SaoOffsetVal[ cIdx ][  rx ][ ry ][  i ] for i ranging from 0 to 4, inclusive, is derived as follows: 

SaoOffsetVal[ cIdx ][  rx ][  ry ][  0 ] = 0 

for( i = 0; i < 4; i++ ) 

SaoOffsetVal[ cIdx ][  rx ][  ry ][  i + 1 ] = ( 1 ī 2 *  sao_offset_sign[ cIdx ][  rx ][  ry ][  i ] ) *  (7-72) 

  sao_offset_abs[ cIdx ][  rx ][  ry ][  i ]  <<  log2OffsetScale 

sao_band_position[ cIdx ][  rx ][  ry ] specifies the displacement of the band offset of the sample range when 

SaoTypeIdx[ cIdx ][  rx ][  ry ] is equal to 1. 

When sao_band_position[ cIdx ][  rx ][  ry ] is not present, it is inferred as follows: 

ï If sao_merge_left_flag is equal to 1, sao_band_position[ cIdx ][  rx ][  ry ] is inferred to be equal to 

sao_band_position[ cIdx ][  rx ī 1 ][  ry ]. 

ï Otherwise, if sao_merge_up_flag is equal to 1, sao_band_position[ cIdx ][  rx ][  ry ] is inferred to be equal to 

sao_band_position[ cIdx ][  rx ][  ry ī 1 ]. 

ï Otherwise, sao_band_position[ cIdx ][  rx ][  ry ] is inferred to be equal to 0. 

sao_eo_class_luma specifies the edge offset class for the luma component. The array SaoEoClass[ cIdx ][  rx ][  ry ] 

specifies the offset type as specified in Table 7-9 for the CTB at the location ( rx, ry ) for the colour component cIdx. The 

value of SaoEoClass[ 0 ][  rx ][  ry ] is derived as follows: 

ï If sao_eo_class_luma is present, SaoEoClass[ 0 ][  rx ][  ry ] is set equal to sao_eo_class_luma. 

ï Otherwise (sao_eo_class_luma is not present), SaoEoClass[ 0 ][  rx ][  ry ] is derived as follows: 

ï If sao_merge_left_flag is equal to 1, SaoEoClass[ 0 ][  rx ][  ry ] is set equal to SaoEoClass[ 0 ][  rx ī 1 ][  ry ]. 

ï Otherwise, if sao_merge_up_flag is equal to 1, SaoEoClass[ 0 ][  rx ][  ry ] is set equal to 

SaoEoClass[ 0 ][  rx ][  ry ī 1 ]. 

ï Otherwise, SaoEoClass[ 0 ][  rx ][  ry ] is set equal to 0. 

sao_eo_class_chroma specifies the edge offset class for the chroma components. The values of 

SaoEoClass[ cIdx ][  rx ][  ry ] are derived as follows for cIdx equal to 1..2: 

ï If sao_eo_class_chroma is present, SaoEoClass[ cIdx ][  rx ][  ry ] is set equal to sao_eo_class_chroma. 

ï Otherwise (sao_eo_class_chroma is not present), SaoEoClass[ cIdx ][  rx ][  ry ] is derived as follows: 

ï If sao_merge_left_flag is equal to 1, SaoEoClass[ cIdx ][  rx ][  ry ] is set equal to 

SaoEoClass[ cIdx ][  rx ī 1 ][  ry ]. 

ï Otherwise, if sao_merge_up_flag is equal to 1, SaoEoClass[ cIdx ][  rx ][  ry ] is set equal to 

SaoEoClass[ cIdx ][  rx ][  ry ī 1 ]. 

ï Otherwise, SaoEoClass[ cIdx ][  rx ][  ry ] is set equal to 0. 

Table 7-9 ï Specification of the SAO edge offset class 

SaoEoClass[ cIdx ][  rx  ][  ry  ] SAO edge offset class (informative) 

0 1D 0-degree edge offset 

1 1D 90-degree edge offset 

2 1D 135-degree edge offset 

3 1D 45-degree edge offset 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 107 

7.4.9.4 Coding quadtree semantics 

split_cu_flag[ x0 ][  y0 ] specifies whether a coding unit is split into coding units with half horizontal and vertical size. The 

array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered coding block relative to 

the top-left luma sample of the picture. 

When split_cu_flag[ x0 ][  y0 ] is not present, the following applies: 

ï If log2CbSize is greater than MinCbLog2SizeY, the value of split_cu_flag[ x0 ][  y0 ] is inferred to be equal to 1. 

ï Otherwise (log2CbSize is equal to MinCbLog2SizeY), the value of split_cu_flag[ x0 ][  y0 ] is inferred to be equal to 0. 

The array CtDepth[ x ][  y ] specifies the coding tree depth for a luma coding block covering the location ( x, y ). When 

split_cu_flag[ x0 ][  y0 ] is equal to 0, CtDepth[ x ][  y ] is inferred to be equal to cqtDepth for x = x0..x0 + nCbS ī 1 and 

y = y0..y0 + nCbS ī 1. 

7.4.9.5 Coding unit semantics 

cu_transquant_bypass_flag equal to 1 specifies that the scaling and transform process as specified in clause 8.6 and the 

in-loop filter process as specified in clause 8.7 are bypassed. When cu_transquant_bypass_flag is not present, it is inferred 

to be equal to 0. 

cu_skip_flag[ x0 ][  y0 ] equal to 1 specifies that for the current coding unit, when decoding a P or B slice, no more syntax 

elements except the merging candidate index merge_idx[ x0 ][  y0 ] are parsed after cu_skip_flag[ x0 ][  y0 ]. 

cu_skip_flag[ x0 ][  y0 ] equal to 0 specifies that the coding unit is not skipped. The array indices x0, y0 specify the location 

( x0, y0 ) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture. 

When cu_skip_flag[ x0 ][  y0 ] is not present, it is inferred to be equal to 0. 

pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter prediction mode. pred_mode_flag equal 

to 1 specifies that the current coding unit is coded in intra prediction mode. The variable CuPredMode[ x ][  y ] is derived 

as follows for x = x0..x0 + nCbS ī 1 and y = y0..y0 + nCbS ī 1: 

ï If pred_mode_flag is equal to 0, CuPredMode[ x ][  y ] is set equal to MODE_INTER. 

ï Otherwise (pred_mode_flag is equal to 1), CuPredMode[ x ][  y ] is set equal to MODE_INTRA. 

When pred_mode_flag is not present, the variable CuPredMode[ x ][  y ] is derived as follows for x = x0..x0 + nCbS ī 1 

and y = y0..y0 + nCbS ī 1: 

ï If slice_type is equal to I, CuPredMode[ x ][  y ] is inferred to be equal to MODE_INTRA. 

ï Otherwise (slice_type is equal to P or B), when cu_skip_flag[ x0 ][  y0 ] is equal to 1, CuPredMode[ x ][  y ] is inferred 

to be equal to MODE_SKIP. 

palette_mode_flag[ x0 ][  y0 ] equal to 1 specifies that the current coding unit is coded using the palette mode. 

palette_mode_flag[ x0 ][  y0 ] equal to 0 specifies that the current coding unit is not coded using the palette mode. The 

array indices x0 and y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered coding block relative 

to the top-left luma sample of the picture. 

When palette_mode_flag[ x0 ][  y0 ] is not present, it is inferred to be equal to 0. 

part_mode specifies the partitioning mode of the current coding unit. The semantics of part_mode depend on 

CuPredMode[ x0 ][  y0 ]. The variables PartMode and IntraSplitFlag are derived from the value of part_mode as defined 

in Table 7-10. 

The value of part_mode is restricted as follows: 

ï If CuPredMode[ x0 ][  y0 ] is equal to MODE_INTRA, part_mode shall be equal to 0 or 1. 

ï Otherwise (CuPredMode[ x0 ][  y0 ] is equal to MODE_INTER), the following applies: 

ï If log2CbSize is greater than MinCbLog2SizeY and amp_enabled_flag is equal to 1, part_mode shall be in the 

range of 0 to 2, inclusive, or in the range of 4 to 7, inclusive. 

ï Otherwise, if log2CbSize is greater than MinCbLog2SizeY and amp_enabled_flag is equal to 0, or log2CbSize is 

equal to 3, part_mode shall be in the range of 0 to 2, inclusive. 

ï Otherwise (log2CbSize is greater than 3 and equal to MinCbLog2SizeY), the value of part_mode shall be in the 

range of 0 to 3, inclusive. 

When part_mode is not present, the variables PartMode and IntraSplitFlag are derived as follows: 



 

108 Rec. ITU-T H.265 v8 (08/2021) 

ï PartMode is set equal to PART_2Nx2N. 

ï IntraSplitFlag is set equal to 0. 

pcm_flag[ x0 ][  y0 ] equal to 1 specifies that the pcm_sample( ) syntax structure is present and the transform_tree( ) syntax 

structure is not present in the coding unit including the luma coding block at the location ( x0, y0 ). pcm_flag[ x0 ][  y0 ] 

equal to 0 specifies that pcm_sample( ) syntax structure is not present. When pcm_flag[ x0 ][  y0 ] is not present, it is 

inferred to be equal to 0. 

The value of pcm_flag[ x0 + i ][  y0 + j ] with i = 1..nCbS ī 1, j = 1..nCbS ī 1 is inferred to be equal to 

pcm_flag[ x0 ][ y0 ]. 

pcm_alignment_zero_bit is a bit equal to 0. 

Table 7-10 ï Name association to prediction mode and partitioning type 

CuPredMode[ x0 ][  y0 ] part_mode IntraSplitFlag  PartMode 

MODE_INTRA 
0 0 PART_2Nx2N 

1 1 PART_NxN 

MODE_INTER 

0 0 PART_2Nx2N 

1 0 PART_2NxN 

2 0 PART_Nx2N 

3 0 PART_NxN 

4 0 PART_2NxnU 

5 0 PART_2NxnD 

6 0 PART_nLx2N 

7 0 PART_nRx2N 

 

The syntax elements prev_intra_luma_pred_flag[ x0 + i ][  y0 + j ], mpm_idx[ x0 + i ][  y0 + j ] and 

rem_intra_luma_pred_mode[ x0 + i ][  y0 + j ] specify the intra prediction mode for luma samples. The array indices 

x0 + i, y0 + j specify the location ( x0 + i, y0 + j ) of the top-left luma sample of the considered prediction block relative 

to the top-left luma sample of the picture. When prev_intra_luma_pred_flag[ x0 + i ][  y0 + j ] is equal to 1, the intra 

prediction mode is inferred from a neighbouring intra-predicted prediction unit according to clause 8.4.2. 

intra_chroma_pred_mode[ x0 ][  y0 ] specifies the intra prediction mode for chroma samples. The array indices x0, y0 

specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma 

sample of the picture. 

rqt_root_cbf  equal to 1 specifies that the transform_tree( ) syntax structure is present for the current coding unit. 

rqt_root_cbf equal to 0 specifies that the transform_tree( ) syntax structure is not present for the current coding unit. 

When rqt_root_cbf is not present, its value is inferred to be equal to 1. 

7.4.9.6 Prediction unit semantics 

mvp_l0_flag[ x0 ][  y0 ] specifies the motion vector predictor index of list 0 where x0, y0 specify the location ( x0, y0 ) of 

the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture. 

When mvp_l0_flag[ x0 ][  y0 ] is not present, it is inferred to be equal to 0. 

mvp_l1_flag[ x0 ][  y0 ] has the same semantics as mvp_l0_flag, with l0 and list 0 replaced by l1 and list 1, respectively. 

merge_flag[ x0 ][  y0 ] specifies whether the inter prediction parameters for the current prediction unit are inferred from a 

neighbouring inter-predicted partition. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample 

of the considered prediction block relative to the top-left luma sample of the picture. 

When merge_flag[ x0 ][  y0 ] is not present, it is inferred as follows: 

ï If CuPredMode[ x0 ][  y0 ] is equal to MODE_SKIP, merge_flag[ x0 ][  y0 ] is inferred to be equal to 1. 

ï Otherwise, merge_flag[ x0 ][  y0 ] is inferred to be equal to 0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 109 

merge_idx[ x0 ][  y0 ] specifies the merging candidate index of the merging candidate list where x0, y0 specify the location 

( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture. 

When merge_idx[ x0 ][  y0 ] is not present, it is inferred to be equal to 0. 

inter_pred_idc[ x0 ][  y0 ] specifies whether list0, list1, or bi-prediction is used for the current prediction unit according 

to Table 7-11. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered 

prediction block relative to the top-left luma sample of the picture. 

Table 7-11 ï Name association to inter prediction mode 

inter_pred_idc Name of inter_pred_idc 

( nPbW + nPbH )  !=  12 ( nPbW + nPbH )  = =  12 

0 PRED_L0 PRED_L0 

1 PRED_L1 PRED_L1 

2 PRED_BI na 

 

When inter_pred_idc[ x0 ][  y0 ] is not present, it is inferred to be equal to PRED_L0. 

ref_idx_l0[ x0 ][  y0 ] specifies the list 0 reference picture index for the current prediction unit. The array indices x0, y0 

specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma 

sample of the picture.  

When ref_idx_l0[ x0 ][  y0 ] is not present it is inferred to be equal to 0. 

ref_idx_l1[ x0 ][  y0 ] has the same semantics as ref_idx_l0, with l0 and list 0 replaced by l1 and list 1, respectively. 

7.4.9.7 PCM sample semantics 

pcm_sample_luma[ i ] represents a coded luma sample value in the raster scan within the coding unit. The number of bits 

used to represent each of these samples is PcmBitDepthY. 

pcm_sample_chroma[ i ] represents a coded chroma sample value in the raster scan within the coding unit. The first half 

of the values represent coded Cb samples and the remaining half of the values represent coded Cr samples. The number of 

bits used to represent each of these samples is PcmBitDepthC. 

7.4.9.8 Transform tree semantics 

split_transform_flag[ x0 ][  y0 ][  trafoDepth ] specifies whether a block is split into four blocks with half horizontal and 

half vertical size for the purpose of transform coding. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left 

luma sample of the considered block relative to the top-left luma sample of the picture. The array index trafoDepth specifies 

the current subdivision level of a coding block into blocks for the purpose of transform coding. trafoDepth is equal to 0 for 

blocks that correspond to coding blocks. 

The variable interSplitFlag is derived as follows: 

ï If max_transform_hierarchy_depth_inter is equal to 0 and CuPredMode[ x0 ][  y0 ] is equal to MODE_INTER and 

PartMode is not equal to PART_2Nx2N and trafoDepth is equal to 0, interSplitFlag is set equal to 1. 

ï Otherwise, interSplitFlag is set equal to 0. 

When split_transform_flag[ x0 ][  y0 ][  trafoDepth ] is not present, it is inferred as follows: 

ï If one or more of the following conditions are true, the value of split_transform_flag[ x0 ][  y0 ][  trafoDepth ] is 

inferred to be equal to 1: 

ï log2TrafoSize is greater than MaxTbLog2SizeY. 

ï IntraSplitFlag is equal to 1 and trafoDepth is equal to 0. 

ï interSplitFlag is equal to 1. 

ï Otherwise, the value of split_transform_flag[ x0 ][  y0 ][  trafoDepth ] is inferred to be equal to 0. 

cbf_luma[ x0 ][  y0 ][  trafoDepth ] equal to 1 specifies that the luma transform block contains one or more transform 

coefficient levels not equal to 0. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the 

considered transform block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the 



 

110 Rec. ITU-T H.265 v8 (08/2021) 

current subdivision level of a coding block into blocks for the purpose of transform coding. trafoDepth is equal to 0 for 

blocks that correspond to coding blocks. 

When cbf_luma[ x0 ][  y0 ][  trafoDepth ] is not present, it is inferred to be equal to 1. 

cbf_cb[ x0 ][  y0 ][  trafoDepth ] equal to 1 specifies that the Cb transform block contains one or more transform coefficient 

levels not equal to 0. The array indices x0, y0 specify the top-left location ( x0, y0 ) of the considered transform block. The 

array index trafoDepth specifies the current subdivision level of a coding block into blocks for the purpose of transform 

coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks. 

When cbf_cb[ x0 ][  y0 ][  trafoDepth ] is not present, it is inferred to be equal to 0. 

cbf_cr[ x0 ][  y0 ][  trafoDepth ] equal to 1 specifies that the Cr transform block contains one or more transform coefficient 

levels not equal to 0. The array indices x0, y0 specify the top-left location ( x0, y0 ) of the considered transform block. The 

array index trafoDepth specifies the current subdivision level of a coding block into blocks for the purpose of transform 

coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks. 

When cbf_cr[ x0 ][  y0 ][  trafoDepth ] is not present, it is inferred to be equal to 0. 

7.4.9.9 Motion vector difference semantics 

abs_mvd_greater0_flag[ compIdx ] specifies whether the absolute value of a motion vector component difference is 

greater than 0. 

abs_mvd_greater1_flag[ compIdx ] specifies whether the absolute value of a motion vector component difference is 

greater than 1. 

When abs_mvd_greater1_flag[ compIdx ] is not present, it is inferred to be equal to 0. 

abs_mvd_minus2[ compIdx ] plus 2 specifies the absolute value of a motion vector component difference. 

When abs_mvd_minus2[ compIdx ] is not present, it is inferred to be equal to ī1. 

mvd_sign_flag[ compIdx ] specifies the sign of a motion vector component difference as follows: 

ï If mvd_sign_flag[ compIdx ] is equal to 0, the corresponding motion vector component difference has a positive value. 

ï Otherwise (mvd_sign_flag[ compIdx ] is equal to 1), the corresponding motion vector component difference has a 

negative value. 

When mvd_sign_flag[ compIdx ] is not present, it is inferred to be equal to 0. 

The motion vector difference lMvd[ compIdx ] for compIdx = 0..1 is derived as follows: 

lMvd[  compIdx ] = abs_mvd_greater0_flag[ compIdx ] *  

 ( abs_mvd_minus2[ compIdx ] + 2 ) * ( 1 ī 2 *  mvd_sign_flag[ compIdx ] ) (7-73) 

The variable MvdLX[ x0 ][  y0 ][ compIdx ], with X being 0 or 1, specifies the difference between a list X vector 

component to be used and its prediction. The value of MvdLX[ x0 ][  y0 ][ compIdx ] shall be in the range of ī215 to 215 ī 1, 

inclusive. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction 

block relative to the top-left luma sample of the picture. The horizontal motion vector component difference is assigned 

compIdx = 0 and the vertical motion vector component is assigned compIdx = 1. 

ï If refList is equal to 0, MvdL0[ x0 ][  y0 ][ compIdx ] is set equal to lMvd[ compIdx ] for compIdx = 0..1. 

ï Otherwise (refList is equal to 1), MvdL1[ x0 ][  y0 ][ compIdx ] is set equal to lMvd[ compIdx ] for compIdx = 0..1. 

7.4.9.10 Transform unit semantics 

The transform coefficient levels are represented by the arrays TransCoeffLevel[ x0 ][  y0 ][  cIdx ][  xC ][  yC ], which are 

either specified in clause 7.3.8.11 or inferred as follows. The array indices x0, y0 specify the location ( x0, y0 ) of the top-

left luma sample of the considered transform block relative to the top-left luma sample of the picture. The array index cIdx 

specifies an indicator for the colour component; it is equal to 0 for Y, 1 for Cb, and 2 for Cr. The array indices xC and yC 

specify the transform coefficient location ( xC, yC ) within the current transform block. When the value of 

TransCoeffLevel[ x0 ][  y0 ][  cIdx ][  xC ][  yC ] is not specified in clause 7.3.8.11, it is inferred to be equal to 0. 

tu_residual_act_flag[ x0 ][  y0 ] equal to 1 specifies that adaptive colour transform is applied to the residual samples of 

the current transform unit. tu_residual_act_flag[ x0 ][  y0 ] equal to 0 specifies that adaptive colour transform is not applied 

to the residual samples of the current transform unit. When tu_residual_act_flag[ x0 ][  y0 ] is not present, it is inferred to 

be equal to 0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 111 

When cu_transquant_bypass_flag is equal to 1 and bit_depth_luma_minus8 is not equal to bit_depth_chroma_minus8, the 

value of tu_residual_act_flag[ x0 ][  y0 ], when present, shall be equal to 0. 

7.4.9.11 Residual coding semantics 

For intra prediction, different scanning orders are used. The variable scanIdx specifies which scan order is used where 

scanIdx equal to 0 specifies an up-right diagonal scan order, scanIdx equal to 1 specifies a horizontal scan order, and 

scanIdx equal to 2 specifies a vertical scan order. The value of scanIdx is derived as follows: 

ï If  CuPredMode[ x0 ][  y0 ] is equal to MODE_INTRA and one or more of the following conditions are true: 

ï log2TrafoSize is equal to 2. 

ï log2TrafoSize is equal to 3 and cIdx is equal to 0. 

ï log2TrafoSize is equal to 3 and ChromaArrayType is equal to 3. 

predModeIntra is derived as follows: 

ï If cIdx is equal to 0, predModeIntra is set equal to IntraPredModeY[ x0 ][  y0 ]. 

ï Otherwise, predModeIntra is set equal to IntraPredModeC. 

scanIdx is derived as follows: 

ï If predModeIntra is in the range of 6 to 14, inclusive, scanIdx is set equal to 2. 

ï Otherwise if predModeIntra is in the range of 22 to 30, inclusive, scanIdx is set equal to 1. 

ï Otherwise, scanIdx is set equal to 0. 

ï Otherwise, scanIdx is set equal to 0. 

transform_skip_flag[ x0 ][  y0 ][  cIdx ] specifies whether a transform is applied to the associated transform block or not: 

The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block relative 

to the top-left luma sample of the picture. The array index cIdx specifies an indicator for the colour component; it is equal 

to 0 for luma, equal to 1 for Cb and equal to 2 for Cr. transform_skip_flag[ x0 ][  y0 ][  cIdx ] equal to 1 specifies that no 

transform is applied to the current transform block. transform_skip_flag[ x0 ][  y0 ][  cIdx ] equal to 0 specifies that the 

decision whether transform is applied to the current transform block or not depends on other syntax elements. When 

transform_skip_flag[ x0 ][  y0 ][ cIdx ] is not present, it is inferred to be equal to 0.  

explicit_rdpcm_flag[ x0 ][  y0 ][  cIdx ] specifies whether the residual modification process for blocks using a transform 

bypass is applied to the associated transform block or not. The array indices x0, y0 specify the location ( x0, y0 ) of the 

top-left luma sample of the considered transform block relative to the top-left luma sample of the picture. The array index 

cIdx specifies an indicator for the colour component; it is equal to 0 for luma, equal to 1 for Cb and equal to 2 for Cr. 

explicit_rdpcm_flag[ x0 ][  y0 ][  cIdx ] equal to 1 specifies that the residual modification process is applied to the current 

transform block. explicit_rdpcm_flag[ x0 ][  y0 ][  cIdx ] equal to 0 specifies that no residual modification process is applied 

to the current transform block. When explicit_rdpcm_flag[ x0 ][  y0 ][  cIdx ] is not present, it is inferred to be equal to 0. 

explicit_rdpcm_dir_flag [ x0 ][  y0 ][  cIdx ] specifies the direction to be used by the residual modification process for the 

associated transform block. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the 

considered transform block relative to the top-left luma sample of the picture. The array index cIdx specifies an indicator 

for the colour component; it is equal to 0 for luma, equal to 1 for Cb and equal to 2 for Cr. 

last_sig_coeff_x_prefix specifies the prefix of the column position of the last significant coefficient in scanning order 

within a transform block. The values of last_sig_coeff_x_prefix shall be in the range of 0 to ( log2TrafoSize  <<  1 ) ī 1, 

inclusive. 

last_sig_coeff_y_prefix specifies the prefix of the row position of the last significant coefficient in scanning order within 

a transform block. The values of last_sig_coeff_y_prefix shall be in the range of 0 to ( log2TrafoSize  <<  1 ) ī 1, inclusive. 

last_sig_coeff_x_suffix specifies the suffix of the column position of the last significant coefficient in scanning order 

within a transform block. The values of last_sig_coeff_x_suffix shall be in the range of 0 to 

( 1  <<  ( ( last_sig_coeff_x_prefix  >>  1 ) ī 1 ) ) ī 1, inclusive. 

The column position of the last significant coefficient in scanning order within a transform block LastSignificantCoeffX 

is derived as follows: 

ï If last_sig_coeff_x_suffix is not present, the following applies: 

LastSignificantCoeffX = last_sig_coeff_x_prefix 

 (7-74) 



 

112 Rec. ITU-T H.265 v8 (08/2021) 

ï Otherwise (last_sig_coeff_x_suffix is present), the following applies: 

LastSignificantCoeffX = ( 1  <<  ( (last_sig_coeff_x_prefix  >>  1 ) ī 1 ) ) * (7-75) 

   ( 2 + (last_sig_coeff_x_prefix & 1 ) ) + last_sig_coeff_x_suffix 

last_sig_coeff_y_suffix specifies the suffix of the row position of the last significant coefficient in scanning order within 

a transform block. The values of last_sig_coeff_y_suffix shall be in the range of 0 to 

( 1  <<  ( ( last_sig_coeff_y_prefix  >>  1 ) ī 1 ) ) ī 1, inclusive. 

The row position of the last significant coefficient in scanning order within a transform block LastSignificantCoeffY is 

derived as follows: 

ï If last_sig_coeff_y_suffix is not present, the following applies: 

LastSignificantCoeffY = last_sig_coeff_y_prefix 

 (7-76) 

ï Otherwise (last_sig_coeff_y_suffix is present), the following applies: 

LastSignificantCoeffY = ( 1  <<  ( ( last_sig_coeff_y_prefix  >>  1 ) ī 1 ) ) * (7-77) 

   ( 2 + ( last_sig_coeff_y_prefix & 1 ) ) + last_sig_coeff_y_suffix 

When scanIdx is equal to 2, the coordinates are swapped as follows: 

( LastSignificantCoeffX, LastSignificantCoeffY ) = 

   Swap( LastSignificantCoeffX, LastSignificantCoeffY ) (7-78) 

coded_sub_block_flag[ xS ][  yS ] specifies the following for the sub-block at location ( xS, yS ) within the current 

transform block, where a sub-block is a (4x4) array of 16 transform coefficient levels: 

ï If coded_sub_block_flag[ xS ][  yS ] is equal to 0, the 16 transform coefficient levels of the sub-block at location 

( xS, yS ) are inferred to be equal to 0. 

ï Otherwise (coded_sub_block_flag[ xS ][  yS ] is equal to 1), the following applies: 

ï If ( xS, yS ) is equal to ( 0, 0 ) and ( LastSignificantCoeffX, LastSignificantCoeffY ) is not equal to ( 0, 0 ), at 

least one of the 16 sig_coeff_flag syntax elements is present for the sub-block at location ( xS, yS ). 

ï Otherwise, at least one of the 16 transform coefficient levels of the sub-block at location ( xS, yS ) has a non-

zero value. 

When coded_sub_block_flag[ xS ][  yS ] is not present, it is inferred as follows: 

ï If one or more of the following conditions are true, coded_sub_block_flag[ xS ][  yS ] is inferred to be equal to 1: 

ï ( xS, yS ) is equal to ( 0, 0 ). 

ï ( xS, yS ) is equal to ( LastSignificantCoeffX  >>  2, LastSignificantCoeffY  >>  2 ). 

ï Otherwise, coded_sub_block_flag[ xS ][  yS ] is inferred to be equal to 0. 

sig_coeff_flag[ xC ][  yC ] specifies for the transform coefficient location ( xC, yC ) within the current transform block 

whether the corresponding transform coefficient level at the location ( xC, yC ) is non-zero as follows: 

ï If sig_coeff_flag[ xC ][  yC ] is equal to 0, the transform coefficient level at the location ( xC, yC ) is set equal to 0. 

ï Otherwise (sig_coeff_flag[ xC ][  yC ] is equal to 1), the transform coefficient level at the location ( xC, yC ) has a 

non-zero value. 

When sig_coeff_flag[ xC ][  yC ] is not present, it is inferred as follows: 

ï If ( xC, yC ) is the last significant location ( LastSignificantCoeffX, LastSignificantCoeffY ) in scan order or all of the 

following conditions are true, sig_coeff_flag[ xC ][  yC ] is inferred to be equal to 1: 

ï ( xC & 3, yC & 3 ) is equal to ( 0, 0 ). 

ï inferSbDcSigCoeffFlag is equal to 1. 

ï coded_sub_block_flag[ xS ][  yS ] is equal to 1. 

ï Otherwise, sig_coeff_flag[ xC ][  yC ] is inferred to be equal to 0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 113 

coeff_abs_level_greater1_flag[ n ] specifies for the scanning position n whether there are absolute values of transform 

coefficient levels greater than 1. 

When coeff_abs_level_greater1_flag[ n ] is not present, it is inferred to be equal to 0. 

coeff_abs_level_greater2_flag[ n ] specifies for the scanning position n whether there are absolute values of transform 

coefficient levels greater than 2. 

When coeff_abs_level_greater2_flag[ n ] is not present, it is inferred to be equal to 0. 

coeff_sign_flag[ n ] specifies the sign of a transform coefficient level for the scanning position n as follows: 

ï If coeff_sign_flag[ n ] is equal to 0, the corresponding transform coefficient level has a positive value. 

ï Otherwise (coeff_sign_flag[ n ] is equal to 1), the corresponding transform coefficient level has a negative value. 

When coeff_sign_flag[ n ] is not present, it is inferred to be equal to 0. 

coeff_abs_level_remaining[ n ] is the remaining absolute value of a transform coefficient level that is coded with Golomb-

Rice code at the scanning position n. When coeff_abs_level_remaining[ n ] is not present, it is inferred to be equal to 0. 

It is a requirement of bitstream conformance that the value of coeff_abs_level_remaining[ n ] shall be constrained such 

that the corresponding value of TransCoeffLevel[ x0 ][  y0 ][  cIdx ][  xC ][  yC ] is in the range of CoeffMinY to CoeffMaxY, 

inclusive, for cIdx equal to 0 and in the range of CoeffMinC to CoeffMaxC, inclusive, for cIdx not equal to 0. 

7.4.9.12 Cross-component prediction semantics 

log2_res_scale_abs_plus1[ c ] minus 1 specifies the base 2 logarithm of the magnitude of the scaling factor ResScaleVal 

used in cross-component residual prediction. When not present, log2_res_scale_abs_plus1 is inferred to be equal to 0. 

res_scale_sign_flag[ c ] specifies the sign of the scaling factor used in cross-component residual prediction as follows: 

ï If res_scale_sign_flag[ c ] is equal to 0, the corresponding ResScaleVal has a positive value. 

ï Otherwise (res_scale_sign_flag[ c ] is equal to 1), the corresponding ResScaleVal has a negative value. 

The variable ResScaleVal[ cIdx ][  x0 ][  y0 ] specifies the scaling factor used in cross-component residual prediction. The 

array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block relative to 

the top-left luma sample of the picture. The array index cIdx specifies an indicator for the colour component; it is equal to 

1 for Cb and equal to 2 for Cr. 

The variable ResScaleVal[ cIdx ][  x0 ][  y0 ] is derived as follows: 

ï If log2_res_scale_abs_plus1[ cIdx ī 1 ] is equal to 0, the following applies: 

ResScaleVal[ cIdx ][  x0 ][  y0 ] = 0  (7-79) 

ï Otherwise (log2_res_scale_abs_plus1[ cIdx ī 1 ] is not equal to 0), the following applies: 

ResScaleVal[ cIdx ][  x0 ][  y0 ] = ( 1  <<  ( log2_res_scale_abs_plus1[ cIdx ī 1 ] ī 1 ) ) * (7-80) 

   ( 1 ī 2 * res_scale_sign_flag[ cIdx ī 1 ] ) 

7.4.9.13 Palette semantics 

In the following semantics, the array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the 

considered coding block relative to the top-left luma sample of the picture. 

The predictor palette consists of palette entries from previous coding units that are used to predict the entries in the current 

palette. 

The variable PredictorPaletteSize specifies the size of the predictor palette. PredictorPaletteSize is derived as specified in 

clause 8.4.4.2.7. 

The variable PalettePredictorEntryReuseFlags[ i ] equal to 1 specifies that the i-th entry in the predictor palette is reused 

in the current palette. PalettePredictorEntryReuseFlags[ i ] equal to 0 specifies that the i-th entry in the predictor palette is 

not an entry in the current palette. All elements of the array PalettePredictorEntryReuseFlags[ i ] are initialized to 0. 

palette_predictor_run is used to determine the number of zeros that precede a non-zero entry in the array 

PalettePredictorEntryReuseFlags. 

It is a requirement of bitstream conformance that the value of palette_predictor_run shall be in the range of 0 to 

( PredictorPaletteSize ī predictorEntryIdx ), inclusive, where predictorEntryIdx corresponds to the current position in the 



 

114 Rec. ITU-T H.265 v8 (08/2021) 

array PalettePredictorEntryReuseFlags. The variable NumPredictedPaletteEntries specifies the number of entries in the 

current palette that are reused from the predictor palette. The value of NumPredictedPaletteEntries shall be in the range of 

0 to palette_max_size, inclusive. 

num_signalled_palette_entries specifies the number of entries in the current palette that are explicitly 

signalled. 

When num_signalled_palette_entries is not present, it is inferred to be equal to 0. 

The variable CurrentPaletteSize specifies the size of the current palette and is derived as follows: 

 CurrentPaletteSize = NumPredictedPaletteEntries + num_signalled_palette_entries (7-81) 

The value of CurrentPaletteSize shall be in the range of 0 to palette_max_size, inclusive. 

new_palette_entries[ cIdx ][  i ] specifies the value for the i-th signalled palette entry for the colour component 

cIdx. 

The variable PredictorPaletteEntries[ cIdx ][  i ] specifies the i-th element in the predictor palette for the colour 

component cIdx. 

The variable CurrentPaletteEntries[ cIdx ][  i ] specifies the i-th element in the current palette for the colour 

component cIdx and is derived as follows: 

numComps = ( ChromaArrayType  = =  0 ) ? 1 : 3 

numPredictedPaletteEntries = 0 

for( i = 0; i < PredictorPaletteSize; i++ ) 

 if( PalettePredictorEntryReuseFlags[ i ] ) {  

  for( cIdx = 0; cIdx < numComps; cIdx++ ) 

   CurrentPaletteEntries[ cIdx ][  numPredictedPaletteEntries ] = 

PredictorPaletteEntries[ cIdx ][  i ] 

  numPredictedPaletteEntries++ 

 }  

for( cIdx = 0; cIdx < numComps; cIdx++ )  (7-82) 

 for( i = 0; i < num_signalled_palette_entries; i++ ) 

  CurrentPaletteEntries[ cIdx ][  numPredictedPaletteEntries + i ] = new_palette_entries[ cIdx ][  i ] 

palette_escape_val_present_flag equal to 1 specifies that the current coding unit contains at least one escape-

coded sample. escape_val_present_flag equal to 0 specifies that there are no escape-coded samples in the current 

coding unit. When not present, the value of palette_escape_val_present_flag is inferred to be equal to 1. 

The variable MaxPaletteIndex specifies the maximum possible value for a palette index for the current coding 

unit. The value of MaxPaletteIndex is set equal to CurrentPaletteSize ī 1 + palette_escape_val_present_flag. 

num_palette_indices_minus1 plus 1 is the number of palette indices explicitly signalled or inferred for the 

current block. 

When num_palette_indices_minus1 is not present, it is inferred to be equal to 0. 

palette_idx_idc is an indication of an index to the array represented by CurrentPaletteEntries. The value of 

palette_idx_idc shall be in the range of 0 to MaxPaletteIndex, inclusive, for the first index in the block and in 

the range of 0 to ( MaxPaletteIndex ī 1 ), inclusive, for the remaining indices in the block. 

When palette_idx_idc is not present, it is inferred to be equal to 0. 

The variable PaletteIndexIdc[ i ] stores the i-th palette_idx_idc explicitly signalled or inferred. All elements of 

the array PaletteIndexIdc[ i ] are initialized to 0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 115 

copy_above_indices_for_final_run_flag equal to 1 specifies that the palette indices of the last positions in the 

coding unit are copied from the palette indices in the row above. copy_above_indices_for_final_run_flag equal 

to 0 specifies that the palette indices of the last positions in the coding unit are copied from 

PaletteIndexIdc[ num_palette_indices_minus1 ]. 

When copy_above_indices_for_final_run_flag is not present, it is inferred to be equal to 0. 

palette_transpose_flag equal to 1 specifies that the transpose process is applied to the reconstructed sample 

array at the output of palette mode decoding as specified in clause 8.4.4.2.7 in the current coding unit. 

palette_transpose_flag equal to 0 specifies that the transpose process is not applied to the reconstructed sample 

array at the output of palette mode decoding clause 8.4.4.2.7 in the current coding unit. When not present, the 

value of palette_transpose_flag is inferred to be equal to 0. 

copy_above_palette_indices_flag equal to 1 specifies that the palette index is equal to the palette index at the 

same location in the row above. copy_above_palette_indices_flag equal to 0 specifies that an indication of the 

palette index of the sample is coded in the bitstream or inferred. 

The variable CopyAboveIndicesFlag[ xC ][  yC ] equal to 1 specifies that the palette index is copied from the 

palette index in the row above. CopyAboveIndicesFlag[ xC ][  yC ] equal to 0 specifies that the palette index is 

explicitly coded in the bitstream or inferred. The array indices xC, yC specify the location ( xC, yC ) of the 

sample relative to the top-left luma sample of the picture. 

The variable PaletteIndexMap[ xC ][  yC ] specifies a palette index, which is an index to the array represented 

by CurrentPaletteEntries. The array indices xC, yC specify the location ( xC, yC ) of the sample relative to the 

top-left luma sample of the picture. The value of PaletteIndexMap[ xC ][  yC ] shall be in the range of 0 to 

MaxPaletteIndex, inclusive. 

The variable adjustedRefPaletteIndex is derived as follows: 

adjustedRefPaletteIndex = MaxPaletteIndex + 1 

log2BlkSize = Log2( nCbs ) ī 2 

if( PaletteScanPos > 0 ) { 

 xcPrev = x0 + ScanOrder[ log2BlkSize ][  3 ][  PaletteScanPos ī 1 ][  0 ] 

 ycPrev = y0 + ScanOrder[ log2BlkSize ][  3 ][  PaletteScanPos ī 1 ][  1 ] 

 if( CopyAboveIndicesFlag[ xcPrev ][  ycPrev ]  = =  0 ) 

  adjustedRefPaletteIndex = PaletteIndexMap[ xcPrev ][  ycPrev ] (7-83) 

 else 

  adjustedRefPaletteIndex = PaletteIndexMap[ xC ][  yC ī 1 ] 

When CopyAboveIndicesFlag[ xC ][  yC ] is equal to 0, the variable CurrPaletteIndex is derived as follows: 

if( CurrPaletteIndex  >=  adjustedRefPaletteIndex ) 

 CurrPaletteIndex++  (7-84) 

palette_run_prefix, when present, is used in the derivation of the variable PaletteRunMinus1. 

palette_run_suffix is used in the derivation of the variable PaletteRunMinus1. When not present, the value of 

palette_run_suffix is inferred to be equal to 0. 

When RunToEnd is equal to 0, the variable PaletteRunMinus1 is derived as follows: 

ï If PaletteMaxRunMinus1 is equal to 0, PaletteRunMinus1 is set equal to 0. 

ï Otherwise (PaletteMaxRunMinus1 is greater than 0) the following applies: 

ï If palette_run_prefix is less than 2, the following applies: 

PaletteRunMinus1 = palette_run_prefix 

 (7-85) 



 

116 Rec. ITU-T H.265 v8 (08/2021) 

ï Otherwise (palette_run_prefix is greater than or equal to 2), the following applies: 

PrefixOffset = 1  <<  ( palette_run_prefix ī 1 ) 

PaletteRunMinus1 = PrefixOffset + palette_run_suffix (7-86) 

The variable PaletteRunMinus1 is used as follows: 

ï If CopyAboveIndicesFlag[ xC ][  yC ] is equal to 0, PaletteRunMinus1 specifies the number of consecutive locations 

minus 1 with the same palette index. 

ï Otherwise, PaletteRunMinus1 specifies the number of consecutive locations minus 1 with the same palette index as 

used in the corresponding position in the row above. 

When RunToEnd is equal to 0, the variable PaletteMaxRunMinus1 represents the maximum possible value for 

PaletteRunMinus1 and it is a requirement of bitstream conformance that the value of PaletteMaxRunMinus1 shall be 

greater than or equal to 0. 

palette_escape_val specifies the quantized escape-coded sample value for a component. 

The variable PaletteEscapeVal[ cIdx ][  xC ][  yC ] specifies the escape value of a sample for which 

PaletteIndexMap[ xC ][  yC ] is equal to MaxPaletteIndex and palette_escape_val_present_flag is equal to 1. The array 

index cIdx specifies the colour component. The array indices xC, yC specify the location ( xC, yC ) of the sample relative 

to the top-left luma sample of the picture. 

It is a requirement of bitstream conformance that PaletteEscapeVal[ cIdx ][  xC ][  yC ] shall be in the range of 0 to 

(1  <<  ( BitDepthY + 1 ) ) ī 1, inclusive, for cIdx equal to 0, and in the range of 0 to (1  <<  ( BitDepthC + 1 ) ) ī 1, 

inclusive, for cIdx not equal to 0. 

7.4.9.14 Delta QP semantics 

cu_qp_delta_abs, when present, specifies the absolute value of the difference CuQpDeltaVal between the luma 

quantization parameter of the current coding unit and its prediction. 

cu_qp_delta_sign_flag, when present, specifies the sign of the difference CuQpDeltaVal between the luma quantization 

parameter of the current coding unit and its prediction. 

It is a requirement of bitstream conformance that the value of CuQpDeltaVal shall be in the range of ī( 26 + 

QpBdOffsetY / 2 ) to +( 25 + QpBdOffsetY / 2 ), inclusive. 

7.4.9.15 Chroma QP offset semantics 

cu_chroma_qp_offset_flag, when present and equal to 1, specifies that an entry in the cb_qp_offset_list[ ] is used to 

determine the value of CuQpOffsetCb and a corresponding entry in the cr_qp_offset_list[ ] is used to determine the value 

of CuQpOffsetCr. cu_chroma_qp_offset_flag equal to 0 specifies that these lists are not used to determine the values of 

CuQpOffsetCb and CuQpOffsetCr. 

cu_chroma_qp_offset_idx, when present, specifies the index into the cb_qp_offset_list[ ] and cr_qp_offset_list[ ] that is 

used to determine the value of CuQpOffsetCb and CuQpOffsetCr. When present, the value of cu_chroma_qp_offset_idx 

shall be in the range of 0 to chroma_qp_offset_list_len_minus1, inclusive. When not present, the value of 

cu_chroma_qp_offset_idx is inferred to be equal to 0. 

When cu_chroma_qp_offset_flag is present, the following applies: 

ï The variable IsCuChromaQpOffsetCoded is set equal to 1. 

ï The variables CuQpOffsetCb and CuQpOffsetCr are derived as follows: 

ï If cu_chroma_qp_offset_flag is equal to 1, the following applies: 

CuQpOffsetCb = cb_qp_offset_list[ cu_chroma_qp_offset_idx ] (7-87) 

CuQpOffsetCr = cr_qp_offset_list[ cu_chroma_qp_offset_idx ] (7-88) 

ï Otherwise (cu_chroma_qp_offset_flag is equal to 0), CuQpOffsetCb and CuQpOffsetCr are both set equal 

to 0. 

NOTE ï When cu_chroma_qp_offset_enabled_flag is equal to 0, CuQpOffsetCb and CuQpOffsetCr are not modified after being 

initialized to 0 for the slice as specified in clause 7.4.7.1. 



 

  Rec. ITU-T H.265 v8 (08/2021) 117 

8 Decoding process 

8.1 General decoding process 

8.1.1 General 

Input to this process is a bitstream. Output of this process is a list of decoded pictures. 

The decoding process is specified such that all decoders that conform to a specified profile, tier and level will produce 

numerically identical cropped decoded output pictures when invoking the decoding process associated with that profile for 

a bitstream conforming to that profile, tier and level. Any decoding process that produces identical cropped decoded output 

pictures to those produced by the process described herein (with the correct output order or output timing, as specified) 

conforms to the decoding process requirements of this Specification. 

NOTE 1 ï For the purpose of best-effort decoding, a decoder that conforms to a particular profile at a given tier and level may 

additionally decode some bitstreams conforming to a different tier, level or profile without necessarily using a decoding process that 

produces numerically identical cropped decoded output pictures to those produced by the process specified herein (without claiming 

conformance to the other profile, tier and level). 

At the beginning of decoding a coded video sequence group (CVSG), after activating the VPS RBSP that is active for the 

entire CVSG and before decoding any VCL NAL units of the CVSG, clause 8.1.2 is invoked with the CVSG as input. 

8.1.2 CVSG decoding process 

Input to this process is a CVSG. Output of this process is a list of decoded pictures. 

The layer identifier list TargetDecLayerIdList, which specifies the list of nuh_layer_id values, in increasing order of 

nuh_layer_id values, of the NAL units to be decoded, is specified as follows: 

ï If some external means, not specified in this Specification, is available to set TargetDecLayerIdList, 

TargetDecLayerIdList is set by the external means. 

ï Otherwise, if the decoding process is invoked in a bitstream conformance test as specified in clause C.1, 

TargetDecLayerIdList is set as specified in clause C.1. 

ï Otherwise, TargetDecLayerIdList contains only one nuh_layer_id value that is equal to 0. 

The variable HighestTid, which identifies the highest temporal sub-layer to be decoded, is specified as follows: 

ï If some external means, not specified in this Specification, is available to set HighestTid, HighestTid is set by the 

external means. 

ï Otherwise, if the decoding process is invoked in a bitstream conformance test as specified in clause C.1, HighestTid 

is set as specified in clause C.1. 

ï Otherwise, HighestTid is set equal to sps_max_sub_layers_minus1. 

The variable SubPicHrdFlag is specified as follows: 

ï If  the decoding process is invoked in a bitstream conformance test as specified in clause C.1, SubPicHrdFlag is set as 

specified in clause C.1. 

ï Otherwise, SubPicHrdFlag is set equal to ( SubPicHrdPreferredFlag  &&   sub_pic_hrd_params_present_flag ). 

The sub-bitstream extraction process as specified in clause 10 is applied with the CVSG, HighestTid and 

TargetDecLayerIdList as inputs, and the output is assigned to a bitstream referred to as BitstreamToDecode. 

Clause 8.1.3 is repeatedly invoked for each coded picture with nuh_layer_id equal to 0 in BitstreamToDecode in decoding 

order. 

8.1.3 Decoding process for a coded picture with nuh_layer_id equal to 0 

The decoding processes specified in this clause apply to each coded picture with nuh_layer_id equal to 0, referred to as the 

current picture and denoted by the variable CurrPic, in BitstreamToDecode. 

Depending on the value of chroma_format_idc, the number of sample arrays of the current picture is as follows: 

ï If chroma_format_idc is equal to 0, the current picture consists of 1 sample array SL. 

ï Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays SL, SCb, SCr. 



 

118 Rec. ITU-T H.265 v8 (08/2021) 

The decoding process for the current picture takes as inputs the syntax elements and upper-case variables from clause 7. 

When interpreting the semantics of each syntax element in each NAL unit, the term "the bitstream" (or part thereof, e.g., a 

CVS of the bitstream) refers to BitstreamToDecode (or part thereof). 

When the current picture is a BLA picture that has nal_unit_type equal to BLA_W_LP or is a CRA picture, the following 

applies: 

ï If some external means not specified in this Specification is available to set the variable UseAltCpbParamsFlag to a 

value, UseAltCpbParamsFlag is set equal to the value provided by the external means. 

ï Otherwise, the value of UseAltCpbParamsFlag is set equal to 0. 

When the current picture is an IRAP picture, the following applies: 

ï If the current picture is an IDR picture, a BLA picture, the first picture in the bitstream in decoding order, or the first 

picture that follows an end of sequence NAL unit in decoding order, the variable NoRaslOutputFlag is set equal to 1. 

ï Otherwise, if some external means not specified in this Specification is available to set the variable 

HandleCraAsBlaFlag to a value for the current picture, the variable HandleCraAsBlaFlag is set equal to the value 

provided by the external means and the variable NoRaslOutputFlag is set equal to HandleCraAsBlaFlag. 

ï Otherwise, the variable HandleCraAsBlaFlag is set equal to 0 and the variable NoRaslOutputFlag is set equal to 0. 

Depending on the value of separate_colour_plane_flag, the decoding process is structured as follows: 

ï If separate_colour_plane_flag is equal to 0, the decoding process is invoked a single time with the current picture 

being the output. 

ï Otherwise (separate_colour_plane_flag is equal to 1), the decoding process is invoked three times. Inputs to the 

decoding process are all NAL units of the coded picture with identical value of colour_plane_id. The decoding process 

of NAL units with a particular value of colour_plane_id is specified as if only a CVS with monochrome colour format 

with that particular value of colour_plane_id would be present in the bitstream. The output of each of the three 

decoding processes is assigned to one of the 3 sample arrays of the current picture, with the NAL units with 

colour_plane_id equal to 0, 1 and 2 being assigned to SL, SCb and SCr, respectively. 

NOTE 1 ï The variable ChromaArrayType is derived as equal to 0 when separate_colour_plane_flag is equal to 1 and 

chroma_format_idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations identical 

to that of monochrome pictures (when chroma_format_idc is equal to 0). 

The decoding process operates as follows for the current picture CurrPic: 

1. The decoding of NAL units is specified in clause 8.2. 

2. The processes in clause 8.3 specify the following decoding processes using syntax elements in the slice segment 

layer and above: 

ï Variables and functions relating to picture order count are derived as specified in clause 8.3.1. This needs 

to be invoked only for the first slice segment of a picture. 

ï The decoding process for RPS in clause 8.3.2 is invoked, wherein reference pictures may be marked as 

"unused for reference" or "used for long-term reference". This needs to be invoked only for the first slice 

segment of a picture. 

ï A picture storage buffer in the DPB is allocated for storage of the decoded sample values of the current 

picture after the invocation of the in-loop filter process as specified in clause 8.7. This version of the current 

decoded picture is referred to as the current decoded picture after the invocation of the in-loop filter process. 

When TwoVersionsOfCurrDecPicFlag is equal to 0 and pps_curr_pic_ref_enabled_flag is equal to 1, this 

picture storage buffer is marked as "used for long-term reference". When TwoVersionsOfCurrDecPicFlag 

is equal to 1, another picture storage buffer in the DPB is allocated for storage of the decoded sample values 

of the current picture immediately before the invocation of the in-loop filter process as specified in 

clause 8.7, and is marked as "used for long-term reference". This version of the current decoded picture is 

referred to as the current decoded picture before the invocation of the in-loop filter process. This needs to 

be invoked only for the first slice segment of a picture. 

NOTE 2 ï When TwoVersionsOfCurrDecPicFlag is equal to 0, there is only one version of the current decoded 

picture. In this case, if pps_curr_pic_ref_enabled_flag is equal to 1, the current decoded picture is marked as 

"used for long-term reference" during the decoding of the current picture and will be marked as "used for short-

term reference" at the end of the decoding of the current picture, otherwise it is not marked at all during the 

decoding of the current picture and will be marked as "used for short-term reference" at the end of the decoding 

of the current picture. When TwoVersionsOfCurrDecPicFlag is equal to 1, there are two versions of the current 

decoded picture, one of which is marked as "used for long-term reference" during the decoding of the current 

picture and will be marked as "unused for reference" at the end of the decoding of the current picture, and the 



 

  Rec. ITU-T H.265 v8 (08/2021) 119 

other version is not marked at all during the decoding of the current picture and will be marked as "used for 

short-term reference" at the end of the decoding of the current picture. 

ï When the current picture is a BLA picture or is a CRA picture with NoRaslOutputFlag equal to 1, the 

decoding process for generating unavailable reference pictures specified in clause 8.3.3 is invoked, which 

needs to be invoked only for the first slice segment of a picture. 

ï PicOutputFlag is set as follows: 

ï If the current picture is a RASL picture and NoRaslOutputFlag of the associated IRAP picture is equal 

to 1, PicOutputFlag is set equal to 0. 

ï Otherwise, PicOutputFlag is set equal to pic_output_flag. 

ï At the beginning of the decoding process for each P or B slice, the decoding process for reference picture 

lists construction specified in clause 8.3.4 is invoked for derivation of reference picture list 0 (RefPicList0) 

and, when decoding a B slice, reference picture list 1 (RefPicList1), and the decoding process for collocated 

picture and no backward prediction flag specified in clause 8.3.5 is invoked for derivation of the variables 

ColPic and NoBackwardPredFlag. 

3. The processes in clauses 8.4, 8.5, 8.6 and 8.7 specify decoding processes using syntax elements in all syntax 

structure layers. It is a requirement of bitstream conformance that the coded slices of the picture shall contain slice 

segment data for every CTU of the picture, such that the division of the picture into slices, the division of the 

slices into slice segments and the division of the slice segments into CTUs each forms a partitioning of the picture. 

4. After all slices of the current picture have been decoded, the current decoded picture after the invocation of the 

in-loop filter process as specified in clause 8.7 is marked as "used for short-term reference". When 

TwoVersionsOfCurrDecPicFlag is equal to 1, the current decoded picture before the invocation of the in-loop 

filter process as specified in clause 8.7 is marked as "unused for reference". 

8.2 NAL unit decoding process 

Inputs to this process are NAL units of the current picture and their associated non-VCL NAL units. 

Outputs of this process are the parsed RBSP syntax structures encapsulated within the NAL units. 

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then parses the RBSP 

syntax structure. 

8.3 Slice decoding process 

8.3.1 Decoding process for picture order count 

Output of this process is PicOrderCntVal, the picture order count of the current picture. 

Picture order counts are used to identify pictures, for deriving motion parameters in merge mode and motion vector 

prediction, and for decoder conformance checking (see clause C.5). 

Each coded picture is associated with a picture order count variable, denoted as PicOrderCntVal. 

When the current picture is not an IRAP picture with NoRaslOutputFlag equal to 1, the variables prevPicOrderCntLsb and 

prevPicOrderCntMsb are derived as follows: 

ï Let prevTid0Pic be the previous picture in decoding order that has TemporalId equal to 0 and that is not a RASL, 

RADL or SLNR picture. 

ï The variable prevPicOrderCntLsb is set equal to slice_pic_order_cnt_lsb of prevTid0Pic. 

ï The variable prevPicOrderCntMsb is set equal to PicOrderCntMsb of prevTid0Pic. 

The variable PicOrderCntMsb of the current picture is derived as follows: 

ï If the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, PicOrderCntMsb is set equal to 0. 

ï Otherwise, PicOrderCntMsb is derived as follows: 

if( ( slice_pic_order_cnt_lsb < prevPicOrderCntLsb )  && 

  ( ( prevPicOrderCntLsb ī slice_pic_order_cnt_lsb )  >=  ( MaxPicOrderCntLsb / 2 ) ) ) 

 PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-1) 

else if( (slice_pic_order_cnt_lsb > prevPicOrderCntLsb )  && 

  ( ( slice_pic_order_cnt_lsb ī prevPicOrderCntLsb ) > ( MaxPicOrderCntLsb / 2 ) ) ) 



 

120 Rec. ITU-T H.265 v8 (08/2021) 

 PicOrderCntMsb = prevPicOrderCntMsb ī MaxPicOrderCntLsb 

else 

 PicOrderCntMsb = prevPicOrderCntMsb 

PicOrderCntVal is derived as follows: 

PicOrderCntVal = PicOrderCntMsb + slice_pic_order_cnt_lsb (8-2) 

NOTE 1 ï All IDR pictures will have PicOrderCntVal equal to 0 since slice_pic_order_cnt_lsb is inferred to be 0 for IDR pictures 

and prevPicOrderCntLsb and prevPicOrderCntMsb are both set equal to 0. 

The value of PicOrderCntVal shall be in the range of ī231 to 231 ī 1, inclusive. In one CVS, the PicOrderCntVal values 

for any two coded pictures shall not be the same. 

The function PicOrderCnt( picX ) is specified as follows: 

PicOrderCnt( picX ) = PicOrderCntVal of the picture picX (8-3) 

The function DiffPicOrderCnt( picA, picB ) is specified as follows: 

DiffPicOrderCnt( picA, picB ) = PicOrderCnt( picA ) ī PicOrderCnt( picB ) (8-4) 

The bitstream shall not contain data that result in values of DiffPicOrderCnt( picA, picB ) used in the decoding process 

that are not in the range of ī215 to 215 ī 1, inclusive. 

NOTE 2 ï Let X be the current picture and Y and Z be two other pictures in the same CVS, Y and Z are considered to be in the same 

output order direction from X when both DiffPicOrderCnt( X, Y ) and DiffPicOrderCnt( X, Z ) are positive or both are negative. 

8.3.2 Decoding process for reference picture set 

This process is invoked once per picture, after decoding of a slice header but prior to the decoding of any coding unit and 

prior to the decoding process for reference picture list construction for the slice as specified in clause 8.3.4. This process 

may result in one or more reference pictures in the DPB being marked as "unused for reference" or "used for long-term 

reference". 

NOTE 1 ï The RPS is an absolute description of the reference pictures used in the decoding process of the current and future coded 

pictures. The RPS signalling is explicit in the sense that all reference pictures included in the RPS are listed explicitly. 

A decoded picture in the DPB can be marked as "unused for reference", "used for short-term reference" or "used for long-

term reference", but only one among these three at any given moment during the operation of the decoding process. 

Assigning one of these markings to a picture implicitly removes another of these markings when applicable. When a picture 

is referred to as being marked as "used for reference", this collectively refers to the picture being marked as "used for short-

term reference" or "used for long-term reference" (but not both). 

The variable currPicLayerId is set equal to nuh_layer_id of the current picture. 

When the current picture is an IRAP picture with NoRaslOutputFlag equal to 1, all reference pictures with nuh_layer_id 

equal to currPicLayerId currently in the DPB (if any) are marked as "unused for reference". 

Short-term reference pictures are identified by their PicOrderCntVal values. Long-term reference pictures are identified 

either by their PicOrderCntVal values or their slice_pic_order_cnt_lsb values. 

Five lists of picture order count values are constructed to derive the RPS. These five lists are PocStCurrBefore, 

PocStCurrAfter, PocStFoll, PocLtCurr and PocLtFoll, with NumPocStCurrBefore, NumPocStCurrAfter, NumPocStFoll, 

NumPocLtCurr and NumPocLtFoll number of elements, respectively. The five lists and the five variables are derived as 

follows: 

ï If the current picture is an IDR picture, PocStCurrBefore, PocStCurrAfter, PocStFoll, PocLtCurr and PocLtFoll are 

all set to be empty, and NumPocStCurrBefore, NumPocStCurrAfter, NumPocStFoll, NumPocLtCurr and 

NumPocLtFoll are all set equal to 0. 

ï Otherwise, the following applies: 

for( i = 0, j = 0, k = 0; i < NumNegativePics[ CurrRpsIdx ] ; i++ ) 

 if(  UsedByCurrPicS0[ CurrRpsIdx ][  i ] ) 

  PocStCurrBefore[ j++ ] = PicOrderCntVal + DeltaPocS0[ CurrRpsIdx ][  i ] 

 else 

  PocStFoll[ k++ ] = PicOrderCntVal + DeltaPocS0[ CurrRpsIdx ][  i ] 

NumPocStCurrBefore = j 



 

  Rec. ITU-T H.265 v8 (08/2021) 121 

 

for( i = 0, j = 0; i < NumPositivePics[ CurrRpsIdx ]; i++ ) 

 if( UsedByCurrPicS1[ CurrRpsIdx ][  i ] ) 

  PocStCurrAfter[ j++ ] = PicOrderCntVal + DeltaPocS1[ CurrRpsIdx ][  i ] 

 else 

  PocStFoll[ k++ ] = PicOrderCntVal + DeltaPocS1[ CurrRpsIdx ][  i ] 

NumPocStCurrAfter = j 

NumPocStFoll = k  (8-5) 

for( i = 0, j = 0, k = 0; i < num_long_term_sps + num_long_term_pics; i++ ) { 

 pocLt = PocLsbLt[ i ] 

 if( delta_poc_msb_present_flag[ i ] ) 

  pocLt  +=  PicOrderCntVal ī DeltaPocMsbCycleLt[ i ] * MaxPicOrderCntLsb ī 

    ( PicOrderCntVal & ( MaxPicOrderCntLsb ī 1 ) ) 

 if( UsedByCurrPicLt[ i ] ) {  

  PocLtCurr[ j ] = pocLt 

  CurrDeltaPocMsbPresentFlag[ j++ ] = delta_poc_msb_present_flag[ i ] 

 } else { 

  PocLtFoll[ k ] = pocLt 

  FollDeltaPocMsbPresentFlag[ k++ ] = delta_poc_msb_present_flag[ i ] 

 }  

}  

NumPocLtCurr = j 

NumPocLtFoll = k 

where PicOrderCntVal is the picture order count of the current picture as specified in clause 8.3.1. 

NOTE 2 ï A value of CurrRpsIdx in the range of 0 to num_short_term_ref_pic_sets ī 1, inclusive, indicates that a candidate short-

term RPS from the active SPS for the current layer is being used, where CurrRpsIdx is the index of the candidate short-term RPS 

into the list of candidate short-term RPSs signalled in the active SPS for the current layer. CurrRpsIdx equal to 

num_short_term_ref_pic_sets indicates that the short-term RPS of the current picture is directly signalled in the slice header. 

For each i in the range of 0 to NumPocLtCurr ī 1, inclusive, when CurrDeltaPocMsbPresentFlag[ i ] is equal to 1, it is a 

requirement of bitstream conformance that the following conditions apply: 

ï There shall be no j in the range of 0 to NumPocStCurrBefore ī 1, inclusive, for which PocLtCurr[ i ] is equal to 

PocStCurrBefore[ j ]. 

ï There shall be no j in the range of 0 to NumPocStCurrAfter ī 1, inclusive, for which PocLtCurr[ i ] is equal to 

PocStCurrAfter[ j ].  

ï There shall be no j in the range of 0 to NumPocStFoll ī 1, inclusive, for which PocLtCurr[ i ] is equal to PocStFoll[  j ]. 

ï There shall be no j in the range of 0 to NumPocLtCurr ī 1, inclusive, where j is not equal to i, for which PocLtCurr[ i ] 

is equal to PocLtCurr[ j ]. 

For each i in the range of 0 to NumPocLtFoll ī 1, inclusive, when FollDeltaPocMsbPresentFlag[ i ] is equal to 1, it is a 

requirement of bitstream conformance that the following conditions apply: 

ï There shall be no j in the range of 0 to NumPocStCurrBefore ī 1, inclusive, for which PocLtFoll[ i ] is equal to 

PocStCurrBefore[ j ]. 

ï There shall be no j in the range of 0 to NumPocStCurrAfter ī 1, inclusive, for which PocLtFoll[ i ] is equal to 

PocStCurrAfter[ j ]. 

ï There shall be no j in the range of 0 to NumPocStFoll ī 1, inclusive, for which PocLtFoll[ i ] is equal to PocStFoll[ j ]. 

ï There shall be no j in the range of 0 to NumPocLtFoll ī 1, inclusive, where j is not equal to i, for which PocLtFoll[ i ] 

is equal to PocLtFoll[ j ]. 

ï There shall be no j in the range of 0 to NumPocLtCurr ī 1, inclusive, for which PocLtFoll[ i ] is equal to 

PocLtCurr[ j ]. 

For each i in the range of 0 to NumPocLtCurr ī 1, inclusive, when CurrDeltaPocMsbPresentFlag[ i ] is equal to 0, it is a 

requirement of bitstream conformance that the following conditions apply: 



 

122 Rec. ITU-T H.265 v8 (08/2021) 

ï There shall be no j in the range of 0 to NumPocStCurrBefore ī 1, inclusive, for which PocLtCurr[ i ] is equal to 

( PocStCurrBefore[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

ï There shall be no j in the range of 0 to NumPocStCurrAfter ī 1, inclusive, for which PocLtCurr[ i ] is equal to 

( PocStCurrAfter[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

ï There shall be no j in the range of 0 to NumPocStFoll ī 1, inclusive, for which PocLtCurr[ i ] is equal to 

( PocStFoll[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

ï There shall be no j in the range of 0 to NumPocLtCurr ī 1, inclusive, where j is not equal to i, for which PocLtCurr[ i ] 

is equal to ( PocLtCurr[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

For each i in the range of 0 to NumPocLtFoll ī 1, inclusive, when FollDeltaPocMsbPresentFlag[ i ] is equal to 0, it is a 

requirement of bitstream conformance that the following conditions apply: 

ï There shall be no j in the range of 0 to NumPocStCurrBefore ī 1, inclusive, for which PocLtFoll[ i ] is equal to 

( PocStCurrBefore[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

ï There shall be no j in the range of 0 to NumPocStCurrAfter ī 1, inclusive, for which PocLtFoll[ i ] is equal to 

( PocStCurrAfter[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

ï There shall be no j in the range of 0 to NumPocStFoll ī 1, inclusive, for which PocLtFoll[ i ] is equal to 

( PocStFoll[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

ï There shall be no j in the range of 0 to NumPocLtFoll ī 1, inclusive, where j is not equal to i, for which PocLtFoll[ i ] 

is equal to ( PocLtFoll[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

ï There shall be no j in the range of 0 to NumPocLtCurr ī 1, inclusive, for which PocLtFoll[ i ] is equal to 

( PocLtCurr[ j ] & ( MaxPicOrderCntLsb ī 1 ) ). 

The variable NumPicTotalCurr is derived as specified in clause 7.4.7.2. It is a requirement of bitstream conformance that 

the following applies to the value of NumPicTotalCurr: 

ï If the current picture is a BLA or CRA picture, the value of NumPicTotalCurr shall be equal to 

pps_curr_pic_ref_enabled_flag. 

ï Otherwise, when the current picture contains a P or B slice, the value of NumPicTotalCurr shall not be equal to 0. 

The RPS of the current picture consists of five RPS lists; RefPicSetStCurrBefore, RefPicSetStCurrAfter, RefPicSetStFoll, 

RefPicSetLtCurr and RefPicSetLtFoll. RefPicSetStCurrBefore, RefPicSetStCurrAfter and RefPicSetStFoll are collectively 

referred to as the short-term RPS. RefPicSetLtCurr and RefPicSetLtFoll are collectively referred to as the long-term RPS. 

NOTE 3 ï RefPicSetStCurrBefore, RefPicSetStCurrAfter and RefPicSetLtCurr contain all reference pictures that may be used for 

inter prediction of the current picture and one or more pictures that follow the current picture in decoding order. RefPicSetStFoll 

and RefPicSetLtFoll consist of all reference pictures that are not used for inter prediction of the current picture but may be used in 

inter prediction for one or more pictures that follow the current picture in decoding order. 

The derivation process for the RPS and picture marking are performed according to the following ordered steps: 

1. The following applies: 

for( i = 0; i < NumPocLtCurr; i++ ) 

 if( ! CurrDeltaPocMsbPresentFlag[ i ] ) 

  if( there is a reference picture picX in the DPB with 

PicOrderCntVal & ( MaxPicOrderCntLsb ī 1 ) 

       equal to PocLtCurr[ i ] and nuh_layer_id equal to currPicLayerId ) 

   RefPicSetLtCurr[ i ] = picX 

  else 

   RefPicSetLtCurr[ i ] = "no reference picture" 

 else 

  if( there is a reference picture picX in the DPB with PicOrderCntVal equal to PocLtCurr[ i ] 

       and nuh_layer_id equal to currPicLayerId ) 

   RefPicSetLtCurr[ i ] = picX 

  else 

   RefPicSetLtCurr[ i ] = "no reference picture"       

                 (8-6) 

for( i = 0; i < NumPocLtFoll; i++ ) 

 if( ! FollDeltaPocMsbPresentFlag[ i ] ) 

  if( there is a reference picture picX in the DPB with 



 

  Rec. ITU-T H.265 v8 (08/2021) 123 

PicOrderCntVal & ( MaxPicOrderCntLsb ī 1 ) 

       equal to PocLtFoll[ i ] and nuh_layer_id equal to currPicLayerId ) 

   RefPicSetLtFoll[ i ] = picX 

  else 

   RefPicSetLtFoll[ i ] = "no reference picture" 

 else 

  if( there is a reference picture picX in the DPB with PicOrderCntVal equal to PocLtFoll[ i ] 

       and nuh_layer_id equal to currPicLayerId ) 

   RefPicSetLtFoll[ i ] = picX 

  else 

   RefPicSetLtFoll[ i ] = "no reference picture" 

2. All reference pictures that are included in RefPicSetLtCurr or RefPicSetLtFoll and have nuh_layer_id equal to 

currPicLayerId are marked as "used for long-term reference". 

3. The following applies: 

for( i = 0; i < NumPocStCurrBefore; i++ ) 

 if( there is a short-term reference picture picX in the DPB 

   with PicOrderCntVal equal to PocStCurrBefore[ i ] and nuh_layer_id equal to 

currPicLayerId ) 

  RefPicSetStCurrBefore[ i ] = picX 

 else 

  RefPicSetStCurrBefore[ i ] = "no reference picture" 

for( i = 0; i < NumPocStCurrAfter; i++ ) 

 if( there is a short-term reference picture picX in the DPB 

   with PicOrderCntVal equal to PocStCurrAfter[ i ] and nuh_layer_id equal to 

currPicLayerId ) 

  RefPicSetStCurrAfter[ i ] = picX 

 else 

  RefPicSetStCurrAfter[ i ] = "no reference picture" (8-7) 

for( i = 0; i < NumPocStFoll; i++ ) 

 if( there is a short-term reference picture picX in the DPB 

   with PicOrderCntVal equal to PocStFoll[ i ] and nuh_layer_id equal to currPicLayerId ) 

  RefPicSetStFoll[ i ] = picX 

 else 

  RefPicSetStFoll[ i ] = "no reference picture" 

4. All  reference pictures in the DPB that are not included in RefPicSetLtCurr, RefPicSetLtFoll, 

RefPicSetStCurrBefore, RefPicSetStCurrAfter, or RefPicSetStFoll and have nuh_layer_id equal to 

currPicLayerId are marked as "unused for reference". 

NOTE 4 ï There may be one or more entries in the RPS lists that are equal to "no reference picture" because the corresponding 

pictures are not present in the DPB. Entries in RefPicSetStFoll or RefPicSetLtFoll that are equal to "no reference picture" should be 

ignored. An unintentional picture loss should be inferred for each entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter, or 

RefPicSetLtCurr that is equal to "no reference picture". 

NOTE 5 ï A picture cannot be included in more than one of the five RPS lists. 

It is a requirement of bitstream conformance that the RPS is restricted as follows: 

ï There shall be no entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetLtCurr for which one or more 

of the following are true: 

ï The entry is equal to "no reference picture". 

ï The entry is an SLNR picture and has TemporalId equal to that of the current picture. 

ï The entry is a picture that has TemporalId greater than that of the current picture. 

ï There shall be no entry in RefPicSetLtCurr or RefPicSetLtFoll for which the difference between the picture order 

count value of the current picture and the picture order count value of the entry is greater than or equal to 224. 



 

124 Rec. ITU-T H.265 v8 (08/2021) 

ï When the current picture is a temporal sub-layer access (TSA) picture, there shall be no picture included in the RPS 

with TemporalId greater than or equal to the TemporalId of the current picture. 

ï When the current picture is a step-wise temporal sub-layer access (STSA) picture, there shall be no picture included 

in RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetLtCurr that has TemporalId equal to that of the current 

picture. 

ï When the current picture is a picture that follows, in decoding order, an STSA picture that has TemporalId equal to 

that of the current picture, there shall be no picture that has TemporalId equal to that of the current picture included 

in RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetLtCurr that precedes the STSA picture in decoding 

order. 

ï When the current picture is a CRA picture, there shall be no picture included in the RPS that precedes, in output order 

or decoding order, any preceding IRAP picture in decoding order (when present). 

ï When the current picture is a trailing picture, there shall be no picture in RefPicSetStCurrBefore, 

RefPicSetStCurrAfter or RefPicSetLtCurr that was generated by the decoding process for generating unavailable 

reference pictures as specified in clause 8.3.3. 

ï When the current picture is a trailing picture, there shall be no picture in the RPS that precedes the associated IRAP 

picture in output order or decoding order. 

ï When the current picture is a RADL picture, there shall be no picture included in RefPicSetStCurrBefore, 

RefPicSetStCurrAfter or RefPicSetLtCurr that is any of the following: 

ï A RASL picture 

ï A picture that was generated by the decoding process for generating unavailable reference pictures as 

specified in clause 8.3.3 

ï A picture that precedes the associated IRAP picture in decoding order 

ï When sps_temporal_id_nesting_flag is equal to 1, the following applies: 

ï Let tIdA be the value of TemporalId of the current picture picA. 

ï Any picture picB with TemporalId equal to tIdB that is less than or equal to tIdA shall not be included in 

RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetLtCurr of picA when there exists a picture picC 

that has TemporalId less than tIdB, follows picB in decoding order, and precedes picA in decoding order. 

8.3.3 Decoding process for generating unavailable reference pictures 

8.3.3.1 General decoding process for generating unavailable reference pictures 

This process is invoked once per coded picture when the current picture is a BLA picture or is a CRA picture with 

NoRaslOutputFlag equal to 1. 

NOTE ï This process is primarily specified only for the specification of syntax constraints for RASL pictures. The entire 

specification of the decoding process for RASL pictures associated with an IRAP picture that has NoRaslOutputFlag equal to 1 is 

included herein only for purposes of specifying constraints on the allowed syntax content of such RASL pictures. During the 

decoding process, any RASL pictures associated with an IRAP picture that has NoRaslOutputFlag equal to 1 may be ignored, as 

these pictures are not specified for output and have no effect on the decoding process of any other pictures that are specified for 

output. However, in HRD operations as specified in Annex C, RASL access units may need to be taken into consideration in 

derivation of coded picture buffer (CPB) arrival and removal times. 

When this process is invoked, the following applies: 

ï For each RefPicSetStFoll[ i ], with i in the range of 0 to NumPocStFoll ī 1, inclusive, that is equal to "no reference 

picture", a picture is generated as specified in clause 8.3.3.2, and the following applies: 

ï The value of PicOrderCntVal for the generated picture is set equal to PocStFoll[ i ]. 

ï The value of PicOutputFlag for the generated picture is set equal to 0. 

ï The generated picture is marked as "used for short-term reference". 

ï RefPicSetStFoll[ i ] is set to be the generated reference picture. 

ï The value of nuh_layer_id for the generated picture is set equal to nuh_layer_id of the current picture. 

ï For each RefPicSetLtFoll[ i ], with i in the range of 0 to NumPocLtFoll ī 1, inclusive, that is equal to "no reference 

picture", a picture is generated as specified in clause 8.3.3.2, and the following applies: 

ï The value of PicOrderCntVal for the generated picture is set equal to PocLtFoll[ i ]. 



 

  Rec. ITU-T H.265 v8 (08/2021) 125 

ï The value of slice_pic_order_cnt_lsb for the generated picture is inferred to be equal to ( PocLtFoll[ i ] & 

( MaxPicOrderCntLsb ī 1 ) ). 

ï The value of PicOutputFlag for the generated picture is set equal to 0. 

ï The generated picture is marked as "used for long-term reference". 

ï RefPicSetLtFoll[ i ] is set to be the generated reference picture. 

ï The value of nuh_layer_id for the generated picture is set equal to nuh_layer_id of the current picture. 

8.3.3.2 Generation of one unavailable picture 

When this process is invoked, an unavailable picture is generated as follows: 

ï The value of each element in the sample array SL for the picture is set equal to 1  <<  ( BitDepthY ī 1 ). 

ï When ChromaArrayType is not equal to 0, the value of each element in the sample arrays SCb and SCr for the picture 

is set equal to 1  <<  ( BitDepthC ī 1 ). 

ï The prediction mode CuPredMode[ x ][  y ] is set equal to MODE_INTRA for x = 0..pic_width_in_luma_samples ī 1, 

y = 0..pic_height_in_luma_samples ī 1. 

8.3.4 Decoding process for reference picture lists construction 

This process is invoked at the beginning of the decoding process for each P or B slice. 

Reference pictures are addressed through reference indices as specified in clause 8.5.3.3.2. A reference index is an index 

into a reference picture list. When decoding a P slice, there is a single reference picture list RefPicList0. When decoding a 

B slice, there is a second independent reference picture list RefPicList1 in addition to RefPicList0. 

At the beginning of the decoding process for each slice, the reference picture lists RefPicList0 and, for B slices, RefPicList1 

are derived. 

The variable NumRpsCurrTempList0 is set equal to Max( num_ref_idx_l0_active_minus1 + 1, NumPicTotalCurr ) and 

the list RefPicListTemp0 is constructed as follows: 

If TwoVersionsOfCurrDecPicFlag is equal to 1, let the variable currPic be the current decoded picture before the invocation 

of the in-loop filter process; otherwise (TwoVersionsOfCurrDecPicFlag is equal to 0), let the variable currPic be the current 

decoded picture after the invocation of the in-loop filter process. The variable NumRpsCurrTempList0 is set equal to 

Max( num_ref_idx_l0_active_minus1 + 1, NumPicTotalCurr ) and the list RefPicListTemp0 is constructed as follows: 

rIdx = 0 

while( rIdx < NumRpsCurrTempList0 ) { 

 for( i = 0; i < NumPocStCurrBefore  &&  rIdx < NumRpsCurrTempList0; rIdx++, i++ ) 

  RefPicListTemp0[ rIdx ] = RefPicSetStCurrBefore[ i ]  

 for( i = 0;  i < NumPocStCurrAfter  &&  rIdx < NumRpsCurrTempList0; rIdx++, i++ ) (8-8) 

  RefPicListTemp0[ rIdx ] = RefPicSetStCurrAfter[ i ] 

 for( i = 0; i < NumPocLtCurr  &&  rIdx < NumRpsCurrTempList0; rIdx++, i++ ) 

  RefPicListTemp0[ rIdx ] = RefPicSetLtCurr[ i ] 

 if( pps_curr_pic_ref_enabled_flag ) 

  RefPicListTemp0[ rIdx++ ] = currPic 

}  

The list RefPicList0 is constructed as follows: 

for( rIdx = 0; rIdx  <=  num_ref_idx_l0_active_minus1; rIdx++) 

 RefPicList0[ rIdx ] = ref_pic_list_modification_flag_l0 ? RefPicListTemp0[ list_entry_l0[ rIdx ] ] : 

                  RefPicListTemp0[ rIdx ] 

if( pps_curr_pic_ref_enabled_flag  &&  !ref_pic_list_modification_flag_l0  && (8-9) 

         NumRpsCurrTempList0 > ( num_ref_idx_l0_active_minus1 + 1 ) ) 

 RefPicList0[ num_ref_idx_l0_active_minus1 ] = currPic 

When the slice is a B slice, the variable NumRpsCurrTempList1 is set equal to Max( num_ref_idx_l1_active_minus1 + 1, 

NumPicTotalCurr ) and the list RefPicListTemp1 is constructed as follows: 



 

126 Rec. ITU-T H.265 v8 (08/2021) 

rIdx = 0 

while( rIdx < NumRpsCurrTempList1 ) { 

 for( i = 0; i < NumPocStCurrAfter  &&  rIdx < NumRpsCurrTempList1; rIdx++, i++ ) 

  RefPicListTemp1[ rIdx ] = RefPicSetStCurrAfter[ i ] 

 for( i = 0;  i < NumPocStCurrBefore  &&  rIdx < NumRpsCurrTempList1; rIdx++, i++ ) (8-10) 

  RefPicListTemp1[ rIdx ] = RefPicSetStCurrBefore[ i ] 

 for( i = 0; i < NumPocLtCurr  &&  rIdx < NumRpsCurrTempList1; rIdx++, i++ ) 

  RefPicListTemp1[ rIdx ] = RefPicSetLtCurr[ i ] 

 if( pps_curr_pic_ref_enabled_flag ) 

  RefPicListTemp1[ rIdx++ ] = currPic 

}  

When the slice is a B slice, the list RefPicList1 is constructed as follows: 

for( rIdx = 0; rIdx  <=  num_ref_idx_l1_active_minus1; rIdx++) 

 (8-11) 

 RefPicList1[ rIdx ] = ref_pic_list_modification_flag_l1 ? RefPicListTemp1[ list_entry_l1[ rIdx ] ] : 

                  RefPicListTemp1[ rIdx ] 

It is a requirement of bitstream conformance that when nuh_layer_id is equal to 0, nal_unit_type has a value in 

the range of BLA_W_LP to RSV_IRAP_VCL23, inclusive (i.e. the picture is an IRAP picture), 

pps_curr_pic_ref_enabled_flag is equal to 1, and slice_type is not equal to 2, RefPicList0 and RefPicList1 shall 

not contain entries that refer to a picture other than the current picture. 

8.3.5 Decoding process for collocated picture and no backward prediction flag 

This process is invoked at the beginning of the decoding process for each P or B slice, after decoding of the slice header 

as well as the invocation of the decoding process for reference picture set as specified in clause 8.3.2 and the invocation of 

the decoding process for reference picture list construction for the slice as specified in clause 8.3.4, but prior to the decoding 

of any coding unit. 

When slice_temporal_mvp_enabled_flag is equal to 1, the variable ColPic is derived as follows: 

ï If slice_type is equal to B and collocated_from_l0_flag is equal to 0, ColPic is set equal to 

RefPicList1[ collocated_ref_idx ]. 

ï Otherwise (slice_type is equal to B and collocated_from_l0_flag is equal to 1, or slice_type is equal to P), ColPic is 

set equal to RefPicList0[ collocated_ref_idx ]. 

The variable NoBackwardPredFlag is derived as follows: 

ï If DiffPicOrderCnt( aPic, CurrPic ) is less than or equal to 0 for each picture aPic in RefPicList0 or RefPicList1 of 

the current slice, NoBackwardPredFlag is set equal to 1. 

ï Otherwise, NoBackwardPredFlag is set equal to 0. 

8.4 Decoding process for coding units coded in intra prediction mode 

8.4.1 General decoding process for coding units coded in intra prediction mode 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a variable log2CbSize specifying the size of the current luma coding block. 

Output of this process is a modified reconstructed picture before deblocking filtering. 

The derivation process for quantization parameters as specified in clause 8.6.1 is invoked with the luma location 

( xCb, yCb ) as input. 

A variable nCbS is set equal to 1  <<  log2CbSize. 

When residual_adaptive_colour_transform_enabled_flag is equal to 1, the residual sample arrays resSamplesL, 

resSamplesCb, and resSamplesCr store the residual samples of the current coding unit. 



 

  Rec. ITU-T H.265 v8 (08/2021) 127 

Depending on the values of pcm_flag[ xCb ][  yCb ], palette_mode_flag[ xCb ][  yCb ], and IntraSplitFlag, the decoding 

process for luma samples is specified as follows: 

ï If pcm_flag[ xCb ][  yCb ] is equal to 1, the reconstructed picture is modified as follows: 

SL[ xCb + i ][  yCb + j ] =  

 pcm_sample_luma[ ( nCbS *  j ) + i ]  <<  ( BitDepthY ī PcmBitDepthY ), with i, j = 0..nCbS ī 1

 (8-12) 

ï Otherwise (pcm_flag[ xCb ][  yCb ] is equal to 0), if palette_mode_flag[ xCb ][  yCb ] is equal to 1, the following 

ordered steps apply: 

1. The decoding process for palette intra blocks as specified in clause 8.4.4.2.7 is invoked with the luma location 

( xCb, yCb ), the variable cIdx set equal to 0, and nCbSX and nCbSY both set equal to nCbS as inputs, and the 

output is an nCbS x nCbS array of reconstructed palette sample values, recSamples[ x ][  y ], x, y = 0..nCbS ī 1. 

2. The reconstructed picture is modified as follows for x, y = 0..nCbS ī 1 and y = 0..nCbS ī 1: 

ï If palette_transpose_flag is equal to 1, the following applies: 

SL[ xCb + x ][  yCb + y ] = recSamples[ y ][  x ] (8-13) 

ï Otherwise (palette_transpose_flag is equal to 0), the following applies: 

SL[ xCb + x ][  yCb + y ] = recSamples[ x ][  y ] (8-14) 

ï Otherwise (pcm_flag[ xCb ][  yCb ] is equal to 0, palette_mode_flag[ xCb ][  yCb ] is equal to 0), if IntraSplitFlag is 

equal to 0, the following ordered steps apply: 

1. The derivation process for the intra prediction mode as specified in clause 8.4.2 is invoked with the luma location 

( xCb, yCb ) as input. 

2. If residual_adaptive_colour_transform_enabled_flag is equal to 1, the following applies: 

ï The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the luma location 

( xCb, yCb ), the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the 

variable predModeIntra set equal to IntraPredModeY[ xCb ][  yCb ], the variable cIdx set equal to 0 and 

variable controlParaAct set equal to 1 as inputs, and the output is a modified residual sample array 

resSamplesL. 

ï The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma 

location ( xCb, yCb ), the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal 

to 0, the variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 1 and variable 

controlParaAct set equal to 1 as inputs, and the output is a modified residual sample array resSamplesCb. 

ï The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma 

location ( xCb, yCb ), the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal 

to 0, the variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 2 and variable 

controlParaAct set equal to 1 as inputs, and the output is a modified residual sample array resSamplesCr. 

ï The residual modification process for blocks using adaptive colour transform as specified in clause 8.6.8 is 

invoked with location ( xCb, yCb ), the variable log2TrafoSize set equal to log2CbSize, the variable 

trafoDepth set equal to 0, the variable resSampleArrayL set equal to resSamplesL, the variable 

resSampleArrayCb set equal to resSamplesCb and the variable resSampleArrayCr set equal to resSamplesCr 

as inputs, and the outputs are modified versions of resSampleL, resSampleCb and resSampleCr. 

3. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the luma location 

( xCb, yCb ), the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the variable 

predModeIntra set equal to IntraPredModeY[ xCb ][  yCb ], the variable cIdx set equal to 0, the variable 

controlParaAct set equal to ( residual_adaptive_colour_transform_enabled_flag ? 2 : 0 ), and the array resSamplesL 

when controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed picture before deblocking 

filtering. 

ï Otherwise (pcm_flag[ xCb ][  yCb ] is equal to 0, palette_mode_flag[ xCb ][  yCb ] is equal to 0, and IntraSplitFlag is 

equal to 1), for the variable blkIdx proceeding over the values 0..3, the following ordered steps apply: 

1. The variable xPb is set equal to xCb + ( nCbS  >>  1 ) *  ( blkIdx % 2 ). 



 

128 Rec. ITU-T H.265 v8 (08/2021) 

2. The variable yPb is set equal to yCb + ( nCbS  >>  1 ) *  ( blkIdx / 2 ). 

3. The derivation process for the intra prediction mode as specified in clause 8.4.2 is invoked with the luma location 

( xPb, yPb ) as input. 

4. If residual_adaptive_colour_transform_enabled_flag is equal to 1, the following applies: 

ï The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the luma location 

( xPb, yPb ), the variable log2TrafoSize set equal to log2CbSize ī 1, the variable trafoDepth set equal to 1, 

the variable predModeIntra set equal to IntraPredModeY[ xPb ][  yPb ], the variable cIdx set equal to 0 and 

variable controlParaAct equal to 1 as inputs, and the output is a modified residual sample array resSamplesL. 

ï The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma 

location ( xPb, yPb ), the variable log2TrafoSize set equal to log2CbSize ī 1, the variable trafoDepth set 

equal to 1, the variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 1 and 

variable controlParaAct equal to 1 as inputs, and the output is a modified residual sample array resSamplesCb. 

ï The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma 

location ( xPb, yPb ), the variable log2TrafoSize set equal to log2CbSize ī 1, the variable trafoDepth set 

equal to 1, the variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 2 and 

variable controlParaAct set equal to 1 as inputs, and the output is a modified residual sample array 

resSamplesCr. 

ï The residual modification process for blocks using adaptive colour transform as specified in clause 8.6.8 is 

invoked with location ( xCb, yCb ), the variable log2TrafoSize set equal to log2CbSize ī 1, the variable 

trafoDepth set equal to 1, the variable resSampleArrayL set equal to resSamplesL, the variable 

resSampleArrayCb set equal to resSamplesCb and the variable resSampleArrayCr set equal to resSamplesCr 

as inputs, and the outputs are modified versions of resSampleL, resSampleCb and resSampleCr. 

5. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the luma location 

( xPb, yPb ), the variable log2TrafoSize set equal to log2CbSize ī 1, the variable trafoDepth set equal to 1, the 

variable predModeIntra set equal to IntraPredModeY[ xPb ][  yPb ], the variable cIdx set equal to 0, the variable 

controlParaAct set equal to ( residual_adaptive_colour_transform_enabled_flag ? 2 : 0 ), and the array 

resSamplesL when controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed picture before 

deblocking filtering. 

When ChromaArrayType is not equal to 0, the following applies. 

The variable log2CbSizeC is set equal to log2CbSize ī ( ChromaArrayType  = =  3 ? 0 : 1 ). 

Depending on the values of pcm_flag[ xCb ][  yCb ] and IntraSplitFlag, the decoding process for chroma samples is 

specified as follows: 

ï If pcm_flag[ xCb ][  yCb ] is equal to 1, the reconstructed picture is modified as follows: 

SCb[ xCb / SubWidthC + i ][  yCb / SubHeightC + j ] = 

   pcm_sample_chroma[ ( nCbS / SubWidthC *  j ) + i ]  <<  ( BitDepthC ī PcmBitDepthC ), 

   with i = 0..nCbS / SubWidthC ī 1 and j = 0..nCbS / SubHeightC ī 1 (8-15) 

SCr[ xCb / SubWidthC + i ][  yCb / SubHeightC + j ] = 

   pcm_sample_chroma[ ( nCbS / SubWidthC *  ( j + nCbS / SubHeightC ) ) + i ]  << 

   ( BitDepthC ī PcmBitDepthC ), 

   with i = 0..nCbS / SubWidthC ī 1 and j = 0..nCbS / SubHeightC ī 1 (8-16) 

ï Otherwise (pcm_flag[ xCb ][  yCb ] is equal to 0), if palette_mode_flag[ xCb ][  yCb ] is equal to 1 the following ordered 

steps apply: 

1. nCbsX is set as follows: 

ï If palette_transpose_flag is equal to 1, nCbSX is set equal to ( nCbS / SubHeightC ), nCbY is set equal to 

( nCbS / SubWidthC ). 

ï Otherwise (palette_transpose_flag is equal to 0 ) nCbSX is set equal to ( nCbS / SubWidthC ), nCbY is set 

equal to (nCbS / SubHeightC ). 

2. The decoding process for palette intra blocks as specified in clause 8.4.4.2.7 is invoked with the chroma location 

( xCb, yCb ), the variable cIdx set equal to 1, nCbSX, and nCbSY as inputs, and the output is an 

( nCbS / SubWidthC ) x ( nCbS / SubHeightC ) array of reconstructed palette sample values, recSamples[ x ][  y ], 

x = 0 é nCbS / SubWidthC ī 1, y = 0..nCbS / SubHeightC ī 1, when palette_transpose_flag is equal to 0, or an 



 

  Rec. ITU-T H.265 v8 (08/2021) 129 

( nCbS / SubHeightC ) x ( nCbS / SubWidthC ) array of reconstructed palette sample values, recSamples[ x ][  y ], 

x  = 0 é nCbS / SubHeightC ī 1, y = 0..nCbS / SubWidthC ī 1 when palette_transpose_flag is equal to 1. 

3. The reconstructed picture is modified as follows: 

ï If palette_transpose_flag is equal to 1, the following applies: 

SCb[ xCb / SubWidthC + x ][  yCb / SubHeightC + y ] = recSamples[ y ][  x ], 

 with x = 0..nCbS / SubWidthC ī 1 and y = 0..nCbS / SubHeightC ī 1 (8-17) 

ï Otherwise (palette_transpose_flag is equal to 0 ), the following applies: 

SCb[ xCb / SubWidthC + x ][  yCb / SubHeightC + y ] = recSamples[ x ][  y ], 

 with x = 0..nCbS / SubWidthC ī 1 and y = 0..nCbS / SubHeightC ī 1 (8-18) 

4. The decoding process for palette intra blocks as specified in clause 8.4.4.2.7 is invoked with the chroma location 

( xCb, yCb ), the variable cIdx set equal to 2, nCbSX set equal to nCbS / SubWidthC, and nCbSY set equal to 

nCbS / SubHeightC as inputs, and the output is an ( nCbS / SubWidthC ) x ( nCbS / SubHeightC ) array of 

reconstructed palette sample values, recSamples[ x ][  y ], x = 0..nCbS / SubWidthC ī 1, 

y = 0..nCbS / SubHeightC ī 1, when palette_transpose_flag is equal to 0, or an ( nCbS / SubHeightC ) x 

( nCbS / SubWidthC ) array of reconstructed palette sample values, recSamples[ x ][  y ], 

x = 0..nCbS / SubHeightC ī 1, y = 0..nCbS / SubWidthC ī 1, when palette_transpose_flag is equal to 1. 

5. The reconstructed picture is modified as follows: 

ï If palette_transpose_flag is equal to 1, the following applies: 

SCr[ xCb / SubWidthC + x ][  yCb / SubHeightC + y ] = recSamples[ y ][  x ], 

 with x = 0..nCbS / SubWidthC ī 1 and y = 0..nCbS / SubHeightC ī 1 (8-19) 

ï Otherwise ( palette_transpose_flag is equal to 0 ), the following applies: 

SCr[ xCb / SubWidthC + x ][  yCb / SubHeightC + y ] = recSamples[ x ][  y ], 

 with x = 0..nCbS / SubWidthC ī 1 and y = 0..nCbS / SubHeightC ī 1 (8-20) 

ï Otherwise (pcm_flag[ xCb ][  yCb ] is equal to 0 and palette_mode_flag[ xCb ][  yCb ] is equal to 0), if IntraSplitFlag 

is equal to 0 or ChromaArrayType is not equal to 3, the following ordered steps apply: 

1. The derivation process for the chroma intra prediction mode as specified in clause 8.4.3 is invoked with the luma 

location ( xCb, yCb ) as input, and the output is the variable IntraPredModeC. 

2. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location 

( xCb / SubWidthC, yCb / SubHeightC ), the variable log2TrafoSize set equal to log2CbSizeC, the variable 

trafoDepth set equal to 0, the variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 

1, the variable controlParaAct set equal to ( residual_adaptive_colour_transform_enabled_flag ? 2 : 0 ), and the 

array resSamplesCb when controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed picture 

before deblocking filtering. 

3. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location 

( xCb / SubWidthC, yCb / SubHeightC ), the variable log2TrafoSize set equal to log2CbSizeC, the variable 

trafoDepth set equal to 0, the variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 

2, the variable controlParaAct set equal to ( residual_adaptive_colour_transform_enabled_flag ? 2 : 0 ), and the 

array resSamplesCr when controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed picture 

before deblocking filtering. 

ï Otherwise (pcm_flag[ xCb ][  yCb ] is equal to 0, palette_mode_flag[ xCb ][  yCb ] is equal to 0, IntraSplitFlag is equal 

to 1 and ChromaArrayType is equal to 3), for the variable blkIdx proceeding over the values 0..3, the following ordered 

steps apply: 

1. The variable xPb is set equal to xCb + ( nCbS  >>  1 ) *  ( blkIdx % 2 ). 

2. The variable yPb is set equal to yCb + ( nCbS  >>  1 ) *  ( blkIdx / 2 ). 

3. The derivation process for the chroma intra prediction mode as specified in clause 8.4.3 is invoked with the luma 

location ( xPb, yPb ) as input, and the output is the variable IntraPredModeC. 



 

130 Rec. ITU-T H.265 v8 (08/2021) 

4. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location 

( xPb, yPb ), the variable log2TrafoSize set equal to log2CbSizeC ī 1, the variable trafoDepth set equal to 1, the 

variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 1, the variable controlParaAct 

set equal to ( residual_adaptive_colour_transform_enabled_flag ? 2 : 0 ), and the array resSamplesCb when 

controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed picture before deblocking 

filtering. 

5. The general decoding process for intra blocks as specified in clause 8.4.4.1 is invoked with the chroma location 

( xPb, yPb ), the variable log2TrafoSize set equal to log2CbSizeC ī 1, the variable trafoDepth set equal to 1, the 

variable predModeIntra set equal to IntraPredModeC, the variable cIdx set equal to 2, the variable controlParaAct 

set equal to ( residual_adaptive_colour_transform_enabled_flag ? 2 : 0 ), and the array resSamplesCr when 

controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed picture before deblocking 

filtering. 

8.4.2 Derivation process for luma intra prediction mode 

Input to this process is a luma location ( xPb, yPb ) specifying the top-left sample of the current luma prediction block 

relative to the top-left luma sample of the current picture. 

In this process, the luma intra prediction mode IntraPredModeY[ xPb ][  yPb ] is derived. 

Table 8-1 specifies the value for the intra prediction mode and the associated names. 

Table 8-1 ï Specification of intra prediction mode and associated names 

Intra prediction mode Associated name 

0 INTRA_PLANAR 

1 INTRA_DC 

2..34 INTRA_ANGULAR2..INTRA_ANGULAR34 

 

IntraPredModeY[ xPb ][  yPb ] labelled 0..34 represents directions of predictions as illustrated in Figure 8-1. 

 

Figure 8-1 ï Intra prediction mode directions (informative) 

 

IntraPredModeY[ xPb ][  yPb ] is derived by the following ordered steps: 



 

  Rec. ITU-T H.265 v8 (08/2021) 131 

1. The neighbouring locations ( xNbA, yNbA ) and ( xNbB, yNbB ) are set equal to ( xPb ī 1, yPb ) and 

( xPb, yPb ī 1 ), respectively. 

2. For X being replaced by either A or B, the variables candIntraPredModeX are derived as follows: 

ï The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the 

location ( xCurr, yCurr ) set equal to ( xPb, yPb ) and the neighbouring location ( xNbY, yNbY ) set equal to 

( xNbX, yNbX ) as inputs, and the output is assigned to availableX. 

ï The candidate intra prediction mode candIntraPredModeX is derived as follows: 

ï If availableX is equal to FALSE, candIntraPredModeX is set equal to INTRA_DC. 

ï Otherwise, if CuPredMode[ xNbX ][  yNbX ] is not equal to MODE_INTRA or 

pcm_flag[ xNbX ][  yNbX ] is equal to 1, candIntraPredModeX is set equal to INTRA_DC, 

ï Otherwise, if X is equal to B and yPb ī 1 is less than ( ( yPb  >>  CtbLog2SizeY )  <<  CtbLog2SizeY ), 

candIntraPredModeB is set equal to INTRA_DC. 

ï Otherwise, candIntraPredModeX is set equal to IntraPredModeY[ xNbX ][  yNbX ]. 

3. The candModeList[ x ] with x = 0..2 is derived as follows: 

ï If candIntraPredModeB is equal to candIntraPredModeA, the following applies: 

ï If candIntraPredModeA is less than 2 (i.e., equal to INTRA_PLANAR or INTRA_DC), 

candModeList[ x ] with x = 0..2 is derived as follows: 

candModeList[ 0 ] = INTRA_PLANAR (8-21) 

candModeList[ 1 ] = INTRA_DC  (8-22) 

candModeList[ 2 ] = INTRA_ANGULAR26 (8-23) 

ï Otherwise, candModeList[ x ] with x = 0..2 is derived as follows: 

candModeList[ 0 ] = candIntraPredModeA (8-24) 

candModeList[ 1 ] = 2 + ( ( candIntraPredModeA + 29 ) % 32 ) (8-25) 

candModeList[ 2 ] = 2 + ( ( candIntraPredModeA ī 2 + 1 ) % 32 ) (8-26) 

ï Otherwise (candIntraPredModeB is not equal to candIntraPredModeA), the following applies: 

ï candModeList[ 0 ] and candModeList[ 1 ] are derived as follows: 

candModeList[ 0 ] = candIntraPredModeA (8-27) 

candModeList[ 1 ] = candIntraPredModeB (8-28) 

ï If neither of candModeList[ 0 ] and candModeList[ 1 ] is equal to INTRA_PLANAR, candModeList[ 2 ] 

is set equal to INTRA_PLANAR, 

ï Otherwise, if neither of candModeList[ 0 ] and candModeList[ 1 ] is equal to INTRA_DC, 

candModeList[ 2 ] is set equal to INTRA_DC, 

ï Otherwise, candModeList[ 2 ] is set equal to INTRA_ANGULAR26. 

4. IntraPredModeY[ xPb ][  yPb ] is derived by applying the following procedure: 

ï If prev_intra_luma_pred_flag[ xPb ][  yPb ] is equal to 1, the IntraPredModeY[ xPb ][  yPb ] is set equal to  

candModeList[ mpm_idx[ xPb ][  yPb ] ]. 

ï Otherwise, IntraPredModeY[ xPb ][  yPb ] is derived by applying the following ordered steps: 

1) The array candModeList[ x ], x = 0..2 is modified as the following ordered steps: 

i. When candModeList[ 0 ] is greater than candModeList[ 1 ], both values are swapped as follows: 



 

132 Rec. ITU-T H.265 v8 (08/2021) 

( candModeList[ 0 ], candModeList[ 1 ] ) = Swap( candModeList[ 0 ], candModeList[ 1 ] )

 (8-29) 

ii.  When candModeList[ 0 ] is greater than candModeList[ 2 ], both values are swapped as follows: 

( candModeList[ 0 ], candModeList[ 2 ] ) = Swap( candModeList[ 0 ], candModeList[ 2 ] )

 (8-30) 

iii.  When candModeList[ 1 ] is greater than candModeList[ 2 ], both values are swapped as follows: 

( candModeList[ 1 ], candModeList[ 2 ] ) = Swap( candModeList[ 1 ], candModeList[ 2 ] )

 (8-31) 

2) IntraPredModeY[ xPb ][  yPb ] is derived by the following ordered steps: 

i. IntraPredModeY[ xPb ][  yPb ] is set equal to rem_intra_luma_pred_mode[ xPb ][  yPb ]. 

ii.  For i equal to 0 to 2, inclusive, when IntraPredModeY[ xPb ][ yPb ] is greater than or equal to 

candModeList[ i ], the value of IntraPredModeY[ xPb ][  yPb ] is incremented by one. 

8.4.3 Derivation process for chroma intra prediction mode 

This process is only invoked when ChromaArrayType is not equal to 0. 

Input to this process is a luma location ( xPb, yPb ) specifying the top-left sample of the current chroma prediction block 

relative to the top-left luma sample of the current picture. 

Output of this process is the variable IntraPredModeC. 

The variable modeIdx is derived using intra_chroma_pred_mode[ xPb ][  yPb ] and IntraPredModeY[ xPb ][  yPb ] as 

specified in Table 8-2. 

The chroma intra prediction mode IntraPredModeC is derived as follows: 

ï If ChromaArrayType is equal to 2, IntraPredModeC is set using modeIdx as specified in Table 8-3. 

ï Otherwise, IntraPredModeC is set equal to modeIdx. 

Table 8-2 ï Specification of modeIdx 

 

intra_chroma_pred_mode[ xPb ][  yPb ] 
IntraPredModeY[ xPb ][  yPb ] 

0 26 10 1 X ( 0  <=  X  <=  34 ) 

0 34 0 0 0 0 

1 26 34 26 26 26 

2 10 10 34 10 10 

3 1 1 1 34 1 

4 0 26 10 1 X 

 

Table 8-3 ï Specification of IntraPredModeC when ChromaArrayType is equal to 2 

 

modeIdx X  <=  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

IntraPredModeC  X 2 2 2 3 5 7 8 10 12 13 15 17 18 19 20 

modeIdx 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

IntraPredModeC  21 22 23 23 24 24 25 25 26 27 27 28 28 29 29 30 31 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 133 

8.4.4 Decoding process for intra blocks 

8.4.4.1 General decoding process for intra blocks 

Inputs to this process are: 

ï a sample location ( xTb0, yTb0 ) specifying the top-left sample of the current transform block relative to the top-left 

sample of the current picture, 

ï a variable log2TrafoSize specifying the size of the current transform block, 

ï a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit, 

ï a variable predModeIntra specifying the intra prediction mode, 

ï a variable cIdx specifying the colour component of the current block, 

ï a variable controlParaAct specifying the applicable processes, 

ï when controlParaAct is equal to 2, a residual sample array resSamplesRec specifying the reconstructed residual samples 

for the current colour component of the current coding block. 

Output of this process is a modified reconstructed picture before deblocking filtering when controlParaAct is not equal 

to 1, or a modified residual sample array resSampleArray for the current colour component of the current coding block 

when controlParaAct is equal to 1. 

The luma sample location ( xTbY, yTbY ) specifying the top-left sample of the current luma transform block relative to 

the top-left luma sample of the current picture is derived as follows: 

( xTbY, yTbY ) = ( cIdx  = =  0 ) ? ( xTb0, yTb0 ) : ( xTb0 *  SubWidthC, yTb0 *  SubHeightC ) (8-32) 

The variable splitFlag is derived as follows: 

ï If cIdx is equal to 0, splitFlag is set equal to split_transform_flag[ xTbY ][  yTbY ][  trafoDepth ]. 

ï Otherwise, if all of the following conditions are true, splitFlag is set equal to 1. 

ï cIdx is greater than 0 

ï split_transform_flag[ xTbY ][  yTbY ][  trafoDepth ] is equal to 1 

ï log2TrafoSize is greater than 2 

ï Otherwise, splitFlag is set equal to 0. 

Depending on the value of splitFlag, the following applies: 

ï If splitFlag is equal to 1, the following ordered steps apply: 

1. The variables xTb1 and yTb1 are derived as follows: 

ï If cIdx is equal to 0 or ChromaArrayType is not equal to 2, the following applies: 

ï The variable xTb1 is set equal to xTb0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

ï The variable yTb1 is set equal to yTb0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

ï Otherwise (ChromaArrayType is equal to 2 and cIdx is greater than 0), the following applies: 

ï The variable xTb1 is set equal to xTb0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

ï The variable yTb1 is set equal to yTb0 + ( 2  <<  ( log2TrafoSize ī 1 ) ). 

2. The general decoding process for intra blocks as specified in this clause is invoked with the location 

( xTb0, yTb0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth set equal to 

trafoDepth + 1, the intra prediction mode predModeIntra, the variable cIdx, the variable controlParaAct, and the 

array resSamplesRec when controlParaAct is equal to 2 as inputs and the output is a modified reconstructed picture 

before deblocking filtering when controlParaAct is not equal to 1 or a modified residual sample array 

resSampleArray when controlParaAct is equal to 1. 

3. The general decoding process for intra blocks as specified in this clause is invoked with the location 

( xTb1, yTb0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth set equal to 

trafoDepth + 1, the intra prediction mode predModeIntra, the variable cIdx, the variable controlParaAct, and the 

array resSamplesRec when controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed 



 

134 Rec. ITU-T H.265 v8 (08/2021) 

picture before deblocking filtering when controlParaAct is not equal to 1 or a modified residual sample array 

resSampleArray when controlParaAct is equal to 1. 

4. The general decoding process for intra blocks as specified in this clause is invoked with the location 

( xTb0, yTb1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth set equal to 

trafoDepth + 1, the intra prediction mode predModeIntra, the variable cIdx, the variable controlParaAct, and the 

array resSamplesRec when controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed 

picture before deblocking filtering when controlParaAct is not equal to 1 or a modified residual sample array 

resSampleArray when controlParaAct is equal to 1. 

5. The general decoding process for intra blocks as specified in this clause is invoked with the location 

( xTb1, yTb1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth set equal to 

trafoDepth + 1, the intra prediction mode predModeIntra, the variable cIdx, the variable controlParaAct, and the 

array resSamplesRec when controlParaAct is equal to 2 as inputs, and the output is a modified reconstructed 

picture before deblocking filtering when controlParaAct is not equal to 1 or a modified residual sample array 

resSampleArray when controlParaAct is equal to 1. 

ï Otherwise (splitFlag is equal to 0), for the variable blkIdx proceeding over the 

values 0..( cIdx > 0  &&   ChromaArrayType  = =  2 ? 1 : 0 ), the following ordered steps apply: 

1. The variable nTbS is set equal to 1  <<  log2TrafoSize. 

2. The variable yTbOffset is set equal to blkIdx *  nTbS. 

3. The variable yTbOffsetY is set equal to yTbOffset *  SubHeightC. 

4. When controlParaAct is not equal to 2, the variable residualDpcm is derived as follows: 

ï If all of the following conditions are true, residualDpcm is set equal to 1. 

ï implicit_rdpcm_enabled_flag is equal to 1. 

ï either transform_skip_flag[ xTbY ][  yTbY + yTbOffsetY ][  cIdx ] is equal to 1, or 

cu_transquant_bypass_flag is equal to 1. 

ï either predModeIntra is equal to 10, or predModeIntra is equal to 26. 

ï Otherwise, residualDpcm is set equal to 0. 

5. When controlParaAct is not equal to 1, the general intra sample prediction process as specified in clause 8.4.4.2.1 

is invoked with the transform block location ( xTb0, yTb0 + yTbOffset ), the intra prediction mode 

predModeIntra, the transform block size nTbS and the variable cIdx as inputs, and the output is an (nTbS)x(nTbS) 

array predSamples. 

6. When controlParaAct is not equal to 2, the scaling and transformation process as specified in clause 8.6.2 is 

invoked with the luma location ( xTbY, yTbY + yTbOffsetY ), the variable trafoDepth, the variable cIdx and the 

transform size trafoSize set equal to nTbS as inputs, and the output is an (nTbS)x(nTbS) array resSamples. 

7. When controlParaAct is not equal to 2 and residualDpcm is equal to 1, the directional residual modification 

process for blocks using a transform bypass as specified in clause 8.6.5 is invoked with the variable mDir set 

equal to predModeIntra / 26, the variable nTbS and the (nTbS)x(nTbS) array r set equal to the array resSamples 

as inputs, and the output is a modified (nTbS)x(nTbS) array resSamples. 

8. When controlParaAct is not equal to 2 and cross_component_prediction_enabled_flag is equal to 1, 

ChromaArrayType is equal to 3, and cIdx is not equal to 0, the residual modification process for transform blocks 

using cross-component prediction as specified in clause 8.6.6 is invoked with the current luma transform block 

location ( xTbY, yTbY ), the variable nTbS, the variable cIdx, the (nTbS)x(nTbS) array rY set equal to the 

corresponding luma residual sample array resSamples of the current transform block and the (nTbS)x(nTbS) array 

r set equal to the array resSamples as inputs, and the output is a modified (nTbS)x(nTbS) array resSamples. 

9. When controlParaAct is not equal to 0, the following applies: 

ï The variable nCbS specifying the size of the current coding block is derived by setting nCbS equal to 

1  <<  ( log2TrafoSize + trafDepth ). 

ï The sample location ( xTbInCb, yTbInCb ) specifying the top-left sample of the current transform block 

relative to the top-left sample of the current coding block is derived by setting xTbInCb equal to 

xTb0 & (nCbS ī 1) and setting yTbInCb equal to yTb0 & (nCbS ī 1). 

10. When controlParaAct is equal to 2, the (nTbS)x(nTbS) array resSamples is derived by setting resSamples[ x ][  y ] 

equal to resSamplesRec[ x + xTbInCb ][y  + yTbInCb ], for x and y in the range of 0 to nTbS ī 1, inclusive. 



 

  Rec. ITU-T H.265 v8 (08/2021) 135 

11. The following applies: 

ï If controlParaAct is equal to 1, the residual array resSamplesArray is modified by setting 

resSamplesArray[ x + xTbInCb ][y  + yTbInCb ] equal to resSamples[ x ][  y ], for x and y in the range of 0 to 

nTbS ī 1, inclusive. 

ï Otherwise (controlParaAct is not equal to 1), the picture construction process prior to in-loop filtering for a 

colour component as specified in clause 8.6.7 is invoked with the transform block location 

( xTb0, yTb0 + yTbOffset ), the variables nCurrSw and nCurrSh both set equal to nTbS, the variable cIdx, 

the (nTbS)x(nTbS) array predSamples and the (nTbS)x(nTbS) array resSamples as inputs. 

8.4.4.2 Intra sample prediction 

8.4.4.2.1 General intra sample prediction 

Inputs to this process are: 

ï a sample location ( xTbCmp, yTbCmp ) specifying the top-left sample of the current transform block relative to the 

top-left sample of the current picture, 

ï a variable predModeIntra specifying the intra prediction mode, 

ï a variable nTbS specifying the transform block size, 

ï a variable cIdx specifying the colour component of the current block. 

Outputs of this process are the predicted samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1. 

The nTbS *  4 + 1 neighbouring samples p[ x ][  y ] that are constructed samples prior to the deblocking filter process, with 

x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1, are derived as follows: 

ï The neighbouring location ( xNbCmp, yNbCmp ) is specified by: 

( xNbCmp, yNbCmp ) = ( xTbCmp + x, yTbCmp + y ) (8-33) 

ï The current luma location ( xTbY, yTbY ) and the neighbouring luma location ( xNbY, yNbY ) are derived as follows: 

( xTbY, yTbY ) = 

  ( cIdx  = =  0 ) ? ( xTbCmp, yTbCmp ) : ( xTbCmp *  SubWidthC, yTbCmp *  SubHeightC )

 (8-34) 

( xNbY, yNbY ) = 

  ( cIdx  = =  0 ) ? ( xNbCmp, yNbCmp ) : ( xNbCmp *  SubWidthC, yNbCmp *  SubHeightC )

 (8-35) 

ï The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the current 

luma location ( xCurr, yCurr ) set equal to ( xTbY, yTbY ) and the neighbouring luma location ( xNbY, yNbY ) as 

inputs, and the output is assigned to availableN. 

ï Each sample p[ x ][  y ] is derived as follows: 

ï If one or more of the following conditions are true, the sample p[ x ][  y ] is marked as "not available for intra 

prediction": 

ï The variable availableN is equal to FALSE. 

ï CuPredMode[ xNbY ][  yNbY ] is not equal to MODE_INTRA and constrained_intra_pred_flag is equal 

to 1. 

ï Otherwise, the sample p[ x ][  y ] is marked as "available for intra prediction" and the sample at the location 

( xNbCmp, yNbCmp ) is assigned to p[ x ][  y ]. 

When at least one sample p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1 is marked as "not 

available for intra prediction", the reference sample substitution process for intra sample prediction in clause 8.4.4.2.2 is 

invoked with the samples p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1, nTbS and cIdx as 

inputs, and the modified samples p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1 as output. 

Depending on the value of predModeIntra, the following ordered steps apply: 



 

136 Rec. ITU-T H.265 v8 (08/2021) 

1. When intra_smoothing_disabled_flag is equal to 0 and either cIdx is equal to 0 or ChromaArrayType is equal to 

3, the filtering process of neighbouring samples specified in clause 8.4.4.2.3 is invoked with the sample array p, 

the transform block size nTbS and the colour component index cIdx as inputs, and the output is reassigned to the 

sample array p. 

2. The intra sample prediction process according to predModeIntra applies as follows: 

ï If predModeIntra is equal to INTRA_PLANAR, the corresponding intra prediction mode specified in 

clause 8.4.4.2.4 is invoked with the sample array p and the transform block size nTbS as inputs, and the 

output is the predicted sample array predSamples. 

ï Otherwise, if predModeIntra is equal to INTRA_DC, the corresponding intra prediction mode specified in 

clause 8.4.4.2.5 is invoked with the sample array p, the transform block size nTbS and the colour component 

index cIdx as inputs, and the output is the predicted sample array predSamples. 

ï Otherwise (predModeIntra is in the range of INTRA_ANGULAR2..INTRA_ANGULAR34), the 

corresponding intra prediction mode specified in clause 8.4.4.2.6 is invoked with the intra prediction mode 

predModeIntra, the sample array p, the transform block size nTbS and the colour component index cIdx as 

inputs, and the output is the predicted sample array predSamples. 

8.4.4.2.2 Reference sample substitution process for intra sample prediction 

Inputs to this process are: 

ï reference samples p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1 for intra sample 

prediction, 

ï a transform block size nTbS, and 

ï a variable cIdx specifying the colour component of the current block. 

Outputs of this process are the modified reference samples p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and 

x = 0..nTbS *  2 ī 1, y = ī1 for intra sample prediction. 

The variable bitDepth is derived as follows: 

ï If cIdx is equal to 0, bitDepth is set equal to BitDepthY. 

ï Otherwise, bitDepth is set equal to BitDepthC. 

The values of the samples p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1 are modified as 

follows: 

ï If all samples p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1 are marked as "not 

available for intra prediction", the value 1  <<  ( bitDepth ī 1 ) is substituted for the values of all samples p[ x ][  y ]. 

ï Otherwise (at least one but not all samples p[ x ][  y ] are marked as "not available for intra prediction"), the following 

ordered steps are performed: 

1. When p[ ī1 ][  nTbS *  2 ī 1 ] is marked as "not available for intra prediction", search sequentially starting from 

x = ī1, y = nTbS *  2 ī 1 to x = ī1, y = ī1, then from x = 0, y = ī1 to x = nTbS *  2 ī 1, y = ī1. Once a sample 

p[ x ][  y ] marked as "available for intra prediction" is found, the search is terminated and the value of p[ x ][  y ] 

is assigned to p[ ī1 ][  nTbS *  2 ī 1 ]. 

2. Search sequentially starting from x = ī1, y = nTbS *  2 ī 2 to x = ī1, y = ī1, when p[ x ][  y ] is marked as "not 

available for intra prediction", the value of p[ x ][  y + 1 ] is substituted for the value of p[ x ][  y ]. 

3. For x = 0..nTbS *  2 ī 1, y = ī1, when p[ x ][  y ] is marked as "not available for intra prediction", the value of 

p[ x ī 1 ][  y ] is substituted for the value of p[ x ][  y ]. 

All samples p[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1 are marked as "available for intra 

prediction". 

8.4.4.2.3 Filtering pro cess of neighbouring samples 

Inputs to this process are: 

ï the neighbouring samples p[ x ][  y ], with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1, 

ï a variable nTbS specifying the transform block size. 

Outputs of this process are the filtered samples pF[ x ][  y ], with x = ī1, y = ī1..nTbS *  2 ī 1 and 

x = 0..nTbS *  2 ī 1, y = ī1. 



 

  Rec. ITU-T H.265 v8 (08/2021) 137 

The variable filterFlag is derived as follows: 

ï If one or more of the following conditions are true, filterFlag is set equal to 0: 

ï predModeIntra is equal to INTRA_DC. 

ï nTbS is equal to 4. 

ï Otherwise, the following applies: 

ï The variable minDistVerHor is set equal to Min( Abs( predModeIntra ī 26 ), Abs( predModeIntra ī 10 ) ). 

ï The variable intraHorVerDistThres[ nTbS ] is specified in Table 8-4. 

ï The variable filterFlag is derived as follows:  

ï If minDistVerHor is greater than intraHorVerDistThres[ nTbS ], filterFlag is set equal to 1. 

ï Otherwise, filterFlag is set equal to 0. 

Table 8-4 ï Specification of intraHorVerDistThres[  nTbS ] for various transform block sizes 

 

 nTbS = 8 nTbS = 16 nTbS = 32 

intraHorVerDistThres[  nTbS ] 7 1 0 

When filterFlag is equal to 1, the following applies: 

ï The variable biIntFlag is derived as follows: 

ï If all of the following conditions are true, biIntFlag is set equal to 1: 

ï strong_intra_smoothing_enabled_flag is equal to 1. 

ï cIdx is equal to 0. 

ï nTbS is equal to 32. 

ï Abs( p[ ī1 ][  ī1 ] + p[ nTbS *  2 ī 1 ][  ī1 ] ī 2 *  p[ nTbS ī 1 ][  ī1 ] ) is less than 1  <<  ( BitDepthY ī 5 ). 

ï Abs( p[ ī1 ][  ī1 ] + p[ ī1 ][  nTbS *  2 ī 1 ] ī 2 *  p[ ī1 ][  nTbS ī 1 ] ) is less than 1  <<  ( BitDepthY ī 5 ). 

ï Otherwise, biIntFlag is set equal to 0.  

ï The filtering is performed as follows: 

ï If biIntFlag is equal to 1, the filtered sample values pF[ x ][  y ] with x = ī1, y = ī1..63 and x = 0..63, y = ī1 are 

derived as follows: 

pF[ ī1 ][  ī1 ] = p[ ī1 ][  ī1 ]  (8-36) 

pF[ ī1 ][  y ] = ( ( 63 ī y ) *  p[ ī1 ][  ī1 ] + ( y + 1 ) *  p[ ī1 ][  63 ] + 32 )  >>  6 for y = 0..62 (8-37) 

pF[ ī1 ][  63 ] = p[ ī1 ][  63 ]  (8-38) 

pF[ x ][  ī1 ] = ( ( 63 ī x ) *  p[ ī1 ][  ī1 ] + ( x + 1 ) *  p[ 63 ][  ī1 ] + 32 )  >>  6 for x = 0..62 (8-39) 

pF[ 63 ][  ī1 ] = p[ 63 ][  ī1 ]  (8-40) 

ï Otherwise (biIntFlag is equal to 0), the filtered sample values pF[ x ][  y ] with x = ī1, y = ī1..nTbS *  2 ī 1 and 

x = 0..nTbS *  2 ī 1, y = ī1 are derived as follows: 

pF[ ī1 ][  ī1 ] = ( p[ ī1 ][  0 ] + 2 *  p[ ī1 ][  ī1 ] + p[ 0 ][  ī1 ] + 2 )  >>  2 (8-41) 

pF[ ī1 ][  y ] = ( p[ ī1 ][  y + 1 ] + 2 *  p[ ī1 ][  y ] + p[ ī1 ][  y ī 1 ] + 2 )  >>  2 for 

y = 0..nTbS *  2 ī 2 (8-42) 

pF[ ī1 ][  nTbS *  2 ī 1 ] = p[ ī1 ][  nTbS *  2 ī 1 ] 

 (8-43) 



 

138 Rec. ITU-T H.265 v8 (08/2021) 

pF[ x ][  ī1 ] = ( p[ x ī 1 ][  ī1 ] + 2 *  p[ x ][  ī1 ] + p[ x + 1 ][  ī1 ] + 2 )  >>  2 for 

x = 0..nTbS *  2 ī 2 (8-44) 

pF[ nTbS *  2 ī 1 ][  ī1 ] = p[ nTbS *  2 ī 1 ][  ī1 ] 

 (8-45) 

8.4.4.2.4 Specification of intra prediction mode INTRA_PLANAR 

Inputs to this process are: 

ï the neighbouring samples p[ x ][  y ], with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1, 

ï a variable nTbS specifying the transform block size. 

Outputs of this process are the predicted samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1. 

The values of the prediction samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1, are derived as follows: 

predSamples[ x ][  y ] = ( ( nTbS ī 1 ī x ) *  p[ ī1 ][  y ] + ( x + 1 ) *  p[ nTbS ][  ī1 ] +  

  ( nTbS ī 1 ī y ) *  p[ x ][  ī1 ] +  

  ( y + 1 ) *  p[ ī1 ][  nTbS ] + nTbS )  >>  ( Log2( nTbS ) + 1 ) (8-46) 

8.4.4.2.5 Specification of intra prediction mode INTRA_DC 

Inputs to this process are: 

ï the neighbouring samples p[ x ][  y ], with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1, 

ï a variable nTbS specifying the transform block size, 

ï a variable cIdx specifying the colour component of the current block. 

Outputs of this process are the predicted samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1. 

The values of the prediction samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1, are derived by the following ordered 

steps: 

1. A variable dcVal is derived as follows: 

dcVal = )1k(nTbS]y][1[p]1][x[p
1nTbS

0y

1nTbS

0x

+>>
ö
ö

÷

õ

æ
æ

ç

å
+¡-+-¡ ää

-

=¡

-

=¡

 (8-47) 

where k = Log2( nTbS ). 

2. Depending on the value of the colour component index cIdx, the following applies: 

ï If cIdx is equal to 0, intra_boundary_filtering_disabled_flag is equal to 0, and nTbS is less than 32, the 

following applies: 

predSamples[ 0 ][  0 ] = ( p[ ī1 ][  0 ] + 2 *  dcVal + p[ 0 ][  ī1 ] + 2 )  >>  2 (8-48) 

predSamples[ x ][  0 ] = ( p[ x ][  ī1 ] + 3 *  dcVal + 2 )  >>  2, with x = 1..nTbS ī 1 (8-49) 

predSamples[ 0 ][  y ] = ( p[ ī1 ][  y ] + 3 *  dcVal + 2 )  >>  2, with y = 1..nTbS ī 1 (8-50) 

predSamples[ x ][  y ] = dcVal, with x, y = 1..nTbS ī 1 (8-51) 

ï Otherwise, the prediction samples predSamples[ x ][  y ] are derived as follows: 

predSamples[ x ][  y ] = dcVal, with x, y = 0..nTbS ī 1 (8-52) 

8.4.4.2.6 Specification of intra prediction mode in the range of INTRA_ANGULAR2.. INTRA_ANGULAR34  

Inputs to this process are:  

ï the intra prediction mode predModeIntra, 



 

  Rec. ITU-T H.265 v8 (08/2021) 139 

ï the neighbouring samples p[ x ][  y ], with x = ī1, y = ī1..nTbS *  2 ī 1 and x = 0..nTbS *  2 ī 1, y = ī1, 

ï a variable nTbS specifying the transform block size, 

ï a variable cIdx specifying the colour component of the current block. 

Outputs of this process are the predicted samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1. 

Figure 8-2 illustrates the total 33 intra angles and Table 8-5 specifies the mapping table between predModeIntra and the 

angle parameter intraPredAngle. 

 

Figure 8-2 ï Intra prediction angle definition (informative)  

 

Table 8-5 ï Specification of intraPredAngle 

 

predModeIntra  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

intraPredAngle - 32 26 21 17 13 9 5 2 0 ī2 ī5 ī9 ī13 ī17 ī21 ī26 

predModeIntra  18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

intraPredAngle ī32 ī26 ī21 ī17 ī13 ī9 ī5 ī2 0 2 5 9 13 17 21 26 32 

 

Table 8-6 further specifies the mapping table between predModeIntra and the inverse angle parameter invAngle. 

Table 8-6 ï Specification of invAngle 

 

predModeIntra  11 12 13 14 15 16 17 18 

invAngle ī4 096 ī1 638 ī910 ī630 ī482 ī390 ī315 ī256 

predModeIntra  19 20 21 22 23 24 25 26 

invAngle ī315 ī390 ī482 ī630 ī910 ī1 638 ī4 096 - 

 



 

140 Rec. ITU-T H.265 v8 (08/2021) 

The variable disableIntraBoundaryFilter is derived as follows: 

ï If intra_boundary_filtering_disabled_flag is equal to 1, disableIntraBoundaryFilter is set equal to 1. 

ï Otherwise (intra_boundary_filtering_disabled_flag is equal to 0), if implicit_rdpcm_enabled_flag and 

cu_transquant_bypass_flag are both equal to 1, disableIntraBoundaryFilter is set equal to 1. 

ï Otherwise, disableIntraBoundaryFilter is set equal to 0. 

The values of the prediction samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1 are derived as follows: 

ï If predModeIntra is greater than or equal to 18, the following ordered steps apply: 

1. The reference sample array ref[ x ] is specified as follows: 

ï The following applies: 

ref[ x ] = p[ ī1 + x ][  ī1 ], with x = 0..nTbS (8-53) 

ï If intraPredAngle is less than 0, the main reference sample array is extended as follows: 

ï When ( nTbS *  intraPredAngle )  >>  5 is less than ī1, 

ref[ x ] = p[ ī1 ][  ī1 + ( ( x *  invAngle + 128 )  >>  8 ) ], 

 with x = ī1..( nTbS *  intraPredAngle )  >>  5 (8-54) 

ï Otherwise, 

ref[ x ] = p[ ī1 + x ][  ī1 ], with x = nTbS + 1..2 *  nTbS (8-55) 

2. The values of the prediction samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1 are derived as follows: 

a. The index variable iIdx and the multiplication factor iFact are derived as follows: 

iIdx = ( ( y + 1 ) *  intraPredAngle )  >>  5 

  (8-56) 

iFact = ( ( y + 1 ) *  intraPredAngle ) & 31 

 (8-57) 

b. Depending on the value of iFact, the following applies: 

ï If iFact is not equal to 0, the value of the prediction samples predSamples[ x ][  y ] is derived as follows: 

predSamples[ x ][  y ] =  

 ( ( 32 ī iFact ) *  ref[ x + iIdx + 1 ] + iFact *  ref[ x + iIdx + 2 ] + 16 )  >>  5 (8-58) 

ï Otherwise, the value of the prediction samples predSamples[ x ][  y ] is derived as follows: 

predSamples[ x ][  y ] = ref[ x + iIdx + 1 ] 

 (8-59) 

c. When predModeIntra is equal to 26 (vertical), cIdx is equal to 0, nTbS is less than 32, and 

disableIntraBoundaryFilter is equal to 0, the following filtering applies with x = 0, y = 0..nTbS ī 1: 

predSamples[ x ][  y ] = Clip1Y( p[ x ][  ī1 ] + ( ( p[ ī1 ][  y ] ī p[ ī1 ][  ī1 ] )  >>  1 ) ) (8-60) 

ï Otherwise (predModeIntra is less than 18), the following ordered steps apply: 

1. The reference sample array ref[ x ] is specified as follows: 

ï The following applies: 

ref[ x ] = p[ ī1 ][  ī1 + x ], with x = 0..nTbS (8-61) 

ï If intraPredAngle is less than 0, the main reference sample array is extended as follows: 

ï When ( nTbS *  intraPredAngle )  >>  5 is less than ī1, 



 

  Rec. ITU-T H.265 v8 (08/2021) 141 

ref[ x ] = p[ ī1 + ( ( x *  invAngle + 128 )  >>  8 ) ][  ī1 ], 

 with x = ī1..( nTbS *  intraPredAngle )  >>  5 (8-62) 

ï Otherwise, 

ref[ x ] = p[ ī1 ][  ī1 + x ], with x = nTbS + 1..2 *  nTbS (8-63) 

2. The values of the prediction samples predSamples[ x ][  y ], with x, y = 0..nTbS ī 1 are derived as follows: 

a. The index variable iIdx and the multiplication factor iFact are derived as follows: 

iIdx = ( ( x + 1 ) *  intraPredAngle )  >>  5 

 (8-64) 

iFact = ( ( x + 1 ) *  intraPredAngle ) & 31 

 (8-65) 

b. Depending on the value of iFact, the following applies: 

ï If iFact is not equal to 0, the value of the prediction samples predSamples[ x ][  y ] is derived as follows: 

predSamples[ x ][  y ] =  

 ( ( 32 ī iFact ) *  ref[ y + iIdx + 1 ] + iFact *  ref[ y + iIdx + 2 ] + 16 )  >>  5 (8-66) 

ï Otherwise, the value of the prediction samples predSamples[ x ][  y ] is derived as follows: 

predSamples[ x ][  y ] = ref[  y + iIdx + 1 ] 

 (8-67) 

c. When predModeIntra is equal to 10 (horizontal), cIdx is equal to 0, nTbS is less than 32 and 

disableIntraBoundaryFilter is equal to 0, the following filtering applies with x = 0..nTbS ī 1, y = 0: 

predSamples[ x ][  y ] = Clip1Y( p[ ī1 ][  y ] + ( ( p[ x ][  ī1 ] ī p[ ī1 ][  ī1 ] )  >>  1 ) ) (8-68) 

8.4.4.2.7 Decoding process for palette mode 

Inputs to this process are: 

ï a location ( xCb, yCb ) specifying the top-left luma sample of the current block relative to the top-left luma sample 

of the current picture, 

ï a variable cIdx specifying the colour component of the current block, 

ï two variables nCbSX and nCbSY specifying the width and height of the current block, respectively. 

Output of this process is an array recSamples[ x ][  y ], with x = 0..nCbSX ī 1, y = 0..nCbSY ī 1 specifying reconstructed 

sample values for the block. 

Depending on the value of cIdx, the variables nSubWidth and nSubHeight are derived as follows: 

ï If cIdx is equal to 0, nSubWidth is set to 1 and nSubHeight is set to 1. 

ï Otherwise, nSubWidth is set to SubWidthC and nSubHeight is set to SubHeightC. 

The ( nCbSX x nCbSY ) block of the reconstructed sample array recSamples at location ( xCb, yCb ) is represented by 

recSamples[ x ][  y ] with x = 0..nCbSX ī 1 and y = 0..nCbSY ī 1, and the value of recSamples[ x ][  y ] for each x in the 

range of 0 to nCbSX ī 1, inclusive, and each y in the range of 0 to nCbSY ī 1, inclusive, is derived as follows: 

ï The variables xL and yL are derived as follows: 

xL = palette_transpose_flag ? y * nSubHeight : x * nSubWidth (8-69) 

yL = palette_transpose_flag ? x * nSubWidth : y * nSubHeight (8-70) 

ï The variable bIsEscapeSample is derived as follows: 



 

142 Rec. ITU-T H.265 v8 (08/2021) 

ï If PaletteIndexMap[ xCb + xL ][  yCb + yL ] is equal to MaxPaletteIndex and palette_escape_val_present_flag is 

equal to 1, bIsEscapeSample is set equal to 1. 

ï Otherwise, bIsEscapeSample is set equal to 0. 

ï If bIsEscapeSample is equal to 0, the following applies: 

recSamples[ x ][  y ] = CurrentPaletteEntries[ cIdx ][  PaletteIndexMap[ xCb + xL ][  yCb + yL ] ]

 (8-71) 

ï Otherwise, if cu_transquant_bypass_flag is equal to 1, the following applies: 

recSamples[ x ][  y ] = PaletteEscapeVal[ cIdx ][  xCb + xL ][  yCb + yL ] (8-72) 

ï Otherwise (bIsEscapeSample is equal to 1 and cu_transquant_bypass_flag is equal to 0), the following ordered steps 

apply: 

1. The derivation process for quantization parameters as specified in clause 8.6.1 is invoked with the location 

( xCb, yCb ) specifying the top-left sample of the current block relative to the top-left sample of the current 

picture. 

2. The quantization parameter qP is derived as follows: 

ï If cIdx is equal to 0, 

qP = Max( 0, QpǋY )  (8-73) 

ï Otherwise, if cIdx is equal to 1, 

qP = Max( 0, QpǋCb )  (8-74) 

ï Otherwise (cIdx is equal to 2), 

qP = Max( 0, QpǋCr )  (8-75) 

3. The variable bitDepth is derived as follows: 

bitDepth = ( cIdx  = =  0 ) ? BitDepthY : BitDepthC (8-76) 

4. The list levelScale[ ] is specified as levelScale[ k ] = { 40, 45, 51, 57, 64, 72 } with k = 0..5. 

5. The following applies: 

tmpVal = ( PaletteEscapeVal[ cIdx ][  xCb + xL ][  yCb + yL ] *  

    levelScale[ qP%6 ] )  <<  ( qP / 6 ) + 32 )  >>  6 (8-77) 

recSamples[ x ][  y ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, tmpVal ) (8-78) 

The variable PredictorPaletteSize and the array PredictorPaletteEntries are derived or modified as follows: 

numComps = ( ChromaArrayType  = =  0 ) ? 1 : 3 

for( i = 0; i < CurrentPaletteSize; i++ ) 

 for( cIdx = 0; cIdx < numComps; cIdx++ ) 

  newPredictorPaletteEntries[ cIdx ][  i ] = CurrentPaletteEntries[ cIdx ][  i ] 

newPredictorPaletteSize = CurrentPaletteSize 

for( i = 0; i < PredictorPaletteSize  &&  newPredictorPaletteSize < PaletteMaxPredictorSize; i++ ) 

 if( !PalettePredictorEntryReuseFlags[ i ] ) {  

  for( cIdx = 0; cIdx < numComps; cIdx++ ) 

 (8-79) 

   newPredictorPaletteEntries[ cIdx ][  newPredictorPaletteSize ] = 

    PredictorPaletteEntries[ cIdx ][  i ] 

  newPredictorPaletteSize++ 

 }  

for( cIdx = 0; cIdx < numComps; cIdx++ ) 



 

  Rec. ITU-T H.265 v8 (08/2021) 143 

 for( i = 0; i < newPredictorPaletteSize; i++ ) 

  PredictorPaletteEntries[ cIdx ][  i ] = newPredictorPaletteEntries[ cIdx ][  i ] 

PredictorPaletteSize = newPredictorPaletteSize 

It is a requirement of bitstream conformance that the value of PredictorPaletteSize shall be in the range of 0 to 

PaletteMaxPredictorSize, inclusive. 

8.5 Decoding process for coding units coded in inter prediction mode 

8.5.1 General decoding process for coding units coded in inter prediction mode 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a variable log2CbSize specifying the size of the current coding block. 

Output of this process is a modified reconstructed picture before deblocking filtering. 

The derivation process for quantization parameters as specified in clause 8.6.1 is invoked with the luma location 

( xCb, yCb ) as input. 

The variable nCbSL is set equal to 1  <<  log2CbSize. When ChromaArrayType is not equal to 0, the variable nCbSwC is 

set equal to ( 1  <<  log2CbSize ) / SubWidthC and the variable nCbShC is set equal to ( 1  <<  log2CbSize ) / SubHeightC. 

The decoding process for coding units coded in inter prediction mode consists of the following ordered steps: 

1. The inter prediction process as specified in clause 8.5.2 is invoked with the luma location ( xCb, yCb ) and the 

luma coding block size log2CbSize as inputs, and the outputs are the array predSamplesL and, when 

ChromaArrayType is not equal to 0, the arrays predSamplesCb and predSamplesCr. 

2. The decoding process for the residual signal of coding units coded in inter prediction mode specified in clause 

8.5.4 is invoked with the luma location ( xCb, yCb ) and the luma coding block size log2CbSize as inputs, and 

the outputs are the array resSamplesL and, when ChromaArrayType is not equal to 0, the arrays resSamplesCb and 

resSamplesCr. 

3. The reconstructed samples of the current coding unit are derived as follows: 

ï The picture construction process prior to in-loop filtering for a colour component as specified in clause 8.6.7 

is invoked with the luma coding block location ( xCb, yCb ), the variable nCurrSw set equal to nCbSL, the 

variable nCurrSh set equal to nCbSL, the variable cIdx set equal to 0, the (nCbSL)x(nCbSL) array predSamples 

set equal to predSamplesL and the (nCbSL)x(nCbSL) array resSamples set equal to resSamplesL as inputs. 

ï When ChromaArrayType is not equal to 0, the picture construction process prior to in-loop filtering for a 

colour component as specified in clause 8.6.7 is invoked with the chroma coding block location 

( xCb / SubWidthC, yCb / SubHeightC ), the variable nCurrSw set equal to nCbSwC, the variable nCurrSh set 

equal to nCbShC, the variable cIdx set equal to 1, the (nCbSwC)x(nCbShC) array predSamples set equal to 

predSamplesCb and the (nCbSwC)x(nCbShC) array resSamples set equal to resSamplesCb as inputs. 

ï When ChromaArrayType is not equal to 0, the picture construction process prior to in-loop filtering for a 

colour component as specified in clause 8.6.7 is invoked with the chroma coding block location 

( xCb /  SubWidthC, yCb / SubHeightC ), the variable nCurrSw set equal to nCbSwC, the variable nCurrSh set 

equal to nCbShC, the variable cIdx set equal to 2, the (nCbSwC)x(nCbShC) array predSamples set equal to 

predSamplesCr and the (nCbSwC)x(nCbShC) array resSamples set equal to resSamplesCr as inputs. 

8.5.2 Inter prediction process 

This process is invoked when decoding coding unit whose CuPredMode[ xCb ][  yCb ] is not equal to MODE_INTRA. 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a variable log2CbSize specifying the size of the current luma coding block. 

Outputs of this process are: 

ï an (nCbSL)x(nCbSL) array predSamplesL of luma prediction samples, where nCbSL is derived as specified below, 



 

144 Rec. ITU-T H.265 v8 (08/2021) 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array predSamplesCb of chroma prediction samples 

for the component Cb, where nCbSwC and nCbShC are derived as specified below, 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array predSamplesCr of chroma prediction samples 

for the component Cr, where nCbSwC and nCbShC are derived as specified below. 

The variable nCbSL is set equal to 1  <<  log2CbSize. When ChromaArrayType is not equal to 0, the variable nCbSwC is 

set equal to nCbSL / SubWidthC and the variable nCbShC is set equal to nCbSL / SubHeightC. 

The variable nCbS1L is set equal to nCbSL  >>  1. 

Depending on the value of PartMode, the following applies: 

ï If PartMode is equal to PART_2Nx2N, the decoding process for prediction units in inter prediction mode as specified 

in clause 8.5.3 is invoked with the luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the 

size of the luma coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL, the height of 

the luma prediction block nPbH set equal to nCbSL and a partition index partIdx set equal to 0 as inputs, and the outputs 

are an (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two (nCbSwC)x(nCbShC) 

arrays predSamplesCb and predSamplesCr. 

ï Otherwise, if PartMode is equal to PART_2NxN, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the size of the luma coding block 

nCbSL, the width of the luma prediction block nPbW set equal to nCbSL, the height of the luma prediction block 

nPbH set equal to nCbSL  >>  1 and a partition index partIdx set equal to 0 as inputs, and the outputs are an 

(nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two (nCbSwC)x(nCbShC) 

arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, nCbSL  >>  1 ), the size of the luma 

coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL, the height of the luma 

prediction block nPbH set equal to nCbSL  >>  1 and a partition index partIdx set equal to 1 as inputs, and the 

outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, 

the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

ï Otherwise, if PartMode is equal to PART_Nx2N, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the size of the luma coding block 

nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  1, the height of the luma prediction 

block nPbH set equal to nCbSL and a partition index partIdx set equal to 0 as inputs, and the outputs are an 

(nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two (nCbSwC)x(nCbShC) 

arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( nCbSL  >>  1, 0 ), the size of the luma 

coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  1, the height of the 

luma prediction block nPbH set equal to nCbSL and a partition index partIdx set equal to 1 as inputs, and the 

outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, 

the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

ï Otherwise, if PartMode is equal to PART_2NxnU, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the size of the luma coding block 

nCbSL, the width of the luma prediction block nPbW set equal to nCbSL, the height of the luma prediction block 

nPbH set equal to nCbSL  >>  2 and a partition index partIdx set equal to 0 as inputs, and the outputs are an 

(nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two (nCbSwC)x(nCbShC) 

arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, nCbSL  >>  2 ), the size of the luma 

coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL, the height of the luma 

prediction block nPbH set equal to ( nCbSL  >>  1 ) + ( nCbSL  >>  2 ) and a partition index partIdx set equal to 1 

as inputs, and the outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType 

is not equal to 0, the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

ï Otherwise, if PartMode is equal to PART_2NxnD, the following ordered steps apply: 



 

  Rec. ITU-T H.265 v8 (08/2021) 145 

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the size of the luma coding block 

nCbSL, the width of the luma prediction block nPbW set equal to nCbSL, the height of the luma prediction block 

nPbH set equal to ( nCbSL  >>  1 ) + ( nCbSL  >>  2 ) and a partition index partIdx set equal to 0 as inputs, and the 

outputs are an (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two 

(nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, ( nCbSL  >>  1 ) + ( nCbSL  >>  2 ) ), 

the size of the luma coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL, the 

height of the luma prediction block nPbH set equal to nCbSL  >>  2 and a partition index partIdx set equal to 1 as 

inputs, and the outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is 

not equal to 0, the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

ï Otherwise, if PartMode is equal to PART_nLx2N, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the size of the luma coding block 

nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  2, the height of the luma prediction 

block nPbH set equal to nCbSL and a partition index partIdx set equal to 0 as inputs, and the outputs are an 

(nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two (nCbSwC)x(nCbShC) 

arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( nCbSL  >>  2, 0 ), the size of the luma 

coding block nCbSL, the width of the luma prediction block nPbW set equal to ( nCbSL  >>  1 ) + ( nCbSL  >>  2 ), 

the height of the luma prediction block nPbH set equal to nCbSL and a partition index partIdx set equal to 1 as 

inputs, and the outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is 

not equal to 0, the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

ï Otherwise, if PartMode is equal to PART_nRx2N, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the size of the luma coding block 

nCbSL, the width of the luma prediction block nPbW set equal to ( nCbSL  >>  1 ) + ( nCbSL  >>  2 ), the height 

of the luma prediction block nPbH set equal to nCbSL and a partition index partIdx set equal to 0 as inputs, and 

the outputs are an (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two 

(nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( ( nCbSL  >>  1 ) + ( nCbSL  >>  2 ), 0 ), 

the size of the luma coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  2, 

the height of the luma prediction block nPbH set equal to nCbSL and a partition index partIdx set equal to 1 as 

inputs, and the outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is 

not equal to 0, the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

ï Otherwise (PartMode is equal to PART_NxN), the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, 0 ), the size of the luma coding block 

nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  1, the height of the luma prediction 

block nPbH set equal to nCbSL  >>  1 and a partition index partIdx set equal to 0 as inputs, and the outputs are an 

(nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 0, two (nCbSwC)x(nCbShC) 

arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( nCbSL  >>  1, 0 ), the size of the luma 

coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  1, the height of the 

luma prediction block nPbH set equal to nCbSL  >>  1 and a partition index partIdx set equal to 1 as inputs, and 

the outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 

0, the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

3. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( 0, nCbSL  >>  1 ), the size of the luma 

coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  1, the height of the 

luma prediction block nPbH set equal to nCbSL  >>  1 and a partition index partIdx set equal to 2 as inputs, and 

the outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal to 

0, the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 



 

146 Rec. ITU-T H.265 v8 (08/2021) 

4. The decoding process for prediction units in inter prediction mode as specified in clause 8.5.3 is invoked with the 

luma location ( xCb, yCb ), the luma location ( xBl, yBl ) set equal to ( nCbSL  >>  1, nCbSL  >>  1 ), the size of 

the luma coding block nCbSL, the width of the luma prediction block nPbW set equal to nCbSL  >>  1, the height 

of the luma prediction block nPbH set equal to nCbSL  >>  1 and a partition index partIdx set equal to 3 as inputs, 

and the outputs are the modified (nCbSL)x(nCbSL) array predSamplesL and, when ChromaArrayType is not equal 

to 0, the two modified (nCbSwC)x(nCbShC) arrays predSamplesCb and predSamplesCr. 

8.5.3 Decoding process for prediction units in inter prediction mode 

8.5.3.1 General 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a luma location ( xBl, yBl ) specifying the top-left sample of the current luma prediction block relative to the top-left 

sample of the current luma coding block, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï a variable nPbW specifying the width of the current luma prediction block, 

ï a variable nPbH specifying the height of the current luma prediction block, 

ï a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are: 

ï an (nCbSL)x(nCbSL) array predSamplesL of luma prediction samples, where nCbSL is derived as specified below, 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array predSamplesCb of chroma prediction samples 

for the component Cb, where nCbSwC and nCbShC are derived as specified below, 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array predSamplesCr of chroma prediction samples 

for the component Cr, where nCbSwC and nCbShC are derived as specified below. 

The variable nCbSL is set equal to nCbS. When ChromaArrayType is not equal to 0, the variable nCbSwC is set equal to 

nCbS / SubWidthC and the variable nCbShC is set equal to nCbS / SubHeightC. 

The decoding process for prediction units in inter prediction mode consists of the following ordered steps: 

1. The derivation process for motion vector components and reference indices as specified in clause 8.5.3.2 is 

invoked with the luma coding block location ( xCb, yCb ), the luma prediction block location ( xBl, yBl ), the 

luma coding block size block nCbS, the luma prediction block width nPbW, the luma prediction block height 

nPbH and the prediction unit index partIdx as inputs, and the luma motion vectors mvL0 and mvL1, when 

ChromaArrayType is not equal to 0, the chroma motion vectors mvCL0 and mvCL1, the reference indices 

refIdxL0 and refIdxL1 and the prediction list utilization flags predFlagL0 and predFlagL1 as outputs. 

2. The decoding process for inter sample prediction as specified in clause 8.5.3.3 is invoked with the luma coding 

block location ( xCb, yCb ), the luma prediction block location ( xBl, yBl ), the luma coding block size block 

nCbS, the luma prediction block width nPbW, the luma prediction block height nPbH, the luma motion vectors 

mvL0 and mvL1, when ChromaArrayType is not equal to 0, the chroma motion vectors mvCL0 and mvCL1, the 

reference indices refIdxL0 and refIdxL1, and the prediction list utilization flags predFlagL0 and predFlagL1 as 

inputs, and the inter prediction samples (predSamples) that are an (nCbSL)x(nCbSL) array predSamplesL of 

prediction luma samples and, when ChromaArrayType is not equal to 0, two (nCbSwC)x(nCbShC) arrays 

predSamplesCr and predSamplesCr of prediction chroma samples, one for each of the chroma components Cb and 

Cr, as outputs. 

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made for 

x = xBl..xBl + nPbW ī 1 and y = yBl..yBl + nPbH ī 1: 

MvL0[  xCb + x ][  yCb + y ] = mvL0  (8-80) 

MvL1[  xCb + x ][  yCb + y ] = mvL1  (8-81) 

RefIdxL0[ xCb + x ][  yCb + y ] = refIdxL0  (8-82) 

RefIdxL1[ xCb + x ][  yCb + y ] = refIdxL1  (8-83) 



 

  Rec. ITU-T H.265 v8 (08/2021) 147 

PredFlagL0[ xCb + x ][  yCb + y ] = predFlagL0  (8-84) 

PredFlagL1[ xCb + x ][  yCb + y ] = predFlagL1  (8-85) 

8.5.3.2 Derivation process for motion vector components and reference indices 

8.5.3.2.1 General 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) of the top-left sample of the current luma coding block relative to the top-left luma 

sample of the current picture, 

ï a luma location ( xBl, yBl ) of the top-left sample of the current luma prediction block relative to the top-left sample 

of the current luma coding block, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block, 

ï a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are: 

ï the luma motion vectors mvL0 and mvL1, 

ï when ChromaArrayType is not equal to 0, the chroma motion vectors mvCL0 and mvCL1, 

ï the reference indices refIdxL0 and refIdxL1, 

ï the prediction list utilization flags predFlagL0 and predFlagL1. 

Let ( xPb, yPb ) specify the top-left sample location of the current luma prediction block relative to the top-left luma sample 

of the current picture where xPb = xCb + xBl and yPb = yCb + yBl. 

Let the variable LX be RefPicListX, with X being 0 or 1, of the current picture. 

The variables nPbSw, and nPbSh are derived as follows: 

nPbSw = nCbS / ( ( PartMode  = =  PART_2Nx2N  | |  PartMode  = =  PART_2NxN ) ? 1 : 2 ) (8-86) 

nPbSh = nCbS / ( ( PartMode  = =  PART_2Nx2N  | |  PartMode  = =  PART_Nx2N ) ? 1 : 2 ) (8-87) 

The function LongTermRefPic( aPic, aPb, refIdx, LX ), with X being 0 or 1, is defined as follows: 

ï If the picture with index refIdx from reference picture list LX of the slice containing prediction block aPb in the 

picture aPic was marked as "used for long-term reference" at the time when aPic was the current picture, 

LongTermRefPic( aPic, aPb, refIdx, LX ) is equal to 1. 

ï Otherwise, LongTermRefPic( aPic, aPb, refIdx, LX ) is equal to 0. 

For the derivation of the variables mvL0 and mvL1, refIdxL0 and refIdxL1, as well as predFlagL0 and predFlagL1, the 

following applies: 

ï If merge_flag[ xPb ][  yPb ] is equal to 1, the derivation process for luma motion vectors for merge mode as specified 

in clause 8.5.3.2.2 is invoked with the luma location ( xCb, yCb ), the luma location ( xPb, yPb ), the variables nCbS, 

nPbW, nPbH and the partition index partIdx as inputs, and the output being the luma motion vectors mvL0, mvL1, 

the reference indices refIdxL0, refIdxL1 and the prediction list utilization flags predFlagL0 and predFlagL1. 

ï Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX and refIdxLX, in PRED_LX, 

and in the syntax elements ref_idx_lX and MvdLX, the following ordered steps apply: 

1. The variables refIdxLX and predFlagLX are derived as follows: 

-  If inter_pred_idc[ xPb ][  yPb ] is equal to PRED_LX or PRED_BI, 

refIdxLX = ref_idx_lX[ xPb ][  yPb ] (8-88) 

predFlagLX = 1  (8-89) 

-  Otherwise, the variables refIdxLX and predFlagLX are specified by: 



 

148 Rec. ITU-T H.265 v8 (08/2021) 

refIdxLX = ī1  (8-90) 

predFlagLX = 0  (8-91) 

2. The variable mvdLX is derived as follows: 

mvdLX[ 0 ] = MvdLX[  xPb ][  yPb ][  0 ] (8-92) 

mvdLX[ 1 ] = MvdLX[  xPb ][  yPb ][  1 ] (8-93) 

3. When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in clause 8.5.3.2.6 

is invoked with the luma coding block location ( xCb, yCb ), the coding block size nCbS, the luma 

prediction block location ( xPb, yPb ), the variables nPbW, nPbH, refIdxLX and the partition index partIdx 

as inputs, and the output being mvpLX. 

4. When predFlagLX is equal to 1 and the picture with index refIdx from reference picture list LX of the slice 

is not the current picture, and use_integer_mv_flag is equal to 0, the luma motion vector mvLX is derived 

as follows: 

uLX[ 0 ] = ( mvpLX[ 0 ] + mvdLX[ 0 ] + 216 ) % 216 (8-94) 

mvLX[ 0 ] = ( uLX[ 0 ]  >=  215 ) ? ( uLX[ 0 ] ī 216 ) : uLX[ 0 ] (8-95) 

uLX[ 1 ] = ( mvpLX[ 1 ] + mvdLX[ 1 ] + 216 ) % 216 (8-96) 

mvLX[ 1 ] = ( uLX[ 1 ]  >=  215 ) ? ( uLX[ 1 ] ī 216 ) : uLX[ 1 ] (8-97) 

NOTE 1ï The resulting values of mvLX[ 0 ] and mvLX[ 1 ] as specified above will always be in the range of ī215 

to 215 ī 1, inclusive. 

5. When predFlagLX is equal to 1 and the reference picture is the current picture, or when predFlagLX is 

equal to 1 and use_integer_mv_flag is equal to 1, the luma motion vector mvLX is derived as follows: 

uLX[ 0 ] = ( ( ( ( mvpLX[ 0 ]  >>  2 ) + mvdLX[ 0 ] )  <<  2 ) + 216 ) % 216 (8-98) 

mvLX[ 0 ] = ( uLX[ 0 ]  >=  215 ) ? ( uLX[ 0 ] ī 216 ) : uLX[ 0 ] (8-99) 

uLX[ 1 ] = ( ( ( ( mvpLX[ 1 ]  >>  2 ) + mvdLX[ 1 ] )  <<  2 ) + 216 ) % 216 (8-100) 

mvLX[ 1 ] = ( uLX[ 1 ]  >=  215 ) ? ( uLX[ 1 ] ī 216 ) : uLX[ 1 ] (8-101) 

NOTE 2 ï The resulting values of mvLX[ 0 ] and mvLX[ 1 ] as specified above will always be in the range of ī215 

to 215 ī 1, inclusive. 

ï The variable noIntegerMvFlag is derived as follows: 

noIntegerMvFlag = !( ( mvL0 & 0x3  = =  0 )  | |  ( mvL1 & 0x3  = =  0 ) ) (8-102) 

ï The variable identicalMvs is derived as follows: 

identicalMvs = ( mvL0  = =  mvL1 )  &&  (8-103) 

   ( DiffPicOrderCnt( RefPicList0[ refIdxL0 ], RefPicList1[ refIdxL1 ] )  = =  0 ) 

When all of the following conditions are true, refIdxL1 is set equal to ī1 and predFlagL1 is set equal to 0. 

ï predFlagL0 is equal to 1. 

ï predFlagL1 is equal to 1. 

ï nPbSw is equal to 8. 

ï nPbSh is equal to 8. 

ï TwoVersionsOfCurrDecPicFlag is equal to 1. 



 

  Rec. ITU-T H.265 v8 (08/2021) 149 

ï noIntegerMvFlag is equal to 1. 

ï identicalMvs is equal to 0. 

When ChromaArrayType is not equal to 0 and predFlagLX, with X being 0 or 1, is equal to 1, the derivation process for 

chroma motion vectors in clause 8.5.3.2.10 is invoked with mvLX as input, and the output being mvCLX. 

The variables offsetX and offsetY are derived as follows: 

offsetX = ( ChromaArrayType  = =  0 ) ? 0 : ( mvCLX[ 0 ] & 0x7 ? 2 : 0 ) (8-104) 

offsetY = ( ChromaArrayType  = =  0 ) ? 0 : ( mvCLX[ 1 ] & 0x7 ? 2 : 0 ) (8-105) 

It is a requirement of bitstream conformance that when the reference picture is the current picture, the luma motion vector 

mvLX shall obey the following constraints: 

ï When the derivation process for z-scan order block availability as specified in clause 6.4.1 is invoked with 

( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring luma location ( xNbY, yNbY ) set equal to 

( xPb + ( mvLX[  0 ]  >>  2 ) ī offsetX, yPb + ( mvLX[  1 ]  >>  2 ) ī offsetY ) as inputs, the output shall be equal to 

TRUE. 

ï When the derivation process for z-scan order block availability as specified in clause 6.4.1 is invoked with 

( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring luma location ( xNbY, yNbY ) set equal to 

( xPb + ( mvLX[  0 ]  >>  2 ) + nPbW ī 1 + offsetX, yPb + ( mvLX[  1 ]  >>  2 ) + nPbH ī 1 + offsetY ) as inputs, the 

output shall be equal to TRUE. 

ï One or both of the following conditions shall be true: 

ï The value of ( mvLX[  0 ]  >>  2 ) + nPbW + xB1 + offsetX is less than or equal to 0. 

ï The value of ( mvLX[  1 ]  >>  2 ) + nPbH + yB1 + offsetY is less than or equal to 0. 

ï The following condition shall be true:  

( xPb + ( mvLX[ 0 ]  >>  2 ) + nPbSw ī 1 + offsetX ) / CtbSizeY ī xCb / CtbSizeY  <= 

  yCb/CtbSizeY ī ( yPb + ( mvLX[ 1 ]  >>  2 ) + nPbSh ī 1 + offsetY ) / CtbSizeY (8-106) 

8.5.3.2.2 Derivation process for luma motion vectors for merge mode 

This process is only invoked when merge_flag[ xPb ][  yPb ] is equal to 1, where ( xPb, yPb ) specify the top-left sample 

of the current luma prediction block relative to the top-left luma sample of the current picture. 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) of the top-left sample of the current luma coding block relative to the top-left luma 

sample of the current picture, 

ï a luma location ( xPb, yPb ) of the top-left sample of the current luma prediction block relative to the top-left luma 

sample of the current picture, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block, 

ï a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are: 

ï the luma motion vectors mvL0 and mvL1, 

ï the reference indices refIdxL0 and refIdxL1, 

ï the prediction list utilization flags predFlagL0 and predFlagL1. 

The location ( xOrigP, yOrigP ) and the variables nOrigPbW and nOrigPbH are derived to store the values of ( xPb, yPb ), 

nPbW and nPbH as follows: 

( xOrigP, yOrigP ) is set equal to ( xPb, yPb ) 

 (8-107) 

nOrigPbW = nPbW  (8-108) 



 

150 Rec. ITU-T H.265 v8 (08/2021) 

nOrigPbH = nPbH  (8-109) 

When Log2ParMrgLevel is greater than 2 and nCbS is equal to 8, ( xPb, yPb ), nPbW, nPbH and partIdx are modified as 

follows: 

( xPb, yPb ) = ( xCb, yCb )  (8-110) 

nPbW = nCbS  (8-111) 

nPbH = nCbS  (8-112) 

partIdx = 0  (8-113) 

NOTE ï When Log2ParMrgLevel is greater than 2 and nCbS is equal to 8, all the prediction units of the current coding unit share a 

single merge candidate list, which is identical to the merge candidate list of the 2Nx2N prediction unit. 

The motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1 and the prediction utilization flags 

predFlagL0 and predFlagL1 are derived by the following ordered steps: 

1. The derivation process for merging candidates from neighbouring prediction unit partitions in clause 8.5.3.2.3 is 

invoked with the luma coding block location ( xCb, yCb ), the coding block size nCbS, the luma prediction block 

location ( xPb, yPb ), the luma prediction block width nPbW, the luma prediction block height nPbH and the 

partition index partIdx as inputs, and the output being the availability flags availableFlagA0, availableFlagA1, 

availableFlagB0, availableFlagB1 and availableFlagB2, the reference indices refIdxLXA0, refIdxLXA1, 

refIdxLXB0, refIdxLXB1 and refIdxLXB2, the prediction list utilization flags predFlagLXA0, predFlagLXA1, 

predFlagLXB0, predFlagLXB1 and predFlagLXB2, and the motion vectors mvLXA0, mvLXA1, mvLXB0, 

mvLXB1 and mvLXB2, with X being 0 or 1. 

2. The reference indices for the temporal merging candidate, refIdxLXCol, with X being 0 or 1, are set equal to 0. 

3. The derivation process for temporal luma motion vector prediction in clause 8.5.3.2.8 is invoked with the luma 

location ( xPb, yPb ), the luma prediction block width nPbW, the luma prediction block height nPbH and the 

variable refIdxL0Col as inputs, and the output being the availability flag availableFlagL0Col and the temporal 

motion vector mvL0Col.The variables availableFlagCol, predFlagL0Col and predFlagL1Col are derived as 

follows: 

availableFlagCol = availableFlagL0Col  (8-114) 

predFlagL0Col = availableFlagL0Col  (8-115) 

predFlagL1Col = 0  (8-116) 

4. When slice_type is equal to B, the derivation process for temporal luma motion vector prediction in 

clause 8.5.3.2.8 is invoked with the luma location ( xPb, yPb ), the luma prediction block width nPbW, the luma 

prediction block height nPbH and the variable refIdxL1Col as inputs, and the output being the availability flag 

availableFlagL1Col and the temporal motion vector mvL1Col. The variables availableFlagCol and 

predFlagL1Col are derived as follows: 

availableFlagCol = availableFlagL0Col  | |  availableFlagL1Col (8-117) 

predFlagL1Col = availableFlagL1Col  (8-118) 

5. The merging candidate list, mergeCandList, is constructed as follows: 

i = 0 

if( availableFlagA1 ) 

 mergeCandList[ i++ ] = A1 

if( availableFlagB1 ) 

 mergeCandList[ i++ ] = B1 

if( availableFlagB0 ) 

 mergeCandList[ i++ ] = B0  (8-119) 

if( availableFlagA0 ) 

 mergeCandList[ i++ ] = A0 



 

  Rec. ITU-T H.265 v8 (08/2021) 151 

if( availableFlagB2 ) 

 mergeCandList[ i++ ] = B2 

if( availableFlagCol ) 

 mergeCandList[ i++ ] = Col 

6. The variable numCurrMergeCand and numOrigMergeCand are set equal to the number of merging candidates in 

the mergeCandList. 

7. When slice_type is equal to B, the derivation process for combined bi-predictive merging candidates specified in 

clause 8.5.3.2.4 is invoked with mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction 

list utilization flags predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate 

N in mergeCandList, numCurrMergeCand and numOrigMergeCand as inputs, and the output is assigned to 

mergeCandList, numCurrMergeCand, the reference indices refIdxL0combCandk and refIdxL1combCandk, the 

prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk and the motion vectors 

mvL0combCandk and mvL1combCandk of every new candidate combCandk being added into mergeCandList. 

The number of candidates being added, numCombMergeCand, is set equal to 

( numCurrMergeCand ī numOrigMergeCand ). When numCombMergeCand is greater than 0, k ranges from 0 

to numCombMergeCand ī 1, inclusive. 

8. The derivation process for zero motion vector merging candidates specified in clause 8.5.3.2.5 is invoked with 

the mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags 

predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate N in mergeCandList 

and numCurrMergeCand as inputs, and the output is assigned to mergeCandList, numCurrMergeCand, the 

reference indices refIdxL0zeroCandm and refIdxL1zeroCandm, the prediction list utilization flags 

predFlagL0zeroCandm and predFlagL1zeroCandm and the motion vectors mvL0zeroCandm and mvL1zeroCandm 

of every new candidate zeroCandm being added into mergeCandList. The number of candidates being added, 

numZeroMergeCand, is set equal to ( numCurrMergeCand ī numOrigMergeCand ī numCombMergeCand ). 

When numZeroMergeCand is greater than 0, m ranges from 0 to numZeroMergeCand ī 1, inclusive. 

9. The following assignments are made with N being the candidate at position merge_idx[ xOrigP ][  yOrigP ] in the 

merging candidate list mergeCandList ( N = mergeCandList[ merge_idx[ xOrigP ][  yOrigP ] ] ) and X being 

replaced by 0 or 1: 

refIdxLX = refIdxLXN  (8-120) 

predFlagLX = predFlagLXN  (8-121) 

ï If  use_integer_mv_flag is equal to 0 and the reference picture is not the current picture, the following applies: 

mvLX[  0 ] = mvLXN[ 0 ]  (8-122) 

mvLX[ 1 ] = mvLXN[ 1 ]  (8-123) 

ï Otherwise (use_integer_mv_flag is equal to 1 or the reference picture is the current picture), the following 

applies: 

mvLX[ 0 ] = ( mvLXN[ 0 ]  >>  2 )  <<  2 (8-124) 

mvLX[ 1 ] = ( mvLXN[ 1 ]  >>  2 )  <<  2 (8-125) 

10. When predFlagL0 is equal to 1 and predFlagL1 is equal to 1 and ( nOrigPbW + nOrigPbH ) is equal to 12, the 

following applies: 

refIdxL1 = ī1  (8-126) 

predFlagL1 = 0  (8-127) 

8.5.3.2.3 Derivation process for spatial merging candidates 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) of the top-left sample of the current luma coding block relative to the top-left luma 

sample of the current picture, 

ï a variable nCbS specifying the size of the current luma coding block, 



 

152 Rec. ITU-T H.265 v8 (08/2021) 

ï a luma location ( xPb, yPb ) specifying the top-left sample of the current luma prediction block relative to the top-left 

luma sample of the current picture, 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block, 

ï a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are as follows, with X being 0 or 1: 

ï the availability flags availableFlagA0, availableFlagA1, availableFlagB0, availableFlagB1 and availableFlagB2 of the 

neighbouring prediction units, 

ï the reference indices refIdxLXA0, refIdxLXA1, refIdxLXB0, refIdxLXB1 and refIdxLXB2 of the neighbouring 

prediction units, 

ï the prediction list utilization flags predFlagLXA0, predFlagLXA1, predFlagLXB0, predFlagLXB1 and predFlagLXB2 

of the neighbouring prediction units, 

ï the motion vectors mvLXA0, mvLXA1, mvLXB0, mvLXB1 and mvLXB2 of the neighbouring prediction units. 

For the derivation of availableFlagA1, refIdxLXA1, predFlagLXA1 and mvLXA1 the following applies: 

ï The luma location ( xNbA1, yNbA1 ) inside the neighbouring luma coding block is set equal to 

( xPb ī 1,  yPb + nPbH ī 1 ). 

ï The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma location 

( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location ( xPb, yPb ), the luma 

prediction block width nPbW, the luma prediction block height nPbH, the luma location ( xNbA1, yNbA1 ) and the 

partition index partIdx as inputs, and the output is assigned to the prediction block availability flag availableA1. 

ï When one or more of the following conditions are true, availableA1 is set equal to FALSE: 

ï xPb  >>  Log2ParMrgLevel is equal to xNbA1  >>  Log2ParMrgLevel and  yPb  >>  Log2ParMrgLevel is equal 

to yNbA1  >>  Log2ParMrgLevel. 

ï PartMode of the current prediction unit is equal to PART_Nx2N, PART_nLx2N or PART_nRx2N and partIdx 

is equal to 1. 

ï The variables availableFlagA1, refIdxLXA1, predFlagLXA1 and mvLXA1 are derived as follows: 

ï If availableA1 is equal to FALSE, availableFlagA1 is set equal to 0, both components of mvLXA1 are set equal 

to 0, refIdxLXA1 is set equal to ī1 and predFlagLXA1 is set equal to 0, with X being 0 or 1. 

ï Otherwise, availableFlagA1 is set equal to 1 and the following assignments are made: 

mvLXA 1 = MvLX[  xNbA1 ][  yNbA1 ]  (8-128) 

refIdxLXA 1 = RefIdxLX[ xNbA1 ][  yNbA1 ]  (8-129) 

predFlagLXA1 = PredFlagLX[ xNbA1 ][  yNbA1 ] (8-130) 

For the derivation of availableFlagB1, refIdxLXB1, predFlagLXB1 and mvLXB1 the following applies: 

ï The luma location ( xNbB1, yNbB1 ) inside the neighbouring luma coding block is set equal to 

( xPb + nPbW ī 1, yPb ī 1 ). 

ï The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma location 

( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location ( xPb, yPb ), the luma 

prediction block width nPbW, the luma prediction block height nPbH, the luma location ( xNbB1, yNbB1 ) and the 

partition index partIdx as inputs, and the output is assigned to the prediction block availability flag availableB1. 

ï When one or more of the following conditions are true, availableB1 is set equal to FALSE: 

ï xPb  >>  Log2ParMrgLevel is equal to xNbB1  >>  Log2ParMrgLevel and yPb  >>  Log2ParMrgLevel is equal 

to yNbB1  >>  Log2ParMrgLevel. 

ï PartMode of the current prediction unit is equal to PART_2NxN, PART_2NxnU or PART_2NxnD and partIdx 

is equal to 1. 

ï The variables availableFlagB1, refIdxLXB1, predFlagLXB1 and mvLXB1 are derived as follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 153 

ï If one or more of the following conditions are true, availableFlagB1 is set equal to 0, both components of mvLXB1 

are set equal to 0, refIdxLXB1 is set equal to ī1 and predFlagLXB1 is set equal to 0, with X being 0 or 1: 

ï availableB1 is equal to FALSE. 

ï availableA1 is equal to TRUE and the prediction units covering the luma locations ( xNbA1, yNbA1 ) and 

( xNbB1, yNbB1 ) have the same motion vectors and the same reference indices. 

ï Otherwise, availableFlagB1 is set equal to 1 and the following assignments are made: 

mvLXB1 = MvLX[  xNbB1 ][  yNbB1 ]  (8-131) 

refIdxLXB1 = RefIdxLX[ xNbB1 ][  yNbB1 ]  (8-132) 

predFlagLXB1 = PredFlagLX[ xNbB1 ][  yNbB1 ] 

 (8-133) 

For the derivation of availableFlagB0, refIdxLXB0, predFlagLXB0 and mvLXB0 the following applies: 

ï The luma location ( xNbB0, yNbB0 ) inside the neighbouring luma coding block is set equal to 

( xPb + nPbW, yPb ī 1 ). 

ï The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma location 

( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location ( xPb, yPb ), the luma 

prediction block width nPbW, the luma prediction block height nPbH, the luma location ( xNbB0, yNbB0 ) and the 

partition index partIdx as inputs, and the output is assigned to the prediction block availability flag availableB0. 

ï When xPb  >>  Log2ParMrgLevel is equal to xNbB0  >>  Log2ParMrgLevel and yPb  >>  Log2ParMrgLevel is equal 

to yNbB0  >>  Log2ParMrgLevel, availableB0 is set equal to FALSE. 

ï The variables availableFlagB0, refIdxLXB0, predFlagLXB0 and mvLXB0 are derived as follows: 

ï If one or more of the following conditions are true, availableFlagB0 is set equal to 0, both components of mvLXB0 

are set equal to 0, refIdxLXB0 is set equal to ī1 and predFlagLXB0 is set equal to 0, with X being 0 or 1: 

ï availableB0 is equal to FALSE. 

ï availableB1 is equal to TRUE and the prediction units covering the luma locations ( xNbB1, yNbB1 ) and 

( xNbB0, yNbB0 ) have the same motion vectors and the same reference indices. 

ï Otherwise, availableFlagB0 is set equal to 1 and the following assignments are made: 

mvLXB0 = MvLX[  xNbB0 ][  yNbB0 ]  (8-134) 

refIdxLXB0 = RefIdxLX[ xNbB0 ][  yNbB0 ]  (8-135) 

predFlagLXB0 = PredFlagLX[ xNbB0 ][  yNbB0 ] 

 (8-136) 

For the derivation of availableFlagA0, refIdxLXA0, predFlagLXA0 and mvLXA0 the following applies: 

ï The luma location ( xNbA0, yNbA0 ) inside the neighbouring luma coding block is set equal to 

( xPb ī 1,  yPb + nPbH ). 

ï The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma location 

( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location ( xPb, yPb ), the luma 

prediction block width nPbW, the luma prediction block height nPbH, the luma location ( xNbA0, yNbA0 ) and the 

partition index partIdx as inputs, and the output is assigned to the prediction block availability flag availableA0. 

ï When xPb  >>  Log2ParMrgLevel is equal to xNbA0  >>  Log2ParMrgLevel and yPb  >>  Log2ParMrgLevel is 

equal to yA0  >>  Log2ParMrgLevel, availableA0 is set equal to FALSE. 

ï The variables availableFlagA0, refIdxLXA0, predFlagLXA0 and mvLXA0 are derived as follows: 

ï If one or more of the following conditions are true, availableFlagA0 is set equal to 0, both components of mvLXA0 

are set equal to 0, refIdxLXA0 is set equal to ī1 and predFlagLXA0 is set equal to 0, with X being 0 or 1: 

ï availableA0 is equal to FALSE. 



 

154 Rec. ITU-T H.265 v8 (08/2021) 

ï availableA1 is equal to TRUE and the prediction units covering the luma locations ( xNbA1, yNbA1 ) and 

( xNbA0, yNbA0 ) have the same motion vectors and the same reference indices. 

ï Otherwise, availableFlagA0 is set equal to 1 and the following assignments are made: 

mvLXA 0 = MvLX[  xNbA0 ][  yNbA0 ]  (8-137) 

refIdxLXA 0 = RefIdxLX[ xNbA0 ][  yNbA0 ]  (8-138) 

predFlagLXA0 = PredFlagLX[ xNbA0 ][  yNbA0 ] (8-139) 

For the derivation of availableFlagB2, refIdxLXB2, predFlagLXB2 and mvLXB2 the following applies: 

ï The luma location ( xNbB2, yNbB2 ) inside the neighbouring luma coding block is set equal to ( xPb ī 1, yPb ī 1 ). 

ï The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma location 

( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location ( xPb, yPb ), the luma 

prediction block width nPbW, the luma prediction block height nPbH, the luma location ( xNbB2, yNbB2 ) and the 

partition index partIdx as inputs, and the output is assigned to the prediction block availability flag availableB2. 

ï When xPb  >>  Log2ParMrgLevel is equal to xNbB2  >>  Log2ParMrgLevel and yPb  >>  Log2ParMrgLevel is equal 

to yNbB2  >>  Log2ParMrgLevel, availableB2 is set equal to FALSE. 

ï The variables availableFlagB2, refIdxLXB2, predFlagLXB2 and mvLXB2 are derived as follows: 

ï If one or more of the following conditions are true, availableFlagB2 is set equal to 0, both components of mvLXB2 

are set equal to 0, refIdxLXB2 is set equal to ī1 and predFlagLXB2 is set equal to 0, with X being 0 or 1: 

ï availableB2 is equal to FALSE. 

ï availableA1 is equal to TRUE and prediction units covering the luma locations ( xNbA1, yNbA1 ) and 

( xNbB2, yNbB2 ) have the same motion vectors and the same reference indices. 

ï availableB1 is equal to TRUE and the prediction units covering the luma locations ( xNbB1, yNbB1 ) and 

( xNbB2, yNbB2 ) have the same motion vectors and the same reference indices. 

ï availableFlagA0 + availableFlagA1 + availableFlagB0 + availableFlagB1 is equal to 4. 

ï Otherwise, availableFlagB2 is set equal to 1 and the following assignments are made: 

mvLXB2 = MvLX[  xNbB2 ][  yNbB2 ]  (8-140) 

refIdxLXB2 = RefIdxLX[ xNbB2 ][  yNbB2 ]  (8-141) 

predFlagLXB2 = PredFlagLX[ xNbB2 ][  yNbB2 ] 

 (8-142) 

8.5.3.2.4 Derivation process for combined bi-predictive merging candidates 

Inputs to this process are: 

ï a merging candidate list mergeCandList, 

ï the reference indices refIdxL0N and refIdxL1N of every candidate N in mergeCandList, 

ï the prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N in mergeCandList, 

ï the motion vectors mvL0N and mvL1N of every candidate N in mergeCandList, 

ï the number of elements numCurrMergeCand within mergeCandList, 

ï the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge candidate 

derivation process. 

Outputs of this process are: 

ï the merging candidate list mergeCandList, 

ï the number of elements numCurrMergeCand within mergeCandList, 

ï the reference indices refIdxL0combCandk and refIdxL1combCandk of every new candidate combCandk added into 

mergeCandList during the invocation of this process, 



 

  Rec. ITU-T H.265 v8 (08/2021) 155 

ï the prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk of every new candidate 

combCandk added into mergeCandList during the invocation of this process, 

ï the motion vectors mvL0combCandk and mvL1combCandk of every new candidate combCandk added into 

mergeCandList during the invocation of this process. 

When numOrigMergeCand is greater than 1 and less than MaxNumMergeCand, the variable numInputMergeCand is set 

equal to numCurrMergeCand, the variable combIdx is set equal to 0, the variable combStop is set equal to FALSE and the 

following ordered steps are repeated until combStop is equal to TRUE: 

1. The variables l0CandIdx and l1CandIdx are derived using combIdx as specified in Table 8-7. 

2. The following assignments are made, with l0Cand being the candidate at position l0CandIdx and l1Cand being 

the candidate at position l1CandIdx in the merging candidate list mergeCandList: 

ï l0Cand = mergeCandList[ l0CandIdx ] 

ï l1Cand = mergeCandList[ l1CandIdx ] 

3. When all of the following conditions are true: 

ï predFlagL0l0Cand  = =  1 

ï predFlagL1l1Cand  = =  1 

ï ( DiffPicOrderCnt( RefPicList0[ refIdxL0l0Cand ], RefPicList1[ refIdxL1l1Cand ] )  !=  0 )  | |   

( mvL0l0Cand  !=  mvL1l1Cand ) 

 the candidate combCandk with k equal to ( numCurrMergeCand ī numInputMergeCand ) is added at the end of 

mergeCandList, i.e., mergeCandList[ numCurrMergeCand ] is set equal to combCandk, and the reference indices, 

the prediction list utilization flags and the motion vectors of combCandk are derived as follows and 

numCurrMergeCand is incremented by 1: 

refIdxL0combCandk = refIdxL0l0Cand (8-143) 

refIdxL1combCandk = refIdxL1l1Cand (8-144) 

predFlagL0combCandk = 1 (8-145) 

predFlagL1combCandk = 1 (8-146) 

mvL0combCandk[ 0 ] = mvL0l0Cand[ 0 ] (8-147) 

mvL0combCandk[ 1 ] = mvL0l0Cand[ 1 ] (8-148) 

mvL1combCandk[ 0 ] = mvL1l1Cand[ 0 ] (8-149) 

mvL1combCandk[ 1 ] = mvL1l1Cand[ 1 ] (8-150) 

numCurrMergeCand = numCurrMergeCand + 1 (8-151) 

4. The variable combIdx is incremented by 1. 

5. When combIdx is equal to ( numOrigMergeCand *  ( numOrigMergeCand ī 1 ) ) or numCurrMergeCand is equal 

to MaxNumMergeCand, combStop is set equal to TRUE. 

Table 8-7 ï Specification of l0CandIdx and l1CandIdx 

combIdx 0 1 2 3 4 5 6 7 8 9 10 11 

l0CandIdx 0 1 0 2 1 2 0 3 1 3 2 3 

l1CandIdx 1 0 2 0 2 1 3 0 3 1 3 2 

 



 

156 Rec. ITU-T H.265 v8 (08/2021) 

8.5.3.2.5 Derivation process for zero motion vector merging candidates 

Inputs to this process are: 

ï a merging candidate list mergeCandList, 

ï the reference indices refIdxL0N and refIdxL1N of every candidate N in mergeCandList, 

ï the prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N in mergeCandList, 

ï the motion vectors mvL0N and mvL1N of every candidate N in mergeCandList, 

ï the number of elements numCurrMergeCand within mergeCandList. 

Outputs of this process are: 

ï the merging candidate list mergeCandList, 

ï the number of elements numCurrMergeCand within mergeCandList, 

ï the reference indices refIdxL0zeroCandm and refIdxL1zeroCandm of every new candidate zeroCandm added into 

mergeCandList during the invocation of this process, 

ï the prediction list utilization flags predFlagL0zeroCandm and predFlagL1zeroCandm of every new candidate 

zeroCandm added into mergeCandList during the invocation of this process, 

ï the motion vectors mvL0zeroCandm and mvL1zeroCandm of every new candidate zeroCandm added into 

mergeCandList during the invocation of this process. 

The variable numRefIdx is derived as follows: 

ï If slice_type is equal to P, numRefIdx is set equal to num_ref_idx_l0_active_minus1 + 1. 

ï Otherwise (slice_type is equal to B), numRefIdx is set equal to Min( num_ref_idx_l0_active_minus1 + 1, 

num_ref_idx_l1_active_minus1 + 1 ). 

When numCurrMergeCand is less than MaxNumMergeCand, the variable numInputMergeCand is set equal to 

numCurrMergeCand, the variable zeroIdx is set equal to 0 and the following ordered steps are repeated until 

numCurrMergeCand is equal to MaxNumMergeCand: 

1. For the derivation of the reference indices, the prediction list utilization flags and the motion vectors of the zero 

motion vector merging candidate, the following applies: 

ï If slice_type is equal to P, the candidate zeroCandm with m equal to 

( numCurrMergeCand ī numInputMergeCand ) is added at the end of mergeCandList, i.e., 

mergeCandList[ numCurrMergeCand ] is set equal to zeroCandm, and the reference indices, the prediction 

list utilization flags and the motion vectors of zeroCandm are derived as follows and numCurrMergeCand is 

incremented by 1: 

refIdxL0zeroCandm = ( zeroIdx < numRefIdx ) ? zeroIdx : 0 (8-152) 

refIdxL1zeroCandm = ī1 (8-153) 

predFlagL0zeroCandm = 1 (8-154) 

predFlagL1zeroCandm = 0 (8-155) 

mvL0zeroCandm[ 0 ] = 0 (8-156) 

mvL0zeroCandm[ 1 ] = 0 (8-157) 

mvL1zeroCandm[ 0 ] = 0 (8-158) 

mvL1zeroCandm[ 1 ] = 0 (8-159) 

numCurrMergeCand = numCurrMergeCand + 1 (8-160) 

ï Otherwise (slice_type is equal to B), the candidate zeroCandm with m equal to 

( numCurrMergeCand ī numInputMergeCand ) is added at the end of mergeCandList, i.e., 



 

  Rec. ITU-T H.265 v8 (08/2021) 157 

mergeCandList[ numCurrMergeCand ] is set equal to zeroCandm, and the reference indices, the prediction 

list utilization flags and the motion vectors of zeroCandm are derived as follows and numCurrMergeCand is 

incremented by 1: 

refIdxL0zeroCandm = ( zeroIdx < numRefIdx ) ? zeroIdx : 0 (8-161) 

refIdxL1zeroCandm = ( zeroIdx < numRefIdx ) ? zeroIdx : 0 (8-162) 

predFlagL0zeroCandm = 1 (8-163) 

predFlagL1zeroCandm = 1 (8-164) 

mvL0zeroCandm[ 0 ] = 0 (8-165) 

mvL0zeroCandm[ 1 ] = 0 (8-166) 

mvL1zeroCandm[ 0 ] = 0 (8-167) 

mvL1zeroCandm[ 1 ] = 0 (8-168) 

numCurrMergeCand = numCurrMergeCand + 1 (8-169) 

2. The variable zeroIdx is incremented by 1. 

8.5.3.2.6 Derivation process for luma motion vector prediction 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) of the top-left sample of the current luma coding block relative to the top-left luma 

sample of the current picture, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï a luma location ( xPb, yPb ) specifying the top-left sample of the current luma prediction block relative to the top-left 

luma sample of the current picture, 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block, 

ï the reference index of the current prediction unit partition refIdxLX, with X being 0 or 1, 

ï a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Output of this process is the prediction mvpLX of the motion vector mvLX, with X being 0 or 1. 

The motion vector predictor mvpLX is derived in the following ordered steps: 

1. The derivation process for motion vector predictor candidates from neighbouring prediction unit partitions in 

clause 8.5.3.2.7 is invoked with the luma coding block location ( xCb, yCb ), the coding block size nCbS, the 

luma prediction block location ( xPb, yPb ), the luma prediction block width nPbW, the luma prediction block 

height nPbH, refIdxLX, with X being 0 or 1 and the partition index partIdx as inputs, and the availability flags 

availableFlagLXN and the motion vectors mvLXN, with N being replaced by A or B, as output. 

2. If both availableFlagLXA and availableFlagLXB are equal to 1 and mvLXA is not equal to mvLXB, 

availableFlagLXCol is set equal to 0. Otherwise, the derivation process for temporal luma motion vector 

prediction in clause 8.5.3.2.8 is invoked with luma prediction block location ( xPb, yPb ), the luma prediction 

block width nPbW, the luma prediction block height nPbH and refIdxLX, with X being 0 or 1 as inputs, and with 

the output being the availability flag availableFlagLXCol and the temporal motion vector predictor mvLXCol. 

3. The motion vector predictor candidate list, mvpListLX, is constructed as follows: 

i = 0 

if( availableFlagLXA ) { 

 mvpListLX[ i++ ] = mvLXA 

 if( availableFlagLXB  &&  ( mvLXA  !=  mvLXB ) ) 

  mvpListLX[ i++ ] = mvLXB 

} else if( availableFlagLXB ) 

 mvpListLX[ i++ ] = mvLXB  (8-170) 



 

158 Rec. ITU-T H.265 v8 (08/2021) 

if( i < 2  &&  availableFlagLXCol ) 

 mvpListLX[ i++ ] = mvLXCol 

while( i < 2 ) { 

 mvpListLX[ i ][  0 ] = 0 

 mvpListLX[ i ][  1 ] = 0 

 i++ 

}  

4. The motion vector of mvpListLX[ mvp_lX_flag[ xPb ][  yPb ] ] is assigned to mvpLX. 

8.5.3.2.7 Derivation process for motion vector predictor candidates 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) of the top-left sample of the current luma coding block relative to the top-left luma 

sample of the current picture, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï a luma location ( xPb, yPb ) specifying the top-left sample of the current luma prediction block relative to the top-left 

luma sample of the current picture, 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block, 

ï the reference index of the current prediction unit partition refIdxLX, with X being 0 or 1, 

ï a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are (with N being replaced by A or B): 

ï the motion vectors mvLXN of the neighbouring prediction units, 

ï the availability flags availableFlagLXN of the neighbouring prediction units. 

Figure 8-3 provides an overview of spatial motion vector neighbours. 

 

Figure 8-3 ï Spatial motion vector neighbours (informative) 

 

The variable currPb specifies the current luma prediction block at luma location ( xPb, yPb ) and the variable currPic 

specifies the current picture. 

The variable isScaledFlagLX, with X being 0 or 1, is set equal to 0. 

The motion vector mvLXA and the availability flag availableFlagLXA are derived in the following ordered steps: 

1. The sample location ( xNbA0, yNbA0 ) is set equal to ( xPb ī 1, yPb + nPbH ) and the sample location 

( xNbA1, yNbA1 ) is set equal to ( xNbA0, yNbA0 ī 1 ). 

2. The availability flag availableFlagLXA is set equal to 0 and both components of mvLXA are set equal to 0. 

3. The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma 

location ( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location ( xPb, yPb ), 

the luma prediction block width nPbW, the luma prediction block height nPbH, the luma location ( xNbY, yNbY ) 

set equal to ( xNbA0, yNbA0 ) and the partition index partIdx as inputs, and the output is assigned to the prediction 

block availability flag availableA0. 

4. The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the luma 

location ( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location ( xPb, yPb ), 



 

  Rec. ITU-T H.265 v8 (08/2021) 159 

the luma prediction block width nPbW, the luma prediction block height nPbH, the luma location ( xNbY, yNbY ) 

set equal to ( xNbA1, yNbA1 ) and the partition index partIdx as inputs, and the output is assigned to the prediction 

block availability flag availableA1. 

5. When availableA0 or availableA1 is equal to TRUE, the variable isScaledFlagLX is set equal to 1. 

6. The following applies for ( xNbAk, yNbAk ) from ( xNbA0, yNbA0 ) to ( xNbA1, yNbA1 ): 

ï When availableAk is equal to TRUE and availableFlagLXA is equal to 0, the following applies: 

ï If PredFlagLX[ xNbAk ][  yNbAk ] is equal to 1 and 

DiffPicOrderCnt( RefPicListX[  RefIdxLX[ xNbAk ][  yNbAk ] ], RefPicListX[ refIdxLX ] ) is equal to 

0, availableFlagLXA is set equal to 1 and the following applies: 

mvLXA = MvLX[  xNbAk ][  yNbAk ] (8-171) 

ï Otherwise, when PredFlagLY[ xNbAk ][  yNbAk ] (with Y = !X) is equal to 1 and 

DiffPicOrderCnt( RefPicListY[ RefIdxLY[ xNbAk ][  yNbAk ] ], RefPicListX[ refIdxLX ] ) is equal to 

0, availableFlagLXA is set equal to 1 and the following applies: 

mvLXA = MvLY[  xNbAk ][  yNbAk ] (8-172) 

7. When availableFlagLXA is equal to 0, the following applies for ( xNbAk, yNbAk ) from ( xNbA0, yNbA0 ) to 

( xNbA1, yNbA1 ) or until availableFlagLXA is equal to 1: 

ï When availableAk is equal to TRUE and availableFlagLXA is equal to 0, the following applies: 

ï If PredFlagLX[ xNbAk ][  yNbAk ] is equal to 1 and 

LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX ) is equal to 

LongTermRefPic( currPic, currPb, RefIdxLX[ xNbAk ][  yNbAk ], RefPicListX ), availableFlagLXA is 

set equal to 1 and the following assignments are made: 

mvLXA = MvLX[  xNbAk ][  yNbAk ] (8-173) 

refIdxA = RefIdxLX[ xNbAk ][  yNbAk ] (8-174) 

refPicListA = RefPicListX (8-175) 

ï Otherwise, when PredFlagLY[ xNbAk ][  yNbAk ] (with Y = !X) is equal to 1 and 

LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX ) is equal to 

LongTermRefPic( currPic, currPb, RefIdxLY[ xNbAk ][  yNbAk ], RefPicListY ), availableFlagLXA is 

set equal to 1 and the following assignments are made: 

mvLXA = MvLY[  xNbAk ][  yNbAk ] (8-176) 

refIdxA = RefIdxLY[ xNbAk ][  yNbAk ] (8-177) 

refPicListA = RefPicListY (8-178) 

ï When availableFlagLXA is equal to 1, DiffPicOrderCnt( refPicListA[ refIdxA ], RefPicListX[ refIdxLX ] ) 

is not equal to 0, and both refPicListA[ refIdxA ] and RefPicListX[ refIdxLX ] are short-term reference 

pictures, mvLXA is derived as follows: 

tx = ( 16384 + ( Abs( td )  >>  1 ) ) / td (8-179) 

distScaleFactor = Clip3( ī4096, 4095, ( tb *  tx + 32 )  >>  6 ) (8-180) 

mvLXA = Clip3( ī32768, 32767, Sign( distScaleFactor *  mvLXA ) *   

    ( ( Abs( distScaleFactor *  mvLXA  ) + 127 )  >>  8 ) ) (8-181) 

where td and tb are derived as follows: 

td = Clip3( ī128, 127, DiffPicOrderCnt( currPic, refPicListA[ refIdxA ] ) ) (8-182) 

tb = Clip3( ī128, 127, DiffPicOrderCnt( currPic, RefPicListX[ refIdxLX ] ) ) (8-183) 



 

160 Rec. ITU-T H.265 v8 (08/2021) 

The motion vector mvLXB and the availability flag availableFlagLXB are derived in the following ordered steps: 

1. The sample locations ( xNbB0, yNbB0 ), ( xNbB1, yNbB1 ) and ( xNbB2, yNbB2 ) are set equal to 

( xPb + nPbW, yPb ī 1 ), ( xPb + nPbW ī 1, yPb ī 1 ) and ( xPb ī 1, yPb ī 1 ), respectively. 

2. The availability flag availableFlagLXB is set equal to 0 and the both components of mvLXB are set equal to 0. 

3. The following applies for ( xNbBk, yNbBk ) from ( xNbB0, yNbB0 ) to ( xNbB2, yNbB2 ): 

ï The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the 

luma location ( xCb, yCb ), the current luma coding block size nCbS, the luma prediction block location 

( xPb, yPb ), the luma prediction block width nPbW, the luma prediction block height nPbH, the luma 

location ( xNbY, yNbY ) set equal to ( xNbBk, yNbBk ) and the partition index partIdx as inputs, and the 

output is assigned to the prediction block availability flag availableBk. 

ï When availableBk is equal to TRUE and availableFlagLXB is equal to 0, the following applies: 

ï If PredFlagLX[ xNbBk ][  yNbBk ] is equal to 1, and 

DiffPicOrderCnt( RefPicListX[ RefIdxLX[ xNbBk ][  yNbBk ] ], RefPicListX[ refIdxLX ] ) is equal to 

0, availableFlagLXB is set equal to 1 and the following assignment are made: 

mvLXB = MvLX[  xNbBk ][  yNbBk ] (8-184) 

ï Otherwise, when PredFlagLY[ xNbBk ][  yNbBk ] (with Y = !X) is equal to 1 and 

DiffPicOrderCnt( RefPicListY[ RefIdxLY[  xNbBk ][  yNbBk ] ], RefPicListX[ refIdxLX ] ) is equal to 

0, availableFlagLXB is set equal to 1 and the following assignment is made: 

mvLXB = MvLY[  xNbBk ][  yNbBk ] (8-185) 

4. When isScaledFlagLX is equal to 0 and availableFlagLXB is equal to 1, availableFlagLXA is set equal to 1 and 

the following applies: 

mvLXA = mvLXB (8-186) 

5. When isScaledFlagLX is equal to 0, availableFlagLXB is set equal to 0 and the following applies for 

( xNbBk, yNbBk ) from ( xNbB0, yNbB0 ) to ( xNbB2, yNbB2 ) or until availableFlagLXB is equal to 1: 

ï The availability derivation process for a prediction block as specified in clause 6.4.2 is invoked with the 

luma location ( xCb, yCb ), the current luma coding block size nCbS, the luma location ( xPb, yPb ), the 

luma prediction block width nPbW, the luma prediction block height nPbH, the luma location 

( xNbY, yNbY ) set equal to ( xNbBk, yNbBk ) and the partition index partIdx as inputs, and the output is 

assigned to the prediction block availability flag availableBk. 

ï When availableBk is equal to TRUE and availableFlagLXB is equal to 0, the following applies: 

ï If PredFlagLX[ xNbBk ][  yNbBk ] is equal to 1 and 

LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX ) is equal to 

LongTermRefPic( currPic, currPb, RefIdxLX[ xNbBk ][  yNbBk ], RefPicListX ), availableFlagLXB is 

set equal to 1 and the following assignments are made: 

mvLXB = MvLX[  xNbBk ][  yNbBk ] (8-187) 

refIdxB = RefIdxLX[ xNbBk ][  yNbBk ] (8-188) 

refPicListB = RefPicListX (8-189) 

ï Otherwise, when PredFlagLY[ xNbBk ][  yNbBk ] (with Y = !X) is equal to 1 and 

LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX ) is equal to 

LongTermRefPic( currPic, currPb, RefIdxLY[ xNbBk ][  yNbBk ], RefPicListY ), availableFlagLXB is 

set equal to 1 and the following assignments are made: 

mvLXB = MvLY[  xNbBk ][  yNbBk ] (8-190) 

refIdxB = RefIdxLY[ xNbBk ][  yNbBk ] (8-191) 

refPicListB = RefPicListY (8-192) 



 

  Rec. ITU-T H.265 v8 (08/2021) 161 

ï When availableFlagLXB is equal to 1, DiffPicOrderCnt( refPicListB[ refIdxB ], RefPicListX[ refIdxLX ] ) 

is not equal to 0 and both refPicListB[ refIdxB ] and RefPicListX[ refIdxLX ] are short-term reference 

pictures, mvLXB is derived as follows: 

tx = ( 16384 + ( Abs( td )  >>  1 ) ) / td (8-193) 

distScaleFactor = Clip3( ī4096, 4095, ( tb *  tx + 32 )  >>  6 ) (8-194) 

mvLXB = Clip3( ī32768, 32767, Sign( distScaleFactor *  mvLXB ) *  

    ( ( Abs( distScaleFactor *  mvLXB ) + 127 )  >>  8 ) ) (8-195) 

where td and tb are derived as follows: 

td = Clip3( ī128, 127, DiffPicOrderCnt( currPic, refPicListB[ refIdxB ] ) ) (8-196) 

tb = Clip3( ī128, 127, DiffPicOrderCnt( currPic, RefPicListX[ refIdxLX ] ) ) (8-197) 

8.5.3.2.8 Derivation process for temporal luma motion vector prediction 

Inputs to this process are: 

ï a luma location ( xPb, yPb ) specifying the top-left sample of the current luma prediction block relative to the top-left 

luma sample of the current picture, 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block, 

ï a reference index refIdxLX, with X being 0 or 1. 

Outputs of this process are: 

ï the motion vector prediction mvLXCol, 

ï the availability flag availableFlagLXCol. 

The variable currPb specifies the current luma prediction block at luma location ( xPb, yPb ). 

The variables mvLXCol and availableFlagLXCol are derived as follows: 

ï If slice_temporal_mvp_enabled_flag is equal to 0, both components of mvLXCol are set equal to 0 and 

availableFlagLXCol is set equal to 0. 

ï Otherwise (slice_temporal_mvp_enabled_flag is equal to 1), the following ordered steps apply: 

1. The bottom right collocated motion vector is derived as follows: 

xColBr = xPb + nPbW (8-198) 

yColBr = yPb + nPbH (8-199) 

ï If yPb  >>  CtbLog2SizeY is equal to yColBr  >>  CtbLog2SizeY, yColBr is less than 

pic_height_in_luma_samples and xColBr is less than pic_width_in_luma_samples, the following applies: 

ï The variable colPb specifies the luma prediction block covering the modified location given by 

( ( xColBr  >>  4 )  <<  4, ( yColBr  >>  4 )  <<  4 ) inside the collocated picture specified by ColPic. 

ï The luma location ( xColPb, yColPb ) is set equal to the top-left sample of the collocated luma 

prediction block specified by colPb relative to the top-left luma sample of the collocated picture 

specified by ColPic. 

ï The derivation process for collocated motion vectors as specified in clause 8.5.3.2.9 is invoked with 

currPb, colPb, ( xColPb, yColPb ) and refIdxLX as inputs, and the output is assigned to mvLXCol and 

availableFlagLXCol. 

ï Otherwise, both components of mvLXCol are set equal to 0 and availableFlagLXCol is set equal to 0. 

2. When availableFlagLXCol is equal to 0, the central collocated motion vector is derived as follows: 

xColCtr = xPb + ( nPbW  >>  1 ) (8-200) 



 

162 Rec. ITU-T H.265 v8 (08/2021) 

yColCtr = yPb + ( nPbH  >>  1 ) (8-201) 

ï The variable colPb specifies the luma prediction block covering the modified location given by 

( ( xColCtr  >>  4 )  <<  4, ( yColCtr  >>  4 )  <<  4 ) inside the collocated picture specified by ColPic. 

ï The luma location ( xColPb, yColPb ) is set equal to the top-left sample of the collocated luma prediction 

block specified by colPb relative to the top-left luma sample of the collocated picture specified by ColPic. 

ï The derivation process for collocated motion vectors as specified in clause 8.5.3.2.9 is invoked with currPb, 

colPb, ( xColPb, yColPb ) and refIdxLX as inputs, and the output is assigned to mvLXCol and 

availableFlagLXCol. 

8.5.3.2.9 Derivation process for collocated motion vectors 

Inputs to this process are: 

ï a variable currPb specifying the current prediction block, 

ï a variable colPb specifying the collocated prediction block inside the collocated picture specified by ColPic, 

ï a luma location ( xColPb, yColPb ) specifying the top-left sample of the collocated luma prediction block specified 

by colPb relative to the top-left luma sample of the collocated picture specified by ColPic, 

ï a reference index refIdxLX, with X being 0 or 1. 

Outputs of this process are: 

ï the motion vector prediction mvLXCol, 

ï the availability flag availableFlagLXCol. 

The variable currPic specifies the current picture. 

The arrays predFlagL0Col[ x ][  y ], mvL0Col[ x ][  y ] and refIdxL0Col[ x ][  y ] are set equal to PredFlagL0[ x ][  y ], 

MvL0[  x ][  y ] and RefIdxL0[ x ][  y ], respectively, of the collocated picture specified by ColPic, and the arrays 

predFlagL1Col[ x ][  y ], mvL1Col[ x ][  y ] and refIdxL1Col[ x ][  y ] are set equal to PredFlagL1[ x ][  y ], MvL1[  x ][  y ] 

and RefIdxL1[ x ][  y ], respectively, of the collocated picture specified by ColPic. 

The variables mvLXCol and availableFlagLXCol are derived as follows: 

ï If colPb is coded in an intra prediction mode, both components of mvLXCol are set equal to 0 and availableFlagLXCol 

is set equal to 0. 

ï Otherwise, the motion vector mvCol, the reference index refIdxCol and the reference list identifier listCol are derived 

as follows: 

ï If predFlagL0Col[ xColPb ][  yColPb ] is equal to 0, mvCol, refIdxCol and listCol are set equal to 

mvL1Col[ xColPb ][  yColPb ], refIdxL1Col[ xColPb ][  yColPb ] and L1, respectively. 

ï Otherwise, if predFlagL0Col[ xColPb ][  yColPb ] is equal to 1 and predFlagL1Col[ xColPb ][  yColPb ] is equal 

to 0, mvCol, refIdxCol and listCol are set equal to mvL0Col[ xColPb ][  yColPb ], 

refIdxL0Col[ xColPb ][  yColPb ] and L0, respectively. 

ï Otherwise (predFlagL0Col[ xColPb ][  yColPb ] is equal to 1 and predFlagL1Col[ xColPb ][  yColPb ] is equal 

to 1), the following assignments are made: 

ï If NoBackwardPredFlag is equal to 1, mvCol, refIdxCol and listCol are set equal to 

mvLXCol[ xColPb ][  yColPb ], refIdxLXCol[ xColPb ][  yColPb ] and LX, respectively. 

ï Otherwise, mvCol, refIdxCol and listCol are set equal to mvLNCol[ xColPb ][  yColPb ], 

refIdxLNCol[ xColPb ][  yColPb ] and LN, respectively, with N being the value of collocated_from_l0_flag. 

And mvLXCol and availableFlagLXCol are derived as follows: 

ï If LongTermRefPic( currPic, currPb, refIdxLX, LX ) is not equal to LongTermRefPic( ColPic, colPb, refIdxCol, 

listCol ), both components of mvLXCol are set equal to 0 and availableFlagLXCol is set equal to 0. 

ï Otherwise, the variable availableFlagLXCol is set equal to 1, refPicListCol[ refIdxCol ] is set to be the picture 

with reference index refIdxCol in the reference picture list listCol of the slice containing prediction block colPb 

in the collocated picture specified by ColPic, and the following applies: 

colPocDiff = DiffPicOrderCnt( ColPic, refPicListCol[ refIdxCol ] ) (8-202) 



 

  Rec. ITU-T H.265 v8 (08/2021) 163 

currPocDiff = DiffPicOrderCnt( currPic, RefPicListX[ refIdxLX ] ) (8-203) 

ï If RefPicListX[ refIdxLX ] is a long-term reference picture, or colPocDiff is equal to currPocDiff, mvLXCol 

is derived as follows: 

mvLXCol = mvCol (8-204) 

ï Otherwise, mvLXCol is derived as a scaled version of the motion vector mvCol as follows: 

tx = ( 16384 + ( Abs( td )  >>  1 ) ) / td (8-205) 

distScaleFactor = Clip3( ī4096, 4095, ( tb *  tx + 32 )  >>  6 ) (8-206) 

mvLXCol =  Clip3( ī32768, 32767, Sign( distScaleFactor *  mvCol ) *   

    ( ( Abs( distScaleFactor *  mvCol ) + 127 )  >>  8 ) ) (8-207) 

where td and tb are derived as follows: 

td = Clip3( ī128, 127, colPocDiff ) (8-208) 

tb = Clip3( ī128, 127, currPocDiff ) (8-209) 

8.5.3.2.10 Derivation process for chroma motion vectors 

This process is invoked when ChromaArrayType is not equal to 0. 

Input to this process is a luma motion vector mvLX. 

Output of this process is a chroma motion vector mvCLX. 

A chroma motion vector is derived from the corresponding luma motion vector. 

For the derivation of the chroma motion vector mvCLX, the following applies: 

mvCLX[ 0 ] = mvLX[ 0 ] *  2 / SubWidthC (8-210) 

mvCLX[ 1 ] = mvLX[ 1 ] *  2 / SubHeightC (8-211) 

8.5.3.3 Decoding process for inter prediction samples 

8.5.3.3.1 General 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a luma location ( xBl, yBl ) specifying the top-left sample of the current luma prediction block relative to the top-left 

sample of the current luma coding block, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block, 

ï the luma motion vectors mvL0 and mvL1, 

ï when ChromaArrayType is not equal to 0, the chroma motion vectors mvCL0 and mvCL1, 

ï the reference indices refIdxL0 and refIdxL1, 

ï the prediction list utilization flags, predFlagL0, and predFlagL1. 

Outputs of this process are: 

ï an (nCbSL)x(nCbSL) array predSamplesL of luma prediction samples, where nCbSL is derived as specified below, 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array predSamplesCb of chroma prediction samples 

for the component Cb, where nCbSwC and nCbShC are derived as specified below, 



 

164 Rec. ITU-T H.265 v8 (08/2021) 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array predSamplesCr of chroma prediction samples 

for the component Cr, where nCbSwC and nCbShC are derived as specified below. 

The variable nCbSL is set equal to nCbS. When ChromaArrayType is not equal to 0, the variable nCbSwC is set equal to 

nCbS / SubWidthC and the variable nCbShC is set equal to nCbS / SubHeightC. 

Let predSamplesL0L and predSamplesL1L be (nPbW)x(nPbH) arrays of predicted luma sample values and, when 

ChromaArrayType is not equal to 0, predSamplesL0Cb, predSamplesL1Cb, predSamplesL0Cr and predSamplesL1Cr be 

(nPbW / SubWidthC)x(nPbH / SubHeightC) arrays of predicted chroma sample values. 

For X being each of 0 and 1, when predFlagLX is equal to 1, the following applies: 

ï The reference picture consisting of an ordered two-dimensional array refPicLXL of luma samples and, when 

ChromaArrayType is not equal to 0, two ordered two-dimensional arrays refPicLXCb and refPicLXCr of chroma samples 

is derived by invoking the process specified in clause 8.5.3.3.2 with refIdxLX as input. 

ï The array predSamplesLXL and, when ChromaArrayType is not equal to 0, the arrays predSamplesLXCb and 

predSamplesLXCr are derived by invoking the fractional sample interpolation process specified in clause 8.5.3.3.3 with 

the luma locations ( xCb, yCb ) and ( xBl, yBl ), the luma prediction block width nPbW, the luma prediction block 

height nPbH, the motion vectors mvLX and, when ChromaArrayType is not equal to 0, mvCLX, and the reference 

arrays refPicLXL, refPicLXCb, and refPicLXCr as inputs. 

The prediction samples inside the current luma prediction block, predSamplesL[ xL + xBl ][  yL + yBl ] with 

xL = 0..nPbW ī 1 and yL = 0..nPbH ī 1, are derived by invoking the weighted sample prediction process specified in clause 

8.5.3.3.4 with the prediction block width nPbW, the prediction block height nPbH and the sample arrays predSamplesL0L 

and predSamplesL1L, and the variables predFlagL0, predFlagL1, refIdxL0, refIdxL1 and cIdx equal to 0 as inputs. 

When ChromaArrayType is not equal to 0, the prediction samples inside the current chroma component Cb prediction 

block, predSamplesCb[ xC + xBl / SubWidthC ][  yC + yBl / SubHeightC ] with xC = 0..nPbW / SubWidthC ī 1 and 

yC = 0..nPbH / SubHeightC ī 1, are derived by invoking the weighted sample prediction process specified in 

clause 8.5.3.3.4 with the prediction block width nPbW set equal to nPbW / SubWidthC, the prediction block height nPbH 

set equal to nPbH / SubHeightC, the sample arrays predSamplesL0Cb and predSamplesL1Cb, and the variables predFlagL0, 

predFlagL1, refIdxL0, refIdxL1 and cIdx equal to 1 as inputs. 

When ChromaArrayType is not equal to 0, the prediction samples inside the current chroma component Cr prediction 

block, predSamplesCr[ xC + xBl / SubWidthC ][  yC + yBl / SubHeightC ] with xC = 0..nPbW / SubWidthC ī 1 and 

yC = 0..nPbH / SubHeightC ī 1, are derived by invoking the weighted sample prediction process specified in 

clause 8.5.3.3.4 with the prediction block width nPbW set equal to nPbW / SubWidthC, the prediction block height nPbH 

set equal to nPbH / SubHeightC, the sample arrays predSamplesL0Cr and predSamplesL1Cr, and the variables predFlagL0, 

predFlagL1, refIdxL0, refIdxL1 and cIdx equal to 2 as inputs. 

8.5.3.3.2 Reference picture selection process 

Input to this process is a reference index refIdxLX. 

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLXL and, when 

ChromaArrayType is not equal to 0, two two-dimensional arrays of chroma samples refPicLXCb and refPicLXCr. 

The output reference picture RefPicListX[ refIdxLX ] consists of a pic_width_in_luma_samples by 

pic_height_in_luma_samples array of luma samples refPicLXL and, when ChromaArrayType is not equal to 0, two 

PicWidthInSamplesC by PicHeightInSamplesC arrays of chroma samples refPicLXCb and refPicLXCr. 

The reference picture sample arrays refPicLXL, refPicLXCb and refPicLXCr correspond to decoded sample arrays SL, SCb 

and SCr derived in clause 8.7 for a previously-decoded picture. 

8.5.3.3.3 Fractional sample interpolation process 

8.5.3.3.3.1 General 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture 

ï a luma location ( xBl, yBl ) specifying the top-left sample of the current luma prediction block relative to the top-left 

sample of the current luma coding block 

ï two variables nPbW and nPbH specifying the width and the height of the luma prediction block 

ï a luma motion vector mvLX given in quarter-luma-sample units 



 

  Rec. ITU-T H.265 v8 (08/2021) 165 

ï when ChromaArrayType is not equal to 0, a chroma motion vector mvCLX given in eighth-chroma-sample units 

ï the selected reference picture sample array refPicLXL and, when ChromaArrayType is not equal to 0, the arrays 

refPicLXCb and refPicLXCr. 

Outputs of this process are: 

ï an (nPbW)x(nPbH) array predSamplesLXL of prediction luma sample values 

ï when ChromaArrayType is not equal to 0, two (nPbW / SubWidthC)x(nPbH / SubHeightC) arrays predSamplesLXCb 

and predSamplesLXCr of prediction chroma sample values. 

The location ( xPb, yPb ) given in full-sample units of the upper-left luma samples of the current prediction block relative 

to the upper-left luma sample location of the given reference sample arrays is derived as follows: 

xPb = xCb + xBl  (8-212) 

yPb = yCb + yBl  (8-213) 

Let ( xIntL, yIntL ) be a luma location given in full-sample units and ( xFracL, yFracL ) be an offset given in quarter-sample 

units. These variables are used only in this clause for specifying fractional-sample locations inside the reference sample 

arrays refPicLXL, refPicLXCb and refPicLXCr. 

For each luma sample location ( xL = 0..nPbW ī 1, yL = 0..nPbH ī 1 ) inside the prediction luma sample array 

predSamplesLXL, the corresponding prediction luma sample value predSamplesLXL[ xL ][  yL ] is derived as follows: 

ï The variables xIntL, yIntL, xFracL and yFracL are derived as follows: 

xIntL = xPb + ( mvLX[ 0 ]  >>  2 ) + xL  (8-214) 

yIntL = yPb + ( mvLX[ 1 ]  >>  2 ) + yL  (8-215) 

xFracL = mvLX[ 0 ] & 3  (8-216) 

yFracL = mvLX[ 1 ] & 3  (8-217) 

ï The prediction luma sample value predSamplesLXL[ xL ][  yL ] is derived by invoking the process specified in 

clause 8.5.3.3.3.2 with ( xIntL, yIntL ), ( xFracL, yFracL ) and refPicLXL as inputs. 

When ChromaArrayType is not equal to 0, the following applies. 

Let ( xIntC, yIntC ) be a chroma location given in full-sample units and ( xFracC, yFracC ) be an offset given in one-eighth 

sample units. These variables are used only in this clause for specifying general fractional-sample locations inside the 

reference sample arrays refPicLXCb and refPicLXCr. 

For each chroma sample location ( xC = 0..nPbW / SubWidthC ī 1, yC = 0..nPbH / SubHeightC ī 1 ) inside the prediction 

chroma sample arrays predSamplesLXCb and predSamplesLXCr, the corresponding prediction chroma sample values 

predSamplesLXCb[ xC ][  yC ] and predSamplesLXCr[ xC ][  yC ] are derived as follows: 

ï The variables xIntC, yIntC, xFracC and yFracC are derived as follows: 

xIntC = ( xPb / SubWidthC ) + ( mvCLX[ 0 ]  >>  3 ) + xC (8-218) 

yIntC = ( yPb / SubHeightC ) + ( mvCLX[ 1 ]  >>  3 ) + yC (8-219) 

xFracC = mvCLX[ 0 ] & 7  (8-220) 

yFracC = mvCLX[ 1 ] & 7  (8-221) 

ï The prediction sample value predSamplesLXCb[ xC ][  yC ] is derived by invoking the process specified in 

clause 8.5.3.3.3.3 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCb as inputs. 

ï The prediction sample value predSamplesLXCr[ xC ][  yC ] is derived by invoking the process specified in 

clause 8.5.3.3.3.3 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCr as inputs. 

8.5.3.3.3.2 Luma sample interpolation process 

Inputs to this process are: 



 

166 Rec. ITU-T H.265 v8 (08/2021) 

ï a luma location in full-sample units ( xIntL, yIntL ), 

ï a luma location in fractional-sample units ( xFracL, yFracL ), 

ï the luma reference sample array refPicLXL. 

Output of this process is a predicted luma sample value predSampleLXL 

 

Figure 8-4 ï Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded 

blocks with lower-case letters) for quarter sample luma interpolation 

 

In Figure 8-4, the positions labelled with upper-case letters Ai, j within shaded blocks represent luma samples at full-sample 

locations inside the given two-dimensional array refPicLXL of luma samples. These samples may be used for generating 

the predicted luma sample value predSampleLXL. The locations ( xA i, j, yA i, j ) for each of the corresponding luma samples 

A i, j inside the given array refPicLXL of luma samples are derived as follows: 

xA i, j = Clip3( 0, pic_width_in_luma_samples ī 1, xIntL + i ) (8-222) 

yA i, j = Clip3( 0, pic_height_in_luma_samples ī 1, yIntL + j ) (8-223) 

The positions labelled with lower-case letters within un-shaded blocks represent luma samples at quarter-luma-sample 

fractional locations. The luma location offset in fractional-sample units ( xFracL, yFracL ) specifies which of the generated 

luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value 

predSampleLXL. This assignment is as specified in Table 8-8. The value of predSampleLXL is the output. 

The variables shift1, shift2 and shift3 are derived as follows: 

ï The variable shift1 is set equal to Min( 4, BitDepthY ī 8 ), the variable shift2 is set equal to 6 and the variable shift3 is 

set equal to Max( 2, 14 ī BitDepthY ). 

Given the luma samples Ai, j at full-sample locations ( xA i, j, yA i, j ), the luma samples a0,0 to r0,0 at fractional sample 

positions are derived as follows: 

ï The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0 and n0,0 are derived by applying an 8-tap filter to the nearest integer position 

samples as follows: 

a0,0 = ( īAī3,0 + 4 *  Aī2,0 ī 10 *  Aī1,0 + 58 *  A0,0 + 17 *  A1,0 ī 5 *  A2,0 + A3,0 )  >>  shift1 (8-224) 



 

  Rec. ITU-T H.265 v8 (08/2021) 167 

b0,0 = ( īAī3,0 + 4 *  Aī2,0 ī 11 *  Aī1,0 + 40 *  A0,0 + 40 *  A1,0 ī 11 *  A2,0 + 4 *  A3,0 ī A4,0 )  >>  shift1

 (8-225) 

c0,0 = ( Aī2,0 ī 5 *  Aī1,0 + 17 *  A0,0 + 58 *  A1,0 ī 10 *  A2,0 + 4 *  A3,0 ī A4,0 )  >>  shift1 (8-226) 

d0,0 = ( īA0,ī3 + 4 *  A0,ī2 ī 10 *  A0,ī1 + 58 *  A0,0 + 17 *  A0,1 ī 5 *  A0,2 + A0,3 )  >>  shift1 (8-227) 

h0,0 = ( īA0,ī3 + 4 *  A0,ī2 ī 11 *  A0,ī1 + 40 *  A0,0 + 40 *  A0,1 ī 11 *  A0,2 + 4 *  A0,3 ī A0,4 )  >>  shift1

 (8-228) 

n0,0 = ( A0,ī2 ī 5 *  A0,ī1 + 17 *  A0,0 + 58 *  A0,1 ī 10 *  A0,2 + 4 *  A0,3 ī A0,4 )  >>  shift1 (8-229) 

ï The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 are derived by applying an 8-tap filter to the samples 

a0,i, b0,i and c0,i with i = ī3..4 in the vertical direction as follows: 

e0,0 = ( īa0,ī3 + 4 *  a0,ī2 ī 10 *  a0,ī1 + 58 *  a0,0 + 17 *  a0,1 ī 5 *  a0,2 + a0,3 )  >>  shift2 (8-230) 

i0,0 = ( īa0,ī3 + 4 *  a0,ī2 ī 11 *  a0,ī1 + 40 *  a0,0 + 40 *  a0,1 ī 11 *  a0,2 + 4 *  a0,3 ī a0,4 )  >>  shift2 (8-231) 

p0,0 = ( a0,ī2 ī 5 *  a0,ī1 + 17 *  a0,0 + 58 *  a0,1 ī 10 *  a0,2 + 4 *  a0,3 ī a0,4 )  >>  shift2 (8-232) 

f0,0 = ( īb0,ī3 + 4 *  b0,ī2 ī 10 *  b0,ī1 + 58 *  b0,0 + 17 *  b0,1 ī 5 *  b0,2 + b0,3 )  >>  shift2 (8-233) 

j0,0 = ( īb0,ī3 + 4 *  b0,ī2 ī 11 *  b0,ī1 + 40 *  b0,0 + 40 *  b0,1 ī 11 *  b0,2 + 4 *  b0,3 ī b0,4 )  >>  shift2 (8-234) 

q0,0 = ( b0,ī2 ī 5 *  b0,ī1 + 17 *  b0,0 + 58 *  b0,1 ī 10 *  b0,2 + 4 *  b0,3 ī b0,4 )  >>  shift2 (8-235) 

g0,0 = ( īc0,ī3 + 4 *  c0,ī2 ī 10 *  c0,ī1 + 58 *  c0,0 + 17 *  c0,1 ī 5 *  c0,2 + c0,3 )  >>  shift2 (8-236) 

k0,0 = ( īc0,ī3 + 4 *  c0,ī2 ī 11 *  c0,ī1 + 40 *  c0,0 + 40 *  c0,1 ī 11 *  c0,2 + 4 *  c0,3 ī c0,4 )  >>  shift2 (8-237) 

r0,0 = ( c0,ī2 ī 5 *  c0,ī1 + 17 *  c0,0 + 58 *  c0,1 ī 10 *  c0,2 + 4 *  c0,3 ī c0,4 )  >>  shift2 (8-238) 

Table 8-8 ï Assignment of the luma prediction sample predSampleLXL 

xFracL  0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

yFracL  0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

predSampleLXL A  <<  shift3 d h n a e i p b f j q c g k r 

8.5.3.3.3.3 Chroma sample interpolation process 

This process is only invoked when ChromaArrayType is not equal to 0. 

Inputs to this process are: 

ï a chroma location in full-sample units ( xIntC, yIntC ), 

ï a chroma location in eighth fractional-sample units ( xFracC, yFracC ), 

ï the chroma reference sample array refPicLXC. 

Output of this process is a predicted chroma sample value predSampleLXC 



 

168 Rec. ITU-T H.265 v8 (08/2021) 

 

Figure 8-5 ï Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded 

blocks with lower-case letters) for eighth sample chroma interpolation 

 

In Figure 8-5, the positions labelled with upper-case letters Bi, j within shaded blocks represent chroma samples at full-

sample locations inside the given two-dimensional array refPicLXC of chroma samples. These samples may be used for 

generating the predicted chroma sample value predSampleLXC. The locations ( xBi, j, yBi, j ) for each of the corresponding 

chroma samples Bi, j inside the given array refPicLXC of chroma samples are derived as follows: 

xBi, j = Clip3( 0, ( pic_width_in_luma_samples / SubWidthC ) ī 1, xIntC + i ) (8-239) 

yBi, j = Clip3( 0, ( pic_height_in_luma_samples / SubHeightC ) ī 1, yIntC + j ) (8-240) 

The positions labelled with lower-case letters within un-shaded blocks represent chroma samples at eighth-pel sample 

fractional locations. The chroma location offset in fractional-sample units ( xFracC, yFracC ) specifies which of the 

generated chroma samples at full-sample and fractional-sample locations is assigned to the predicted chroma sample value 

predSampleLXC. This assignment is as specified in Table 8-9. The output is the value of predSampleLXC. 

The variables shift1, shift2 and shift3 are derived as follows: 

ï The variable shift1 is set equal to Min( 4, BitDepthC ī 8 ), the variable shift2 is set equal to 6 and the variable shift3 is 

set equal to Max( 2, 14 ī BitDepthC ). 

Given the chroma samples Bi, j at full-sample locations ( xBi, j, yBi, j ), the chroma samples ab0,0 to hh0,0 at fractional sample 

positions are derived as follows: 

ï The samples labelled ab0,0, ac0,0, ad0,0, ae0,0, af0,0, ag0,0 and ah0,0 are derived by applying a 4-tap filter to the nearest 

integer position samples as follows: 

ab0,0 = ( ī2 *  Bī1,0 + 58 *  B0,0 + 10 *  B1,0 ī 2 *  B2,0 )  >>  shift1 (8-241) 

ac0,0 = ( ī4 *  Bī1,0 + 54 *  B0,0 + 16 *  B1,0 ī 2 *  B2,0 )  >>  shift1 (8-242) 

ad0,0 = ( ī6 *  Bī1,0 + 46 *  B0,0 + 28 *  B1,0 ī 4 *  B2,0 )  >>  shift1 (8-243) 

ae0,0 = ( ī4 *  Bī1,0 + 36 *  B0,0 + 36 *  B1,0 ī 4 *  B2,0 )  >>  shift1 (8-244) 

af0,0 = ( ī4 *  Bī1,0 + 28 *  B0,0 + 46 *  B1,0 ī 6 *  B2,0 )  >>  shift1 (8-245) 

ag0,0 = ( ī2 *  Bī1,0 + 16 *  B0,0 + 54 *  B1,0 ī 4 *  B2,0 )  >>  shift1 (8-246) 

ah0,0 = ( ī2 *  Bī1,0 + 10 *  B0,0 + 58 *  B1,0 ī 2 *  B2,0 )  >>  shift1 (8-247) 



 

  Rec. ITU-T H.265 v8 (08/2021) 169 

ï The samples labelled ba0,0, ca0,0, da0,0, ea0,0, fa0,0, ga0,0 and ha0,0 are derived by applying a 4-tap filter to the nearest 

integer position samples as follows: 

ba0,0 = ( ī2 *  B0,ī1 + 58 *  B0,0 + 10 *  B0,1 ī 2 *  B0,2 )  >>  shift1 (8-248) 

ca0,0 = ( ī4 *  B0,ī1 + 54 *  B0,0 + 16 *  B0,1 ī 2 *  B0,2 )  >>  shift1 (8-249) 

da0,0 = ( ī6 *  B0,ī1 + 46 *  B0,0 + 28 *  B0,1 ī 4 *  B0,2 )  >>  shift1 (8-250) 

ea0,0 = ( ī4 *  B0,ī1 + 36 *  B0,0 + 36 *  B0,1 ī 4 *  B0,2 )  >>  shift1 (8-251) 

fa0,0 = ( ī4 *  B0,ī1 + 28 *  B0,0 + 46 *  B0,1 ī 6 *  B0,2 )  >>  shift1 (8-252) 

ga0,0 = ( ī2 *  B0,ī1 + 16 *  B0,0 + 54 *  B0,1 ī 4 *  B0,2 )  >>  shift1 (8-253) 

ha0,0 = ( ī2 *  B0,ī1 + 10 *  B0,0 + 58 *  B0,1 ī 2 *  B0,2 )  >>  shift1 (8-254) 

ï The samples labelled bX0,0, cX0,0, dX0,0, eX0,0, fX0,0, gX0,0 and hX0,0 for X being replaced by b, c, d, e, f, g and h, 

respectively, are derived by applying a 4-tap filter to the intermediate values aX0,i with i = ī1..2 in the vertical direction 

as follows: 

bX0,0 = ( ī2 *  aX0,ī1 + 58 *  aX0,0 + 10 *  aX0,1 ī 2 *  aX0,2 )  >>  shift2 (8-255) 

cX0,0 = ( ī4 *  aX0,ī1 + 54 *  aX0,0 + 16 *  aX0,1 ī 2 *  aX0,2 )  >>  shift2 (8-256) 

dX0,0 = ( ī6 *  aX0,ī1 + 46 *  aX0,0 + 28 *  aX0,1 ī 4 *  aX0,2 )  >>  shift2 (8-257) 

eX0,0 = ( ī4 *  aX0,ī1 + 36 *  aX0,0 + 36 *  aX0,1 ī 4 *  aX0,2 )  >>  shift2 (8-258) 

fX 0,0 = ( ī4 *  aX0,ī1 + 28 *  aX0,0 + 46 *  aX0,1 ī 6 *  aX0,2 )  >>  shift2 (8-259) 

gX0,0 = ( ī2 *  aX0,ī1 + 16 *  aX0,0 + 54 *  aX0,1 ī 4 *  aX0,2 )  >>  shift2 (8-260) 

hX0,0 = ( ī2 *  aX0,ī1 + 10 *  aX0,0 + 58 *  aX0,1 ī 2 *  aX0,2 )  >>  shift2 (8-261) 

Table 8-9 ï Assignment of the chroma prediction sample predSampleLXC for ( X, Y ) being replaced by ( 1, b ), 

( 2, c ), ( 3, d ), ( 4, e ), ( 5, f ), ( 6, g ) and ( 7, h ), respectively 

xFracC 0 0 0 0 0 0 0 0 

yFracC 0 1 2 3 4 5 6 7 

predSampleLXC B  <<  shift3 ba ca da ea fa ga ha 

 

xFracC X X X X X X X X 

yFracC 0 1 2 3 4 5 6 7 

predSampleLXC aY bY cY dY eY fY gY hY 

8.5.3.3.4 Weighted sample prediction process 

8.5.3.3.4.1 General 

Inputs to this process are: 

ï two variables nPbW and nPbH specifying the width and the height of the current prediction block, 

ï two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, 

ï the prediction list utilization flags, predFlagL0 and predFlagL1, 

ï the reference indices refIdxL0 and refIdxL1, 

ï a variable cIdx specifying colour component index. 



 

170 Rec. ITU-T H.265 v8 (08/2021) 

Output of this process is the (nPbW)x(nPbH) array pbSamples of prediction sample values. 

The variable bitDepth is derived as follows: 

ï If cIdx is equal to 0, bitDepth is set equal to BitDepthY. 

ï Otherwise, bitDepth is set equal to BitDepthC. 

The variable weightedPredFlag is derived as follows: 

ï If slice_type is equal to P, weightedPredFlag is set equal to weighted_pred_flag. 

ï Otherwise (slice_type is equal to B), weightedPredFlag is set equal to weighted_bipred_flag. 

The following applies: 

ï If weightedPredFlag is equal to 0, the array pbSamples of the prediction samples is derived by invoking the default 

weighted sample prediction process as specified in clause 8.5.3.3.4.2 with the prediction block width nPbW, the 

prediction block height nPbH, two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, the prediction list 

utilization flags predFlagL0 and predFlagL1 and the bit depth bitDepth as inputs. 

ï Otherwise (weightedPredFlag is equal to 1), the array pbSamples of the prediction samples is derived by invoking the 

weighted sample prediction process as specified in clause 8.5.3.3.4.3 with the prediction block width nPbW, the 

prediction block height nPbH, two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, the prediction list 

utilization flags predFlagL0 and predFlagL1, the reference indices refIdxL0 and refIdxL1, the colour component index 

cIdx and the bit depth bitDepth as inputs. 

8.5.3.3.4.2 Default weighted sample prediction process 

Inputs to this process are: 

ï two variables nPbW and nPbH specifying the width and the height of the current prediction block, 

ï two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, 

ï the prediction list utilization flags, predFlagL0, and predFlagL1, 

ï a bit depth of samples, bitDepth. 

Output of this process is the (nPbW)x(nPbH) array pbSamples of prediction sample values. 

Variables shift1, shift2, offset1 and offset2 are derived as follows: 

ï The variable shift1 is set equal to Max( 2, 14 ī bitDepth ) and the variable shift2 is set equal to Max( 3, 15 ī bitDepth ). 

ï The variable offset1 is set equal to 1  <<  ( shift1 ī 1 ). 

ï The variable offset2 is set equal to 1  <<  ( shift2 ī 1 ). 

Depending on the values of predFlagL0 and predFlagL1, the prediction samples pbSamples[ x ][  y ] with x = 0..nPbW ī 1 

and y = 0..nPbH ī 1 are derived as follows: 

ï If predFlagL0 is equal to 1 and predFlagL1 is equal to 0, the prediction sample values are derived as follows: 

pbSamples[ x ][  y ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, ( predSamplesL0[ x ][  y ] + offset1 )  >>  shift1 )

 (8-262) 

ï Otherwise, if predFlagL0 is equal to 0 and predFlagL1 is equal to 1, the prediction sample values are derived as follows: 

pbSamples[ x ][  y ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, ( predSamplesL1[ x ][  y ] + offset1 )  >>  shift1 )

 (8-263) 

ï Otherwise (predFlagL0 is equal to 1 and predFlagL1 is equal to 1), the prediction sample values are derived as follows: 

pbSamples[ x ][  y ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, 

       ( predSamplesL0[ x ][  y ] + predSamplesL1[ x ][  y ] + offset2 )  >>  shift2 )

 (8-264) 

8.5.3.3.4.3 Explicit weighted sample prediction process 

Inputs to this process are: 



 

  Rec. ITU-T H.265 v8 (08/2021) 171 

ï two variables nPbW and nPbH specifying the width and the height of the current prediction block, 

ï two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, 

ï the prediction list utilization flags, predFlagL0 and predFlagL1, 

ï the reference indices, refIdxL0 and refIdxL1, 

ï a variable cIdx specifying colour component index, 

ï a bit depth of samples, bitDepth. 

Output of this process is the (nPbW)x(nPbH) array pbSamples of prediction sample values. 

The variable shift1 is set equal to Max( 2, 14 ī bitDepth ). 

The variables log2Wd, o0, o1, w0 and w1 are derived as follows: 

ï If cIdx is equal to 0 for luma samples, the following applies: 

log2Wd = luma_log2_weight_denom + shift1  (8-265) 

w0 = LumaWeightL0[ refIdxL0 ]  (8-266) 

w1 = LumaWeightL1[ refIdxL1 ]  (8-267) 

o0 = luma_offset_l0[ refIdxL0 ]  <<  WpOffsetBdShiftY (8-268) 

o1 = luma_offset_l1[ refIdxL1 ]  <<  WpOffsetBdShiftY (8-269) 

ï Otherwise (cIdx is not equal to 0 for chroma samples), the following applies: 

log2Wd = ChromaLog2WeightDenom + shift1  (8-270) 

w0 = ChromaWeightL0[ refIdxL0 ][  cIdx ī 1 ]  (8-271) 

w1 = ChromaWeightL1[ refIdxL1 ][  cIdx ī 1 ]  (8-272) 

o0 = ChromaOffsetL0[ refIdxL0 ][  cIdx ī 1 ]  <<  WpOffsetBdShiftC (8-273) 

o1 = ChromaOffsetL1[ refIdxL1 ][  cIdx ī 1 ]  <<  WpOffsetBdShiftC (8-274) 

The prediction sample pbSamples[ x ][  y ] with x = 0..nPbW ī 1 and y = 0..nPbH ī 1 are derived as follows: 

ï If the predFlagL0 is equal to 1 and predFlagL1 is equal to 0, the prediction sample values are derived as follows: 

 pbSamples[ x ][  y ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, 

  ( ( predSamplesL0[ x ][  y ] *  w0 + 2log2Wd ī 1 )  >>  log2Wd ) + o0 ) (8-275) 

ï Otherwise, if the predFlagL0 is equal to 0 and predFlagL1 is equal to 1, the prediction sample values are derived as 

follows: 

pbSamples[ x ][  y ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, 

  ( ( predSamplesL1[ x ][  y ] *  w1 + 2log2Wd ī 1 )  >>  log2Wd ) + o1 ) (8-276) 

ï Otherwise (predFlagL0 is equal to 1 and predFlagL1 is equal to 1), the prediction sample values are derived as follows: 

pbSamples[ x ][  y ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, 

 ( predSamplesL0[ x ][  y ] *  w0 + predSamplesL1[ x ][  y ] *  w1 + 

  ( ( o0 + o1 + 1 )  <<  log2Wd ) )  >>  ( log2Wd + 1 ) ) (8-277) 

8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode 

8.5.4.1 General 

Inputs to this process are: 



 

172 Rec. ITU-T H.265 v8 (08/2021) 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a variable log2CbSize specifying the size of the current luma coding block. 

Outputs of this process are: 

ï an (nCbSL)x(nCbSL) array resSamplesL of luma residual samples, where nCbSL is derived as specified below, 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array resSamplesCb of chroma residual samples for 

the component Cb, where nCbSwC and nCbShC are derived as specified below, 

ï when ChromaArrayType is not equal to 0, an (nCbSwC)x(nCbShC) array resSamplesCr of chroma residual samples for 

the component Cr, where nCbSwC and nCbShC are derived as specified below. 

The variable nCbSL is set equal to 1  <<  log2CbSize. When ChromaArrayType is not equal to 0, the variable nCbSwC is 

set equal to nCbSL / SubWidthC and the variable nCbShC is set equal to nCbSL / SubHeightC. 

Let resSamplesL be an (nCbSL)x(nCbSL) array of luma residual samples and, when ChromaArrayType is not equal to 0, 

let resSamplesCb and resSamplesCr be two (nCbSwC)x(nCbShC) arrays of chroma residual samples. 

Depending on the value of rqt_root_cbf, the following applies: 

ï If rqt_root_cbf is equal to 0 or cu_skip_flag[ xCb ][  yCb ] is equal to 1, all samples of the (nCbSL)x(nCbSL) array 

resSamplesL and, when ChromaArrayType is not equal to 0, all samples of the two (nCbSwC)x(nCbShC) arrays 

resSamplesCb and resSamplesCr are set equal to 0. 

ï Otherwise (rqt_root_cbf is equal to 1), the following ordered steps apply: 

1. The decoding process for luma residual blocks as specified in clause 8.5.4.2 below is invoked with the luma 

location ( xCb, yCb ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), the variable log2TrafoSize set equal to 

log2CbSize, the variable trafoDepth set equal to 0, the variable nCbS set equal to nCbSL and the (nCbSL)x(nCbSL) 

array resSamplesL as inputs, and the output is a modified version of the (nCbSL)x(nCbSL) array resSamplesL. 

2. When ChromaArrayType is not equal to 0, the decoding process for chroma residual blocks as specified in 

clause 8.5.4.3 is invoked with the luma location ( xCb, yCb ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), 

the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the variable cIdx set 

equal to 1, the variable nCbSw set equal to nCbSwC, the variable nCbSh set equal to nCbShC and the 

(nCbSwC)x(nCbShC) array resSamplesCb as inputs, and the output is a modified version of the 

(nCbSwC)x(nCbShC) array resSamplesCb. 

3. When ChromaArrayType is not equal to 0, the decoding process for chroma residual blocks as specified in 

clause 8.5.4.3 is invoked with the luma location ( xCb, yCb ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), 

the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the variable cIdx set 

equal to 2, the variable nCbSw set equal to nCbSwC, the variable nCbSh set equal to nCbShC and the 

(nCbSwC)x(nCbShC) array resSamplesCr as inputs, and the output is a modified version of the 

(nCbSwC)x(nCbShC) array resSamplesCr. 

4. When residual_adaptive_colour_transform_enabled_flag is equal to 1, the residual modification process for 

blocks using adaptive colour transform as specified in clause 8.6.8 is invoked with location ( xCb, yCb ), the 

variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the variable 

resSampleArrayL set equal to resSamplesL, the variable resSampleArrayCb set equal to resSamplesCb and the 

variable resSampleArrayCr set equal to resSamplesCr as inputs, and the outputs are modified versions of 

resSampleL, resSampleCb and resSampleCr. 

8.5.4.2 Decoding process for luma residual blocks 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a luma location ( xB0, yB0 ) specifying the top-left sample of the current luma block relative to the top-left sample of 

the current luma coding block, 

ï a variable log2TrafoSize specifying the size of the current luma block, 

ï a variable trafoDepth specifying the hierarchy depth of the current luma block relative to the luma coding block, 

ï a variable nCbS specifying the size of the current luma coding block, 

ï an (nCbS)x(nCbS) array resSamples of luma residual samples. 



 

  Rec. ITU-T H.265 v8 (08/2021) 173 

Output of this process is a modified version of the (nCbS)x(nCbS) array of luma residual samples. 

Depending on the value of split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ], the following applies: 

ï If split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ] is equal to 1, the following ordered steps apply: 

1. The variables xB1 and yB1 are derived as follows: 

ï The variable xB1 is set equal to xB0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

ï The variable yB1 is set equal to yB0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

2. The decoding process for luma residual blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable nCbS and the (nCbS)x(nCbS) array resSamples as 

inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples. 

3. The decoding process for luma residual blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB1, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable nCbS and the (nCbS)x(nCbS) array resSamples as 

inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples. 

4. The decoding process for luma residual blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable nCbS and the (nCbS)x(nCbS) array resSamples as 

inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples. 

5. The decoding process for luma residual blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable nCbS and the (nCbS)x(nCbS) array resSamples as 

inputs, and the output is a modified version of the (nCbS)x(nCbS) array resSamples. 

ï Otherwise (split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ] is equal to 0), the following ordered steps 

apply: 

1. The variable nTbS is set equal to 1  <<  log2TrafoSize. 

2. The scaling and transformation process as specified in clause 8.6.2 is invoked with the luma location 

( xCb + xB0, yCb + yB0 ), the variable trafoDepth, the variable cIdx set equal to 0 and the transform size trafoSize 

set equal to nTbS as inputs, and the output is an (nTbS)x(nTbS) array transformBlock. 

3. When explicit_rdpcm_flag[ xCb + xB0 ][  yCb + yB0 ][  0 ] is equal to 1, the directional residual modification 

process for blocks using a transform bypass as specified in clause 8.6.5 is invoked with the variable mDir set 

equal to explicit_rdpcm_dir_flag[ xCb + xB0 ][  yCb + yB0 ][  0 ], the variable nTbS and the (nTbS)x(nTbS) array 

r set equal to the array transformBlock as inputs, and the output is a modified (nTbS)x(nTbS) array 

transformBlock. 

4. The (nCbS)x(nCbS) residual sample array of the current coding block resSamples is modified as follows: 

resSamples[ xB0 + i, yB0 + j ] = transformBlock[ i, j ], with i = 0..nTbS ī 1, j = 0..nTbS ī 1(8-278) 

8.5.4.3 Decoding process for chroma residual blocks 

This process is only invoked when ChromaArrayType is not equal to 0. 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a luma location ( xB0, yB0 ) specifying the top-left luma sample of the current chroma block relative to the top-left 

sample of the current luma coding block, 

ï a variable log2TrafoSize specifying the size of the current chroma block in luma samples, 

ï a variable trafoDepth specifying the hierarchy depth of the current chroma block relative to the chroma coding block, 

ï a variable cIdx specifying the chroma component of the current block, 

ï the variables nCbSw and nCbSh specifying the width and height, respectively, of the current chroma coding block, 

ï an (nCbSw)x(nCbSh) array resSamples of chroma residual samples. 



 

174 Rec. ITU-T H.265 v8 (08/2021) 

Output of this process is a modified version of the (nCbSw)x(nCbSh) array of chroma residual samples. 

The variable splitChromaFlag is derived as follows: 

ï If split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ] is equal to 1 and one or more of the following 

conditions are met, splitChromaFlag is set equal to 1: 

ï log2TrafoSize is greater than 3. 

ï ChromaArrayType is equal to 3. 

ï Otherwise (split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ] is equal to 0 or both log2TrafoSize is equal 

to 3 and ChromaArrayType is not equal to 3), splitChromaFlag is set equal to 0. 

Depending on the value of splitChromaFlag, the following applies: 

ï If splitChromaFlag is equal to 1, the following ordered steps apply: 

1. The variables xB1 and yB1 are derived as follows: 

ï The variable xB1 is set equal to xB0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

ï The variable yB1 is set equal to yB0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

2. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh and 

the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) 

array resSamples. 

3. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB1, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh and 

the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) 

array resSamples. 

4. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh and 

the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) 

array resSamples. 

5. The decoding process for residual chroma blocks as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCbSw, the variable nCbSh and 

the (nCbSw)x(nCbSh) array resSamples as inputs, and the output is a modified version of the (nCbSw)x(nCbSh) 

array resSamples. 

ï Otherwise (splitChromaFlag is equal to 0), for the variable blkIdx proceeding over the 

values 0..( ChromaArrayType  = =  2 ? 1 : 0 ), the following ordered steps apply: 

1. The variable nTbS is set equal to ( 1  <<  log2TrafoSize ) / SubWidthC. 

2. The variable yBN is set equal to yB0 + blkIdx *  nTbS *  SubHeightC. 

3. The scaling and transformation process as specified in clause 8.6.2 is invoked with the luma location 

( xCb + xB0, yCb + yBN ), the variable trafoDepth, the variable cIdx and the transform size trafoSize set equal to 

nTbS as inputs, and the output is an (nTbS)x(nTbS) array transformBlock. 

4. When explicit_rdpcm_flag[ xCb + xB0 ][  yCb + yBN ][  cIdx ] is equal to 1, the directional residual modification 

process for blocks using a transform bypass as specified in clause 8.6.5 is invoked with the variable mDir set 

equal to explicit_rdpcm_dir_flag[ xCb + xB0 ][  yCb + yBN ][  cIdx ], the variable nTbS and the (nTbS)x(nTbS) 

array r set equal to the array transformBlock as inputs, and the output is a modified (nTbS)x(nTbS) array 

transformBlock. 

5. When cross_component_prediction_enabled_flag is equal to 1 and ChromaArrayType is equal to 3, the residual 

modification process for transform blocks using cross-component prediction as specified in clause 8.6.6 is 

invoked with the transform block location ( xCb + xB0, yCb + yB0 ), the variable nTbS, the variable cIdx, the 

(nTbS)x(nTbS) array rY set equal to the corresponding luma residual sample array transformBlock of the current 

transform block and the (nTbS)x(nTbS) array r set equal to the array transformBlock as inputs, and the output is 

a modified (nTbS)x(nTbS) array resSamples. 



 

  Rec. ITU-T H.265 v8 (08/2021) 175 

6. The (nCbS)x(nCbS) residual sample array of the current coding block resSamples is modified as follows, for 

i = 0..nTbS ī 1, j = 0..nTbS ī 1: 

resSamples[ ( xCb + xB0 ) / SubWidthC + i, ( yCb + yBN ) / SubHeightC + j ] = 

transformBlock[ i, j ]  (8-279) 

8.6 Scaling, transformation and array construction process prior to deblocking filter process 

8.6.1 Derivation process for quantization parameters 

Input to this process is a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative 

to the top-left luma sample of the current picture. 

In this process, the variable QpY, the luma quantization parameter QpǋY and the chroma quantization parameters QpǋCb and 

QpǋCr are derived. 

The luma location ( xQg, yQg ), specifies the top-left luma sample of the current quantization group relative to the top-left 

luma sample of the current picture. The horizontal and vertical positions xQg and yQg are set equal to 

xCb ī ( xCb & ( ( 1  <<  Log2MinCuQpDeltaSize) ī 1 ) ) and yCb ī ( yCb & ( ( 1  <<  Log2MinCuQpDeltaSize) ī 1 ) ), 

respectively. The luma size of a quantization group, Log2MinCuQpDeltaSize, determines the luma size of the smallest 

area inside a CTB that shares the same qPY_PRED. 

The predicted luma quantization parameter qPY_PRED is derived by the following ordered steps: 

1. The variable qPY_PREV is derived as follows: 

ï If one or more of the following conditions are true, qPY_PREV is set equal to SliceQpY: 

ï The current quantization group is the first quantization group in a slice. 

ï The current quantization group is the first quantization group in a tile. 

ï The current quantization group is the first quantization group in a CTB row of a tile and 

entropy_coding_sync_enabled_flag is equal to 1. 

ï Otherwise, qPY_PREV is set equal to the luma quantization parameter QpY of the last coding unit in the previous 

quantization group in decoding order. 

2. The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the 

location ( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring location ( xNbY, yNbY ) set equal to 

( xQg ī 1, yQg ) as inputs, and the output is assigned to availableA. The variable qPY_A is derived as follows: 

ï If one or more of the following conditions are true, qPY_A is set equal to qPY_PREV: 

ï availableA is equal to FALSE. 

ï the CTB address ctbAddrA of the CTB containing the luma coding block covering the luma location 

( xQg ī 1, yQg ) is not equal to CtbAddrInTs, where ctbAddrA is derived as follows: 

xTmp = ( xQg ī 1 )  >>  MinTbLog2SizeY 

yTmp = yQg  >>  MinTbLog2SizeY 

minTbAddrA = MinTbAddrZs[ xTmp ][  yTmp ] 

ctbAddrA = minTbAddrA  >>  ( 2  *  ( CtbLog2SizeY ī MinTbLog2SizeY ) ) (8-280) 

ï Otherwise, qPY_A is set equal to the luma quantization parameter QpY of the coding unit containing the luma 

coding block covering ( xQg ī 1, yQg ). 

3. The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the 

location ( xCurr, yCurr ) set equal to ( xCb, yCb ) and the neighbouring location ( xNbY, yNbY ) set equal to 

( xQg, yQg ī 1 ) as inputs, and the output is assigned to availableB. The variable qPY_B is derived as follows: 

ï If one or more of the following conditions are true, qPY_B is set equal to qPY_PREV: 

ï availableB is equal to FALSE. 

ï the CTB address ctbAddrB of the CTB containing the luma coding block covering the luma location 

( xQg,  yQg ī 1 ) is not equal to CtbAddrInTs, where ctbAddrB is derived as follows: 

xTmp = xQg  >>  MinTbLog2SizeY 

yTmp = ( yQg ī 1 )  >>  MinTbLog2SizeY 



 

176 Rec. ITU-T H.265 v8 (08/2021) 

minTbAddrB = MinTbAddrZs[ xTmp ][  yTmp ] 

ctbAddrB = minTbAddrB  >>  ( 2 *  ( CtbLog2SizeY ī MinTbLog2SizeY ) ) (8-281) 

ï Otherwise, qPY_B is set equal to the luma quantization parameter QpY of the coding unit containing the luma 

coding block covering ( xQg, yQg ī 1 ). 

4. The predicted luma quantization parameter qPY_PRED is derived as follows: 

qPY_PRED = ( qPY_A + qPY_B + 1 )  >>  1  (8-282) 

The variable QpY is derived as follows: 

QpY = ( ( qPY_PRED + CuQpDeltaVal + 52 + 2 *  QpBdOffsetY )%( 52 + QpBdOffsetY ) ) ī QpBdOffsetY
 (8-283)  

The luma quantization parameter QpǋY is derived as follows: 

QpǋY = QpY + QpBdOffsetY  (8-284) 

When ChromaArrayType is not equal to 0, the following applies: 

ï The variables qPCb and qPCr are derived as follows: 

ï If tu_residual_act_flag[ xTbY ][  yTbY ] is equal to 0, the following applies: 

qPiCb = Clip3( īQpBdOffsetC, 57, QpY + pps_cb_qp_offset + slice_cb_qp_offset + CuQpOffsetCb )

 (8-285) 

qPiCr = Clip3( īQpBdOffsetC, 57, QpY + pps_cr_qp_offset + slice_cr_qp_offset + CuQpOffsetCr )

 (8-286) 

ï Otherwise (tu_residual_act_flag[ xTbY ][  yTbY ] is equal to 1), the following applies: 

qPiCb = Clip3( īQpBdOffsetC, 57, QpY + PpsActQpOffsetCb + slice_act_cb_qp_offset + 

  CuQpOffsetCb )  (8-287) 

qPiCr = Clip3( īQpBdOffsetC, 57, QpY + PpsActQpOffsetCr + slice_act_cr_qp_offset + 

  CuQpOffsetCr )  (8-288) 

ï If ChromaArrayType is equal to 1, the variables qPCb and qPCr are set equal to the value of QpC as specified in 

Table 8-10 based on the index qPi equal to qPiCb and qPiCr, respectively. 

ï Otherwise, the variables qPCb and qPCr are set equal to Min( qPi, 51 ), based on the index qPi equal to qPiCb and qPiCr, 

respectively. 

ï The chroma quantization parameters for the Cb and Cr components, QpǋCb and QpǋCr, are derived as follows: 

QpǋCb = qPCb + QpBdOffsetC  (8-289) 

QpǋCr = qPCr + QpBdOffsetC  (8-290) 

Table 8-10 ï Specification of QpC as a function of qPi for ChromaArrayType equal to 1 

qPi < 30 30 31 32 33 34 35 36 37 38 39 40 41 42 43 > 43 

QpC = qPi 29 30 31 32 33 33 34 34 35 35 36 36 37 37 = qPi ī 6 

 

8.6.2 Scaling and transformation process 

Inputs to this process are: 

ï a luma location ( xTbY, yTbY ) specifying the top-left sample of the current luma transform block relative to the 

top-left luma sample of the current picture, 



 

  Rec. ITU-T H.265 v8 (08/2021) 177 

ï a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding block, 

ï a variable cIdx specifying the colour component of the current block, 

ï a variable nTbS specifying the size of the current transform block. 

Output of this process is the (nTbS)x(nTbS) array of residual samples r with elements r[ x ][  y ]. 

The quantization parameter qP is derived as follows: 

ï If cIdx is equal to 0, the following applies: 

qP = Clip3( 0, 51 + QpBdOffsetY, QpǋY + ( tu_residual_act_flag[ xTbY ][  yTbY ] ? 

  PpsActQpOffsetY + slice_act_y_qp_offset : 0 ) ) (8-291) 

ï Otherwise, if cIdx is equal to 1, the following applies: 

qP = QpǋCb  (8-292) 

ï Otherwise (cIdx is equal to 2), the following applies: 

qP = QpǋCr  

 (8-293) 

The variables bitDepth, bdShift and tsShift are derived as follows: 

bitDepth = ( cIdx  = =  0 ) ? BitDepthY : BitDepthC 

 (8-294) 

bdShift = Max( 20 ī bitDepth, extended_precision_processing_flag ? 11 : 0 ) (8-295) 

tsShift = 5 + Log2( nTbS )  (8-296) 

The variable rotateCoeffs is derived as follows: 

ï If all of the following conditions are true, rotateCoeffs is set equal to 1: 

ï transform_skip_rotation_enabled_flag is equal to 1. 

ï nTbS is equal to 4. 

ï CuPredMode[ xTbY ][  yTbY ] is equal to MODE_INTRA. 

ï Otherwise, rotateCoeffs is set equal to 0. 

The (nTbS)x(nTbS) array of residual samples r is derived as follows: 

ï If cu_transquant_bypass_flag is equal to 1, the following applies: 

ï If rotateCoeffs is equal to 1, the residual sample array values r[ x ][  y ] with x = 0..nTbS ī 1, y = 0..nTbS ī 1 are 

derived as follows: 

r[ x ][  y ] = TransCoeffLevel[ xTbY ][  yTbY ][  cIdx ][  nTbS ī x ī1 ][  nTbS ī y ī 1 ] (8-297) 

ï Otherwise, the (nTbS)x(nTbS) array r is set equal to the (nTbS)x(nTbS) array of transform coefficients 

TransCoeffLevel[ xTbY ][  yTbY ][  cIdx ]. 

ï Otherwise, the following ordered steps apply: 

1. The scaling process for transform coefficients as specified in clause 8.6.3 is invoked with the transform block 

location ( xTbY, yTbY ), the size of the transform block nTbS, the colour component variable cIdx and the 

quantization parameter qP as inputs, and the output is an (nTbS)x(nTbS) array of scaled transform coefficients d. 

2. The (nTbS)x(nTbS) array of residual samples r is derived as follows: 

ï If transform_skip_flag[ xTbY ][  yTbY ][  cIdx ] is equal to 1, the residual sample array values r[ x ][  y ] with 

x = 0..nTbS ī 1, y = 0..nTbS ī 1 are derived as follows: 

r[ x ][  y ] = ( rotateCoeffs ? d[ nTbS ī x ī1 ][  nTbS ī y ī 1 ] : d[ x ][  y ] )  <<  tsShift (8-298) 



 

178 Rec. ITU-T H.265 v8 (08/2021) 

ï Otherwise (transform_skip_flag[ xTbY ][  yTbY ][  cIdx ] is equal to 0), the transformation process for 

scaled transform coefficients as specified in clause 8.6.4 is invoked with the transform block location 

( xTbY, yTbY ), the size of the transform block nTbS, the colour component variable cIdx and the 

(nTbS)x(nTbS) array of scaled transform coefficients d as inputs, and the output is an (nTbS)x(nTbS) array 

of residual samples r. 

3. The residual sample values r[ x ][  y ] with x = 0..nTbS ī 1, y = 0..nTbS ī 1 are modified as follows: 

r[ x ][  y ] = ( r[ x ][  y ] + ( 1  <<  ( bdShift ī 1 ) ) )  >>  bdShift (8-299) 

8.6.3 Scaling process for transform coefficients 

Inputs to this process are: 

ï a luma location ( xTbY, yTbY ) specifying the top-left sample of the current luma transform block relative to the 

top-left luma sample of the current picture, 

ï a variable nTbS specifying the size of the current transform block, 

ï a variable cIdx specifying the colour component of the current block, 

ï a variable qP specifying the quantization parameter. 

Output of this process is the (nTbS)x(nTbS) array d of scaled transform coefficients with elements d[ x ][  y ]. 

The variables log2TransformRange, bdShift, coeffMin and coeffMax are derived as follows: 

ï If cIdx is equal to 0, the following applies: 

log2TransformRange = extended_precision_processing_flag ? Max( 15, BitDepthY + 6 ) : 15 (8-300) 

bdShift = BitDepthY + Log2( nTbS ) + 10 ī log2TransformRange (8-301) 

coeffMin = CoeffMinY  (8-302) 

coeffMax = CoeffMaxY  (8-303) 

ï Otherwise, the following applies: 

log2TransformRange = extended_precision_processing_flag ? Max( 15, BitDepthC + 6 ) : 15 (8-304) 

bdShift = BitDepthC + Log2( nTbS ) + 10 ī log2TransformRange (8-305) 

coeffMin = CoeffMinC  (8-306) 

coeffMax = CoeffMaxC  (8-307) 

The list levelScale[ ] is specified as levelScale[ k ] = {  40, 45, 51, 57, 64, 72 } with k = 0..5. 

For the derivation of the scaled transform coefficients d[ x ][  y ] with x = 0..nTbS ī 1, y = 0..nTbS ī 1, the following 

applies: 

ï The scaling factor m[ x ][  y ] is derived as follows: 

ï If one or more of the following conditions are true, m[ x ][  y ] is set equal to 16: 

ï scaling_list_enabled_flag is equal to 0. 

ï transform_skip_flag[ xTbY ][  yTbY ] is equal to 1 and nTbS is greater than 4. 

ï Otherwise, the following applies: 

m[ x ][  y ] = ScalingFactor[ sizeId ][  matrixId ][  x ][  y ] (8-308) 

Where sizeId is specified in Table 7-3 for the size of the quantization matrix equal to (nTbS)x(nTbS) and matrixId is 

specified in Table 7-4 for sizeId, CuPredMode[ xTbY ][  yTbY ] and cIdx, respectively. 

ï The scaled transform coefficient d[ x ][  y ] is derived as follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 179 

d[ x ][  y ] = 

Clip3( coeffMin, coeffMax, ( ( TransCoeffLevel[ xTbY ][  yTbY ][  cIdx ][ x ][  y ] *  m[ x ][  y ] *  

   levelScale[ qP % 6 ]  <<  (qP / 6 ) ) + ( 1  <<  ( bdShift ī 1 ) ) )  >>  bdShift ) (8-309) 

8.6.4 Transformation process for scaled transform coefficients 

8.6.4.1 General 

Inputs to this process are: 

ï a luma location ( xTbY, yTbY ) specifying the top-left sample of the current luma transform block relative to the 

top-left luma sample of the current picture, 

ï a variable nTbS specifying the size of the current transform block, 

ï a variable cIdx specifying the colour component of the current block, 

ï an (nTbS)x(nTbS) array d of scaled transform coefficients with elements d[ x ][  y ]. 

Output of this process is the (nTbS)x(nTbS) array r of residual samples with elements r[ x ][  y ]. 

The variables coeffMin and coeffMax are derived as follows: 

ï If cIdx is equal to 0, the following applies: 

coeffMin = CoeffMinY  (8-310) 

coeffMax = CoeffMaxY  (8-311) 

ï Otherwise, the following applies: 

coeffMin = CoeffMinC  (8-312) 

coeffMax = CoeffMaxC  (8-313) 

Depending on the values of CuPredMode[ xTbY ][  yTbY ], nTbS and cIdx, the variable trType is derived as follows: 

ï If CuPredMode[ xTbY ][  yTbY ] is equal to MODE_INTRA, nTbS is equal to 4 and cIdx is equal to 0, trType is set 

equal to 1. 

ï Otherwise, trType is set equal to 0. 

The (nTbS)x(nTbS) array r of residual samples is derived by the following ordered steps: 

1. Each (vertical) column of scaled transform coefficients d[ x ][  y ] with x = 0..nTbS ī 1, y = 0..nTbS ī 1 is transformed 

to e[ x ][  y ] with x = 0..nTbS ī 1, y = 0..nTbS ī 1 by invoking the one-dimensional transformation process as 

specified in clause 8.6.4.2 for each column x = 0..nTbS ī 1 with the size of the transform block nTbS, the list d[ x ][  y ] 

with y = 0..nTbS ī 1 and the transform type variable trType as inputs, and the output is the list e[ x ][  y ] with 

y = 0..nTbS ī 1. 

2. The intermediate sample values g[ x ][  y ] with  x = 0..nTbS ī 1, y = 0..nTbS ī 1  are derived as follows: 

g[ x ][  y ] = Clip3( coeffMin, coeffMax, ( e[ x ][  y ] + 64 )  >>  7 ) (8-314) 

3. Each (horizontal) row of the resulting array g[ x ][  y ] with x = 0..nTbS ī 1, y = 0..nTbS ī 1 is transformed to 

r[ x ][  y ] with x = 0..nTbS ī 1, y = 0..nTbS ī 1 by invoking the one-dimensional transformation process as specified 

in clause 8.6.4.2 for each row y = 0..nTbS ī 1 with the size of the transform block nTbS, the list g[ x ][  y ] with 

x = 0..nTbS ī 1 and the transform type variable trType as inputs, and the output is the list r[ x ][  y ] with 

x = 0..nTbS ī 1. 

8.6.4.2 Transformation process 

Inputs to this process are: 

ï a variable nTbS specifying the sample size of scaled transform coefficients, 

ï a list of scaled transform coefficients x with elements x[ j ], with j = 0..nTbS ī 1. 

ï a transform type variable trType 



 

180 Rec. ITU-T H.265 v8 (08/2021) 

Output of this process is the list of transformed samples y with elements y[ i ], with i = 0..nTbS ī 1. 

Depending on the value of trType, the following applies: 

ï If trType is equal to 1, the following transform matrix multiplication applies: 

y[ i ] = ][x*]][i[xtransMatri

1nTbS

0

jj

j

ä
-

=

 with i = 0..nTbS ī 1 (8-315) 

where the transform coefficient array transMatrix is specified as follows: 

transMatrix = (8-316) 

{  

{29  55  74  84}  

{74  74   0 ī74} 

{84 ī29 ī74  55} 

{55 ī84  74 ī29} 

}  

ï Otherwise (trType is equal to 0), the following transform matrix multiplication applies: 

y[ i ] = ][x*]2*][i[xtransMatri

1nTbS

0

Log2(nTbS)5 jj

j

ä
-

=

-
 with i = 0..nTbS ī 1, (8-317) 

where the transform coefficient array transMatrix is specified as follows: 

transMatrix[ m ][  n ] = transMatrixCol0to15[ m ][  n ] with m = 0..15, n = 0..31 (8-318) 

transMatrixCol0to15 = (8-319) 

{  

{64  64  64  64  64  64  64  64  64  64  64  64  64  64  64  64}  

{90  90  88  85  82  78  73  67  61  54  46  38  31  22  13   4}  

{90  87  80  70  57  43  25   9  ī9 ī25 ī43 ī57 ī70 ī80 ī87 ī90} 

{90  82  67  46  22  ī4 ī31 ī54 ī73 ī85 ī90 ī88 ī78 ī61 ī38 ī13} 

{89  75  50  18 ī18 ī50 ī75 ī89 ī89 ī75 ī50 ī18  18  50  75  89} 

{88  67  31 ī13 ī54 ī82 ī90 ī78 ī46  ī4  38  73  90  85  61  22} 

{87  57   9 ī43 ī80 ī90 ī70 ī25  25  70  90  80  43  ī9 ī57 ī87} 

{85  46 ī13 ī67 ī90 ī73 ī22  38  82  88  54  ī4 ī61 ī90 ī78 ī31} 

{83  36 ī36 ī83 ī83 ī36  36  83  83  36 ī36 ī83 ī83 ī36  36  83} 

{82  22 ī54 ī90 ī61  13  78  85  31 ī46 ī90 ī67   4  73  88  38}  

{80   9 ī70 ī87 ī25  57  90  43 ī43 ī90 ī57  25  87  70  ī9 ī80} 

{78  ī4 ī82 ī73  13  85  67 ī22 ī88 ī61  31  90  54 ī38 ī90 ī46} 

{75 ī18 ī89 ī50  50  89  18 ī75 ī75  18  89  50 ī50 ī89 ī18  75} 

{73 ī31 ī90 ī22  78  67 ī38 ī90 ī13  82  61 ī46 ī88  ī4  85  54}  

{70 ī43 ī87   9  90  25 ī80 ī57  57  80 ī25 ī90  ī9  87  43 ī70} 

{67 ī54 ī78  38  85 ī22 ī90   4  90  13 ī88 ī31  82  46 ī73 ī61} 

{64 ī64 ī64  64  64 ī64 ī64  64  64 ī64 ī64  64  64 ī64 ī64  64} 

{61 ī73 ī46  82  31 ī88 ī13  90  ī4 ī90  22  85 ī38 ī78  54  67} 

{57 ī80 ī25  90  ī9 ī87  43  70 ī70 ī43  87   9 ī90  25  80 ī57} 

{54 ī85  ī4  88 ī46 ī61  82  13 ī90  38  67 ī78 ī22  90 ī31 ī73} 

{50 ī89  18  75 ī75 ī18  89 ī50 ī50  89 ī18 ī75  75  18 ī89  50} 

{46 ī90  38  54 ī90  31  61 ī88  22  67 ī85  13  73 ī82   4  78} 

{43 ī90  57  25 ī87  70   9 ī80  80  ī9 ī70  87 ī25 ī57  90 ī43} 

{38 ī88  73  ī4 ī67  90 ī46 ī31  85 ī78  13  61 ī90  54  22 ī82} 

{36 ī83  83 ī36 ī36  83 ī83  36  36 ī83  83 ī36 ī36  83 ī83  36} 

{31 ī78  90 ī61   4  54 ī88  82 ī38 ī22  73 ī90  67 ī13 ī46  85} 

{25 ī70  90 ī80  43   9 ī57  87 ī87  57  ī9 ī43  80 ī90  70 ī25} 

{22 ī61  85 ī90  73 ī38  ī4  46 ī78  90 ī82  54 ī13 ī31  67 ī88} 

{18 ī50  75 ī89  89 ī75  50 ī18 ī18  50 ī75  89 ī89  75 ī50  18} 

{13 ī38  61 ī78  88 ī90  85 ī73  54 ī31   4  22 ī46  67 ī82  90} 

{ 9 ī25  43 ī57  70 ī80  87 ī90  90 ī87  80 ī70  57 ī43  25  ī9}  

{ 4 ī13  22 ī31  38 ī46  54 ī61  67 ī73  78 ī82  85 ī88  90 ī90} 

},  



 

  Rec. ITU-T H.265 v8 (08/2021) 181 

transMatrix[ m ][  n ] = transMatrixCol16to31[ m ī 16 ][  n ] with m = 16..31, n = 0..31, (8-320) 

transMatrixCol16to31 =  (8-321) 

{  

{ 64  64  64  64  64  64  64  64  64  64  64  64  64  64  64  64}  

{ ī4 ī13 ī22 ī31 ī38 ī46 ī54 ī61 ī67 ī73 ī78 ī82 ī85 ī88 ī90 ī90} 

{ī90 ī87 ī80 ī70 ī57 ī43 ī25  ī9   9  25  43  57  70  80  87  90} 

{ 13  38  61  78  88  90  85  73  54  31   4 ī22 ī46 ī67 ī82 ī90} 

{ 89  75  50  18 ī18 ī50 ī75 ī89 ī89 ī75 ī50 ī18  18  50  75  89} 

{ī22 ī61 ī85 ī90 ī73 ī38   4  46  78  90  82  54  13 ī31 ī67 ī88} 

{ī87 ī57  ī9  43  80  90  70  25 ī25 ī70 ī90 ī80 ī43   9  57  87} 

{ 31  78  90  61   4 ī54 ī88 ī82 ī38  22  73  90  67  13 ī46 ī85} 

{ 83  36 ī36 ī83 ī83 ī36  36  83  83  36 ī36 ī83 ī83 ī36  36  83} 

{ī38 ī88 ī73  ī4  67  90  46 ī31 ī85 ī78 ī13  61  90  54 ī22 ī82} 

{ī80  ī9  70  87  25 ī57 ī90 ī43  43  90  57 ī25 ī87 ī70   9  80} 

{ 46  90  38 ī54 ī90 ī31  61  88  22 ī67 ī85 ī13  73  82   4 ī78} 

{ 75 ī18 ī89 ī50  50  89  18 ī75 ī75  18  89  50 ī50 ī89 ī18  75} 

{ī54 ī85   4  88  46 ī61 ī82  13  90  38 ī67 ī78  22  90  31 ī73} 

{ī70  43  87  ī9 ī90 ī25  80  57 ī57 ī80  25  90   9 ī87 ī43  70} 

{ 61  73 ī46 ī82  31  88 ī13 ī90  ī4  90  22 ī85 ī38  78  54 ī67} 

{ 64 ī64 ī64  64  64 ī64 ī64  64  64 ī64 ī64  64  64 ī64 ī64  64} 

{ī67 ī54  78  38 ī85 ī22  90   4 ī90  13  88 ī31 ī82  46  73 ī61} 

{ī57  80  25 ī90   9  87 ī43 ī70  70  43 ī87  ī9  90 ī25 ī80  57} 

{ 73  31 ī90  22  78 ī67 ī38  90 ī13 ī82  61  46 ī88   4  85 ī54} 

{ 50 ī89  18  75 ī75 ī18  89 ī50 ī50  89 ī18 ī75  75  18 ī89  50}  

{ī78  ī4  82 ī73 ī13  85 ī67 ī22  88 ī61 ī31  90 ī54 ī38  90 ī46} 

{ī43  90 ī57 ī25  87 ī70  ī9  80 ī80   9  70 ī87  25  57 ī90  43} 

{ 82 ī22 ī54  90 ī61 ī13  78 ī85  31  46 ī90  67   4 ī73  88 ī38} 

{ 36 ī83  83 ī36 ī36  83 ī83  36  36 ī83  83 ī36 ī36  83 ī83  36} 

{ī85  46  13 ī67  90 ī73  22  38 ī82  88 ī54  ī4  61 ī90  78 ī31} 

{ī25  70 ī90  80 ī43  ī9  57 ī87  87 ī57   9  43 ī80  90 ī70  25} 

{ 88 ī67  31  13 ī54  82 ī90  78 ī46   4  38 ī73  90 ī85  61 ī22} 

{ 18 ī50  75 ī89  89 ī75  50 ī18 ī18  50 ī75  89 ī89  75 ī50  18} 

{ī90  82 ī67  46 ī22  ī4  31 ī54  73 ī85  90 ī88  78 ī61  38 ī13} 

{ ī9  25 ī43  57 ī70  80 ī87  90 ī90  87 ī80  70 ī57  43 ī25   9}  

{ 90 ī90  88 ī85  82 ī78  73 ī67  61 ī54  46 ī38  31 ī22  13  ī4} 

}  

8.6.5 Residual modification process for blocks using a transform bypass 

Inputs to this process are: 

ï a variable mDir specifying the residual modification direction, 

ï a variable nTbS specifying the transform block size, 

ï an (nTbS)x(nTbS) array of residual samples r with elements r[ x ][  y ]. 

Output of this process is the modified (nTbS)x(nTbS) array of residual samples. 

Depending upon the value of mDir, the (nTbS)x(nTbS) array of samples r is modified as follows: 

ï If mDir is equal to 0 (horizontal direction), the array values r[ x ][  y ] are modified as follows, for x proceeding over 

the values 1..nTbS ī 1 and y = 0..nTbS ī 1: 

r[ x ][  y ]  +=  r[ x ī 1 ][  y ]  (8-322) 

ï Otherwise (vertical direction), the array values r[ x ][  y ] are modified as follows, for y proceeding over the 

values 1..nTbS ī 1 and for x = 0..nTbS ī 1: 

r[ x ][  y ]  +=  r[ x ][  y ī 1 ]  (8-323) 

8.6.6 Residual modification process for transform blocks using cross-component prediction 

This process is only invoked when ChromaArrayType is equal to 3. 

Inputs to this process are: 

ï a luma location ( xTbY, yTbY ) specifying the top-left sample of the current luma transform block relative to the 

top-left luma sample of the current picture, 

ï a variable nTbS specifying the transform block size, 



 

182 Rec. ITU-T H.265 v8 (08/2021) 

ï a variable cIdx specifying the colour component of the current block, 

ï an (nTbS)x(nTbS) array of luma residual samples rY with elements rY[ x ][  y ], 

ï an (nTbS)x(nTbS) array of residual samples r with elements r[ x ][  y ]. 

Output of this process is the modified (nTbS)x(nTbS) array r of residual samples. 

The (nTbS)x(nTbS) array of residual samples r with  x = 0..nTbS ī 1, y = 0..nTbS ī 1  is modified as follows: 

r[ x ][  y ]  +=  ( ResScaleVal[ cIdx ][  xTbY ][  yTbY ] *  (8-324) 

   ( ( rY[ x ][  y ]  <<  BitDepthC )  >>  BitDepthY ) )  >>  3 

It is a requirement of bitstream conformance that the luma residual samples rY[ x ][  y ] shall be in the range of 

CoeffMinY to CoeffMaxY, inclusive, and the input residual samples r[ x ][  y ] shall be in the range of 

CoeffMinC to CoeffMaxC, inclusive. 

8.6.7 Picture construction process prior to in-loop filter process 

Inputs to this process are: 

ï a location ( xCurr, yCurr ) specifying the top-left sample of the current block relative to the top-left sample of the 

current picture component, 

ï the variables nCurrSw and nCurrSh specifying the width and height, respectively, of the current block, 

ï a variable cIdx specifying the colour component of the current block, 

ï an (nCurrSw)x(nCurrSh) array predSamples specifying the predicted samples of the current block, 

ï an (nCurrSw)x(nCurrSh) array resSamples specifying the residual samples of the current block. 

Depending on the value of the colour component cIdx, the following assignments are made: 

ï If cIdx is equal to 0, recSamples corresponds to the reconstructed picture sample array SL and the function clipCidx1 

corresponds to Clip1Y. 

ï Otherwise, if cIdx is equal to 1, recSamples corresponds to the reconstructed chroma sample array SCb and the function 

clipCidx1 corresponds to Clip1C. 

ï Otherwise (cIdx is equal to 2), recSamples corresponds to the reconstructed chroma sample array SCr and the function 

clipCidx1 corresponds to Clip1C. 

The (nCurrSw)x(nCurrSh) block of the reconstructed sample array recSamples at location ( xCurr, yCurr ) is derived as 

follows: 

recSamples[ xCurr + i ][  yCurr + j ] = clipCidx1( predSamples[ i ][  j ] + resSamples[ i ][  j ] ) (8-325) 

 with i = 0..nCurrSw ī 1, j = 0..nCurrSh ī 1 

8.6.8 Residual modification process for blocks using adaptive colour transform 

This process is only invoked when ChromaArrayType is equal to 3. 

8.6.8.1 General 

Inputs to this process are: 

ï a sample location ( xTb0, yTb0 ) specifying the top-left sample of the current block relative to the top left sample of 

the current picture, 

ï a variable log2TrafoSize specifying the size of the current block, 

ï a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit, 

ï an array resSampleArrayL specifying the luma residual samples of the current block, 

ï an array resSampleArrayCb specifying the Cb residual samples of the current block, 

ï an array resSampleArrayCr specifying the Cr residual samples of the current block. 



 

  Rec. ITU-T H.265 v8 (08/2021) 183 

Outputs of this process are the modified arrays resSampleY, resSampleCb and resSampleCr of residual samples 

of the current block. 

Depending on the value of split_transform_flag[ xTb0 ][  yTb0 ][  trafoDepth ], the following applies: 

ï If split_transform_flag[ xTb0 ][  yTb0 ][  trafoDepth ] is equal to 1, the following ordered steps apply: 

1. The variables xTb1 and yTb1 are derived as follows: 

ï The variable xTb1 is set equal to xTb0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

ï The variable yTb1 is set equal to yTb0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

2. The residual modification process for blocks using adaptive colour transform as specified in this clause is invoked 

with the location ( xTb0, yTb0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth 

set equal to trafoDepth + 1, the residual sample arrays resSampeArrayL, resSampleArrayCb and resSampleArrayCr 

as inputs and the output are modified versions of resSampeArrayL, resSampleArrayCb and resSampleArrayCr. 

3. The residual modification process for blocks using adaptive colour transform as specified in this clause is invoked 

with the location ( xTb1, yTb0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth 

set equal to trafoDepth + 1, the residual sample arrays resSampeArrayL, resSampleArrayCb and resSampleArrayCr 

as inputs and the output are modified versions of resSampeArrayL, resSampleArrayCb and resSampleArrayCr. 

4. The residual modification process for blocks using adaptive colour transform as specified in this clause is invoked 

with the location ( xTb0, yTb1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth 

set equal to trafoDepth + 1, the residual sample arrays resSampeArrayL, resSampleArrayCb and resSampleArrayCr 

as inputs and the output are modified versions of resSampeArrayL, resSampleArrayCb and resSampleArrayCr. 

5. The residual modification process for blocks using adaptive colour transform as specified in this clause is invoked 

with the location ( xTb1, yTb1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the variable trafoDepth 

set equal to trafoDepth + 1, the residual sample arrays resSampeArrayL, resSampleArrayCb and resSampleArrayCr 

as inputs and the output are modified versions of resSampeArrayL, resSampleArrayCb and resSampleArrayCr. 

ï Otherwise (split_transform_flag[ xTb0 ][  yTb0 ][  trafoDepth ] is equal to 0), the following ordered steps apply: 

1. The variable nTbS specifying the current transform block is set equal to ( 1  <<  log2TrafoSize ). 

2. The variable nCbS specifying the size of the current coding block is derived as 

nCbS = 1  <<  ( log2TrafoSize + trafDepth ). 

3. The sample location ( xTbInCb, yTbInCb ) specifying the top-left sample of the current transform block relative 

to the top-left sample of the current coding block are derived as xTbInCb = xTb0 & ( nCbS ī 1 ) and 

yTbInCb = yTb0 & ( nCbS ī 1 ). 

When tu_residual_act_flag[ xTb0 ][  yTb0 ] is equal to 1, the adaptive colour transformation process as specified 

in clause 8.6.8.2 is invoked with the sample location ( xTb0, yTb0 ) set to ( xTbInCb, yTbInCb ), the variable 

blkSize set equal to nTbS, the array rY set equal to resSampleArrayL, the array rCb set equal to 

resSampleArrayCb, and the array rCr set equal to resSampleArrayCr as inputs, and the outputs are modified 

versions of the three residual sample arrays. 

8.6.8.2 Adaptive colour transformation process 

Inputs to this process are: 

ï a sample location ( xTb0, yTb0 ) specifying the top-left sample of the current transform block relative to the top left 

sample of the current coding block, 

ï a variable blkSize specifying the block size of the transform block to be modified, 

ï an array of luma residual samples rY of the current coding block, 

ï an array of chroma residual samples rCb of the current coding block, 

ï an array of chroma residual samples rCr of the current coding block. 

Outputs of this process are: 

ï a modified array rY of luma residual samples, 



 

184 Rec. ITU-T H.265 v8 (08/2021) 

ï a modified array rCb of chroma residual samples, 

ï a modified array rCr of chroma residual samples. 

The arrays of residual samples rY, rCb and rCr with  x = xTb0..xTb0 + blkSize ī 1, y = yTb0..yTb0 + blkSize 

ī 1 are modified as follows: 

rY[  x ][  y ] = Clip3( CoeffMinY, CoeffMaxY, rY[ x ][  y ] ) (8-326) 

rCb[ x ][  y ] = Clip3( CoeffMinC, CoeffMaxC, rCb[ x ][  y ] ) (8-327) 

rCr[ x ][  y ] = Clip3( CoeffMinC, CoeffMaxC, rCr[ x ][  y ] ) (8-328) 

ï When cu_transquant_bypass_flag is equal to 0, the following ordered steps apply: 

1. The variables deltaBDY and deltaBDC are derived as follows: 

deltaBDY = Max( BitDepthY, BitDepthC ) ī BitDepthY (8-329) 

deltaBDC = Max( BitDepthY, BitDepthC ) ī BitDepthC (8-330) 

offsetBDY = deltaBDY ? 1  <<  ( deltaBDY ī 1 ) : 0 (8-331) 

offsetBDC = deltaBDC ? 1  <<  ( deltaBDC ī 1 ) : 0 (8-332) 

2. Residual samples rY[ x ][  y ], rCb[ x ][  y ] and rCr[ x ][  y ] are modified as follows: 

rY[  x ][  y ] = rY[ x ][  y ]  <<  deltaBDY 

 (8-333) 

rCb[ x ][  y ] = rCb[ x ][  y ]  <<  ( deltaBDC + 1 ) (8-334) 

rCr[ x ][  y ] = rCr[ x ][  y ]  <<  ( deltaBDC + 1 ) (8-335) 

ï Residual samples rY[ x ][  y ], rCb[ x ][  y ] and rCr[ x ][  y ] are modified as follows: 

tmp = rY[ x ][  y ] ī ( rCb[ x ][  y ]  >>  1 ) (8-336) 

rY[  x ][  y ] = tmp + rCb[ x ][  y ]  (8-337) 

rCb[ x ][  y ] = tmp ī ( rCr[ x ][  y ]  >>  1 ) (8-338) 

rCr[ x ][  y ]  +=  rCb[ x ][  y ]  (8-339) 

ï When cu_transquant_bypass_flag is equal to 0, the following applies: 

rY[  x ][  y ] = ( rY[ x ][  y ] + offsetBDY )  >>  deltaBDY (8-340) 

rCb[ x ][  y ] = ( rCb[ x ][  y ] + offsetBDC )  >>  deltaBDC (8-341) 

rCr[ x ][  y ] = ( rCr[ x ][  y ] + offsetBDC )  >>  deltaBDC (8-342) 

8.7 In-loop filter process 

8.7.1 General 

This clause specifies the application of two in-loop filters. When the in-loop filter process is specified as optional in Annex 

A, the application of either or both of these filters is optional. 

The two in-loop filters, namely deblocking filter and sample adaptive offset filter, are applied as specified by the following 

ordered steps: 

1. For the deblocking filter, the following applies: 



 

  Rec. ITU-T H.265 v8 (08/2021) 185 

ï The deblocking filter process as specified in clause 8.7.2 is invoked with the reconstructed picture sample array SL 

and, when ChromaArrayType is not equal to 0, the arrays SCb and SCr as inputs, and the modified reconstructed 

picture sample array SǋL and, when ChromaArrayType is not equal to 0, the arrays SǋCb and SǋCr after deblocking as 

outputs. 

ï The array SǋL and, when ChromaArrayType is not equal to 0, the arrays SǋCb and SǋCr are assigned to the array SL 

and, when ChromaArrayType is not equal to 0, the arrays SCb and SCr (which represent the decoded picture), 

respectively. 

2. When sample_adaptive_offset_enabled_flag is equal to 1, the following applies: 

ï The sample adaptive offset process as specified in clause 8.7.3 is invoked with the reconstructed picture sample 

array SL and, when ChromaArrayType is not equal to 0, the arrays SCb and SCr as inputs, and the modified 

reconstructed picture sample array SǋL and, when ChromaArrayType is not equal to 0, the arrays SǋCb and SǋCr after 

sample adaptive offset as outputs. 

ï The array SǋL and, when ChromaArrayType is not equal to 0, the arrays SǋCb and SǋCr are assigned to the array SL 

and, when ChromaArrayType is not equal to 0, the arrays SCb and SCr (which represent the decoded picture), 

respectively. 

8.7.2 Deblocking filter process 

8.7.2.1 General 

Inputs to this process are the reconstructed picture prior to deblocking, i.e., the array recPictureL and, when 

ChromaArrayType is not equal to 0, the arrays recPictureCb and recPictureCr. 

Outputs of this process are the modified reconstructed picture after deblocking, i.e., the array recPictureL and, when 

ChromaArrayType is not equal to 0, the arrays recPictureCb and recPictureCr. 

The vertical edges in a picture are filtered first. Then the horizontal edges in a picture are filtered with samples modified 

by the vertical edge filtering process as input. The vertical and horizontal edges in the CTBs of each CTU are processed 

separately on a coding unit basis. The vertical edges of the coding blocks in a coding unit are filtered starting with the edge 

on the left-hand side of the coding blocks proceeding through the edges towards the right-hand side of the coding blocks 

in their geometrical order. The horizontal edges of the coding blocks in a coding unit are filtered starting with the edge on 

the top of the coding blocks proceeding through the edges towards the bottom of the coding blocks in their geometrical 

order. 

NOTE ï Although the filtering process is specified on a picture basis in this Specification, the filtering process can be implemented 

on a coding unit basis with an equivalent result, provided the decoder properly accounts for the processing dependency order so as 

to produce the same output values. 

The deblocking filter process is applied to all prediction block edges and transform block edges of a picture, except the 

following types of edges: 

ï Edges that are at the boundary of the picture, 

ï Edges that coincide with tile boundaries when loop_filter_across_tiles_enabled_flag is equal to 0, 

ï Edges that coincide with upper or left boundaries of slices with slice_loop_filter_across_slices_enabled_flag equal 

to 0 or slice_deblocking_filter_disabled_flag equal to 1, 

ï Edges within slices with slice_deblocking_filter_disabled_flag equal to 1, 

ï Edges that do not correspond to 8x8 sample grid boundaries of the considered component, 

ï Edges within chroma components for which both sides of the edge use inter prediction, 

ï Edges of chroma transform blocks that are not edges of the associated transform unit. 

The edge type, vertical or horizontal, is represented by the variable edgeType as specified in Table 8-11. 

Table 8-11 ï Name of association to edgeType 

edgeType Name of edgeType 

0 (vertical edge) EDGE_VER 

1 (horizontal edge) EDGE_HOR 

 

When slice_deblocking_filter_disabled_flag of the current slice is equal to 0, for each coding unit with luma coding block 

size log2CbSize and location of top-left sample of the luma coding block ( xCb, yCb ), the vertical edges are filtered by 

the following ordered steps: 



 

186 Rec. ITU-T H.265 v8 (08/2021) 

1. The luma coding block size nCbS is set equal to 1  <<  log2CbSize. 

2. The variable filterLeftCbEdgeFlag is derived as follows: 

ï If one or more of the following conditions are true, filterLeftCbEdgeFlag is set equal to 0: 

ï The left boundary of the current luma coding block is the left boundary of the picture. 

ï The left boundary of the current luma coding block is the left boundary of the tile and 

loop_filter_across_tiles_enabled_flag is equal to 0. 

ï The left boundary of the current luma coding block is the left boundary of the slice and 

slice_loop_filter_across_slices_enabled_flag is equal to 0. 

ï Otherwise, filterLeftCbEdgeFlag is set equal to 1. 

3. All elements of the two-dimensional (nCbS)x(nCbS) array verEdgeFlags are initialized to be equal to zero. 

4. The derivation process of transform block boundary specified in clause 8.7.2.2 is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), the transform block size log2TrafoSize set equal 

to log2CbSize, the variable trafoDepth set equal to 0, the variable filterLeftCbEdgeFlag, the array verEdgeFlags 

and the variable edgeType set equal to EDGE_VER as inputs, and the modified array verEdgeFlags as output. 

5. The derivation process of prediction block boundary specified in clause 8.7.2.3 is invoked with the luma coding 

block size log2CbSize, the prediction partition mode PartMode, the array verEdgeFlags and the variable edgeType 

set equal to EDGE_VER as inputs, and the modified array verEdgeFlags as output. 

6. The derivation process of the boundary filtering strength specified in clause 8.7.2.4 is invoked with the 

reconstructed luma picture sample array prior to deblocking recPictureL, the luma location ( xCb, yCb ), the luma 

coding block size log2CbSize, the variable edgeType set equal to EDGE_VER and the array verEdgeFlags as 

inputs, and an (nCbS)x(nCbS) array verBs as output. 

7. The vertical edge filtering process for a coding unit as specified in clause 8.7.2.5.1 is invoked with the 

reconstructed picture prior to deblocking, i.e., the array recPictureL and, when ChromaArrayType is not equal 

to 0, the arrays recPictureCb and recPictureCr, the luma location ( xCb, yCb ), the luma coding block size 

log2CbSize and the array verBs as inputs, and the modified reconstructed picture, i.e., the array recPictureL and, 

when ChromaArrayType is not equal to 0, the arrays recPictureCb and recPictureCr, as output. 

When slice_deblocking_filter_disabled_flag of the current slice is equal to 0, for each coding unit with luma coding block 

size log2CbSize and location of top-left sample of the luma coding block ( xCb, yCb ), the horizontal edges are filtered by 

the following ordered steps: 

1. The luma coding block size nCbS is set equal to 1  <<  log2CbSize. 

2. The variable filterTopCbEdgeFlag is derived as follows: 

ï If one or more of the following conditions are true, the variable filterTopCbEdgeFlag is set equal to 0: 

ï The top boundary of the current luma coding block is the top boundary of the picture. 

ï The top boundary of the current luma coding block is the top boundary of the tile and 

loop_filter_across_tiles_enabled_flag is equal to 0. 

ï The top boundary of the current luma coding block is the top boundary of the slice and 

slice_loop_filter_across_slices_enabled_flag is equal to 0. 

ï Otherwise, the variable filterTopCbEdgeFlag is set equal to 1. 

3. All elements of the two-dimensional (nCbS)x(nCbS) array horEdgeFlags are initialized to zero. 

4. The derivation process of transform block boundary specified in clause 8.7.2.2 is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), the transform block size log2TrafoSize set equal 

to log2CbSize, the variable trafoDepth set equal to 0, the variable filterTopCbEdgeFlag, the array horEdgeFlags 

and the variable edgeType set equal to EDGE_HOR as inputs, and the modified array horEdgeFlags as output. 

5. The derivation process of prediction block boundary specified in clause 8.7.2.3 is invoked with the luma coding 

block size log2CbSize, the prediction partition mode PartMode, the array horEdgeFlags and the variable edgeType 

set equal to EDGE_HOR as inputs, and the modified array horEdgeFlags as output. 

6. The derivation process of the boundary filtering strength specified in clause 8.7.2.4 is invoked with the 

reconstructed luma picture sample array prior to deblocking recPictureL, the luma location ( xCb, yCb ), the luma 

coding block size log2CbSize, the variable edgeType set equal to EDGE_HOR and the array horEdgeFlags as 

inputs, and an (nCbS)x(nCbS) array horBs as output. 



 

  Rec. ITU-T H.265 v8 (08/2021) 187 

7. The horizontal edge filtering process for a coding unit as specified in clause 8.7.2.5.2 is invoked with the modified 

reconstructed picture, i.e., the array recPictureL and, when ChromaArrayType is not equal to 0, the arrays 

recPictureCb and recPictureCr, the luma location ( xCb, yCb ), the luma coding block size log2CbSize, and the 

array horBs as inputs and the modified reconstructed picture, i.e., the array recPictureL and, when 

ChromaArrayType is not equal to 0, the arrays recPictureCb and recPictureCr, as output. 

8.7.2.2 Derivation process of transform block boundary 

Inputs to this process are: 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture,  

ï a luma location ( xB0, yB0 ) specifying the top-left sample of the current luma block relative to the top-left sample of 

the current luma coding block,  

ï a variable log2TrafoSize specifying the size of the current block, 

ï a variable trafoDepth, 

ï a variable filterEdgeFlag, 

ï a two-dimensional (nCbS)x(nCbS) array edgeFlags, 

ï a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered. 

Output of this process is the modified two-dimensional (nCbS)x(nCbS) array edgeFlags. 

Depending on the value of split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ], the following applies: 

ï If split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ] is equal to 1, the following ordered steps apply: 

1. The variables xB1 and yB1 are derived as follows: 

- The variable xB1 is set equal to xB0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

- The variable yB1 is set equal to yB0 + ( 1  <<  ( log2TrafoSize ī 1 ) ). 

2. The derivation process of transform block boundary as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array edgeFlags and the variable 

edgeType as inputs, and the output is the modified version of array edgeFlags. 

3. The derivation process of transform block boundary as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB1, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array edgeFlags and the variable 

edgeType as inputs, and the output is the modified version of array edgeFlags. 

4. The derivation process of transform block boundary as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB0, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array edgeFlags and the variable 

edgeType as inputs, and the output is the modified version of array edgeFlags. 

5. The derivation process of transform block boundary as specified in this clause is invoked with the luma location 

( xCb, yCb ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize ī 1, the 

variable trafoDepth set equal to trafoDepth + 1, the variable filterEdgeFlag, the array edgeFlags and the variable 

edgeType as inputs, and the output is the modified version of array edgeFlags. 

ï Otherwise (split_transform_flag[ xCb + xB0 ][  yCb + yB0 ][  trafoDepth ] is equal to 0), the following applies: 

ï If edgeType is equal to EDGE_VER, the value of edgeFlags[ xB0 ][  yB0 + k ] for 

k = 0..( 1  <<  log2TrafoSize ) ī 1 is derived as follows: 

ï If xB0 is equal to 0, edgeFlags[ xB0 ][  yB0 + k ] is set equal to filterEdgeFlag. 

ï Otherwise, edgeFlags[ xB0 ][  yB0 + k ] is set equal to 1. 

ï Otherwise (edgeType is equal to EDGE_HOR), the value of edgeFlags[ xB0 + k ][  yB0 ] for 

k = 0..( 1  <<  log2TrafoSize ) ī 1 is derived as follows: 

ï If yB0 is equal to 0, edgeFlags[ xB0 + k ][  yB0 ] is set equal to filterEdgeFlag. 

ï Otherwise, edgeFlags[ xB0 + k ][  yB0 ] is set equal to 1. 



 

188 Rec. ITU-T H.265 v8 (08/2021) 

8.7.2.3 Derivation process of prediction block boundary 

Inputs to this process are: 

ï a variable log2CbSize specifying the luma coding block size, 

ï a prediction partition mode PartMode, 

ï a two-dimensional (nCbS)x(nCbS) array edgeFlags, 

ï a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered. 

Output of this process is the modified two-dimensional (nCbS)x(nCbS) array edgeFlags. 

Depending on the values of edgeType and PartMode, the following applies for k = 0..( 1  <<  log2CbSize ) ī 1: 

ï If edgeType is equal to EDGE_VER, the following applies: 

ï When PartMode is equal to PART_Nx2N or PART_NxN, edgeFlags[ 1  <<  ( log2CbSize ī 1 ) ][  k ] is set equal 

to 1. 

ï When PartMode is equal to PART_nLx2N, edgeFlags[ 1  <<  ( log2CbSize ī 2 ) ][  k ] is set equal to 1. 

ï When PartMode is equal to PART_nRx2N, edgeFlags[ 3 *  ( 1  <<  ( log2CbSize ī 2 ) ) ][  k ] is set equal to 1. 

ï Otherwise (edgeType is equal to EDGE_HOR), the following applies: 

ï When PartMode is equal to PART_2NxN or PART_NxN, edgeFlags[ k ][  1  <<  ( log2CbSize ī 1 ) ] is set equal 

to 1. 

ï When PartMode is equal to PART_2NxnU, edgeFlags[ k ][  1  <<  ( log2CbSize ī 2 ) ] is set equal to 1. 

ï When PartMode is equal to PART_2NxnD, edgeFlags[ k ][  3 *  ( 1  <<  ( log2CbSize ī 2 ) ) ] is set equal to 1. 

8.7.2.4 Derivation process of boundary filtering strength 

Inputs to this process are: 

ï a luma picture sample array recPictureL, 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture,  

ï a variable log2CbSize specifying the size of the current luma coding block, 

ï a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 

ï a two-dimensional (nCbS)x(nCbS) array edgeFlags. 

Output of this process is a two-dimensional (nCbS)x(nCbS) array bS specifying the boundary filtering strength. 

The variables xDi, yDj, xN and yN are derived as follows: 

ï If edgeType is equal to EDGE_VER, xDi is set equal to ( i  <<  3 ), yDj is set equal to ( j  <<  2 ), xN is set equal to 

( 1  <<  ( log2CbSize ī 3 ) ) ī 1 and yN is set equal to ( 1  <<  ( log2CbSize ī 2 ) ) ī 1. 

ï Otherwise (edgeType is equal to EDGE_HOR), xDi is set equal to ( i  <<  2 ), yDj is set equal to ( j  <<  3 ), xN is set 

equal to ( 1  <<  ( log2CbSize ī 2 ) ) ī 1 and yN is set equal to ( 1  <<  ( log2CbSize ī 3 ) ) ī 1. 

For xDi with i = 0..xN and yDj with j = 0..yN, the following applies: 

ï If edgeFlags[ xDi ][  yDj ] is equal to 0, the variable bS[ xDi ][  yDj ] is set equal to 0. 

ï Otherwise (edgeFlags[ xDi ][  yDj ] is equal to 1), the following applies: 

ï The sample values p0 and q0 are derived as follows: 

ï If edgeType is equal to EDGE_VER, p0 is set equal to recPictureL[ xCb + xDi ī 1 ][  yCb + yDj ] and 

q0 is set equal to recPictureL[ xCb + xDi ][  yCb + yDj ]. 

ï Otherwise (edgeType is equal to EDGE_HOR), p0 is set equal to 

recPictureL[ xCb + xDi ][  yCb + yDj ī 1 ] and q0 is set equal to recPictureL[ xCb + xDi ][  yCb + yDj ]. 

ï The variable bS[ xDi ][  yDj ] is derived as follows: 

ï If the sample p0 or q0 is in the luma coding block of a coding unit coded with intra prediction mode, 

bS[ xDi ][  yDj ] is set equal to 2. 



 

  Rec. ITU-T H.265 v8 (08/2021) 189 

ï Otherwise, if the block edge is also a transform block edge and the sample p0 or q0 is in a luma 

transform block which contains one or more non-zero transform coefficient levels, bS[ xDi ][  yDj ] is 

set equal to 1. 

ï Otherwise, if one or more of the following conditions are true, bS[ xDi ][  yDj ] is set equal to 1: 

ï For the prediction of the luma prediction block containing the sample p0 different reference 

pictures or a different number of motion vectors are used than for the prediction of the luma 

prediction block containing the sample q0. 

NOTE 1 ï The determination of whether the reference pictures used for the two luma prediction blocks 

are the same or different is based only on which pictures are referenced, without regard to whether a 

prediction is formed using an index into reference picture list 0 or an index into reference picture list 

1, and also without regard to whether the index position within a reference picture list is different. 

NOTE 2 ï The number of motion vectors that are used for the prediction of a luma prediction block 

with top-left luma sample covering ( xPb, yPb ), is equal to PredFlagL0[ xPb ][  yPb ] + 

PredFlagL1[ xPb ][  yPb ]. 

ï One motion vector is used to predict the luma prediction block containing the sample p0 and one 

motion vector is used to predict the luma prediction block containing the sample q0, and the 

absolute difference between the horizontal or vertical component of the motion vectors used is 

greater than or equal to 4 in units of quarter luma samples. 

ï Two motion vectors and two different reference pictures are used to predict the luma prediction 

block containing the sample p0, two motion vectors for the same two reference pictures are used 

to predict the luma prediction block containing the sample q0 and the absolute difference between 

the horizontal or vertical component of the two motion vectors used in the prediction of the two 

luma prediction blocks for the same reference picture is greater than or equal to 4 in units of 

quarter luma samples. 

ï Two motion vectors for the same reference picture are used to predict the luma prediction block 

containing the sample p0, two motion vectors for the same reference picture are used to predict 

the luma prediction block containing the sample q0 and both of the following conditions are true: 

ï The absolute difference between the horizontal or vertical component of list 0 motion vectors 

used in the prediction of the two luma prediction blocks is greater than or equal to 4 in quarter 

luma samples, or the absolute difference between the horizontal or vertical component of the 

list 1 motion vectors used in the prediction of the two luma prediction blocks is greater than 

or equal to 4 in units of quarter luma samples. 

ï The absolute difference between the horizontal or vertical component of list 0 motion vector 

used in the prediction of the luma prediction block containing the sample p0 and the list 1 

motion vector used in the prediction of the luma prediction block containing the sample q0 is 

greater than or equal to 4 in units of quarter luma samples, or the absolute difference between 

the horizontal or vertical component of the list 1 motion vector used in the prediction of the 

luma prediction block containing the sample p0 and list 0 motion vector used in the prediction 

of the luma prediction block containing the sample q0 is greater than or equal to 4 in units of 

quarter luma samples. 

ï Otherwise, the variable bS[ xDi ][  yDj ] is set equal to 0. 

8.7.2.5 Edge filtering process 

8.7.2.5.1 Vertical edge filtering process 

Inputs to this process are: 

ï the picture sample array recPictureL and, when ChromaArrayType is not equal to 0, the arrays recPictureCb and 

recPictureCr, 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a variable log2CbSize specifying the size of the current luma coding block, 

ï an array bS specifying the boundary filtering strength. 

Outputs of this process are the modified picture sample array recPictureL and, when ChromaArrayType is not equal to 0, 

the arrays recPictureCb and recPictureCr. 

The filtering process for edges in the luma coding block of the current coding unit consists of the following ordered steps: 



 

190 Rec. ITU-T H.265 v8 (08/2021) 

1. The variable nD is set equal to 1  <<  ( log2CbSize ī 3 ). 

2. For xDk equal to k  <<  3 with k = 0..nD ī 1 and yDm equal to m  <<  2 with m = 0..nD *  2 ī 1, the following 

applies: 

ï When bS[ xDk ][  yDm ] is greater than 0, the following ordered steps apply: 

a. The decision process for luma block edges as specified in clause 8.7.2.5.3 is invoked with the luma 

picture sample array recPictureL, the location of the luma coding block ( xCb, yCb ), the luma 

location of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_VER and the boundary 

filtering strength bS[ xDk ][  yDm ] as inputs, and the decisions dE, dEp and dEq, and the variables ɓ 

and tC as outputs. 

b. The filtering process for luma block edges as specified in clause 8.7.2.5.4 is invoked with the luma 

picture sample array recPictureL, the location of the luma coding block ( xCb, yCb ), the luma 

location of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_VER, the decisions dE, 

dEp and dEq, and the variables ɓ and tC as inputs, and the modified luma picture sample array 

recPictureL as output. 

When ChromaArrayType is not equal to 0, the following applies. 

The filtering process for edges in the chroma coding blocks of current coding unit consists of the following ordered steps: 

1. The variable nD is set equal to 1  <<  ( log2CbSize ī 3 ). 

2. The variable edgeSpacing is set equal to 8 / SubWidthC. 

3. The variable edgeSections is set equal to nD *  ( 2 / SubHeightC ). 

4. For xDk equal to k *  edgeSpacing with k = 0..nD ī 1 and yDm equal to m  <<  2 with m = 0..edgeSections ī 1, the 

following applies: 

ï When bS[ xDk *  SubWidthC ][  yDm *  SubHeightC ] is equal to 2 and 

( ( ( xCb / SubWidthC + xDk )  >>  3 )  <<  3 ) is equal to xCb / SubWidthC + xDk, the following ordered 

steps apply: 

a. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the chroma 

picture sample array recPictureCb, the location of the chroma coding block 

( xCb / SubWidthC, yCb / SubHeightC ), the chroma location of the block ( xDk, yDm ), a variable 

edgeType set equal to EDGE_VER and a variable cQpPicOffset set equal to pps_cb_qp_offset as inputs, 

and the modified chroma picture sample array recPictureCb as output. 

b. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the chroma 

picture sample array recPictureCr, the location of the chroma coding block 

( xCb / SubWidthC, yCb / SubHeightC ), the chroma location of the block ( xDk, yDm ), a variable 

edgeType set equal to EDGE_VER and a variable cQpPicOffset set equal to pps_cr_qp_offset as inputs, 

and the modified chroma picture sample array recPictureCr as output. 

8.7.2.5.2 Horizontal edge filtering process 

Inputs to this process are: 

ï the picture sample array recPictureL and, when ChromaArrayType is not equal to 0, the arrays recPictureCb and 

recPictureCr, 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a variable log2CbSize specifying the size of the current luma coding block, 

ï an array bS specifying the boundary filtering strength. 

Outputs of this process are the modified picture sample array recPictureL and, when ChromaArrayType is not equal to 0, 

the arrays recPictureCb and recPictureCr. 

The filtering process for edges in the luma coding block of the current coding unit consists of the following ordered steps: 

1. The variable nD is set equal to 1  <<  ( log2CbSize ī 3 ). 

2. For yDm equal to m  <<  3 with m = 0..nD ī 1 and xDk equal to k  <<  2 with k = 0..nD *  2 ī 1, the following 

applies: 

ï When bS[ xDk ][  yDm ] is greater than 0, the following ordered steps apply: 



 

  Rec. ITU-T H.265 v8 (08/2021) 191 

a. The decision process for luma block edges as specified in clause 8.7.2.5.3 is invoked with the luma 

picture sample array recPictureL, the location of the luma coding block ( xCb, yCb ), the luma location 

of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_HOR and the boundary filtering 

strength bS[ xDk ][  yDm ] as inputs, and the decisions dE, dEp and dEq, and the variables ɓ and tC as 

outputs. 

b. The filtering process for luma block edges as specified in clause 8.7.2.5.4 is invoked with the luma 

picture sample array recPictureL, the location of the luma coding block ( xCb, yCb ), the luma location 

of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_HOR, the decisions dEp, dEp and 

dEq, and the variables ɓ and tC as inputs, and the modified luma picture sample array recPictureL as 

output. 

When ChromaArrayType is not equal to 0, the following applies. 

The filtering process for edges in the chroma coding blocks of current coding unit consists of the following ordered steps: 

1. The variable nD is set equal to 1  <<  ( log2CbSize ī 3 ). 

2. The variable edgeSpacing is set equal to 8 / SubHeightC. 

3. The variable edgeSections is set equal to nD *  ( 2 / SubWidthC ). 

4. For yDm equal to m *  edgeSpacing with m = 0..nD ī 1 and xDk equal to k  <<  2 with k = 0..edgeSections ī 1, the 

following applies: 

ï When bS[ xDk *  SubWidthC ][  yDm *  SubHeightC ] is equal to 2 and 

( ( ( yCb / SubHeightC + yDm )  >>  3 )  <<  3 ) is equal to yCb / SubHeightC + yDm, the following ordered 

steps apply: 

a. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the chroma 

picture sample array recPictureCb, the location of the chroma coding block 

( xCb / SubWidthC, yCb / SubHeightC ), the chroma location of the block ( xDk, yDm ), a variable 

edgeType set equal to EDGE_HOR and a variable cQpPicOffset set equal to pps_cb_qp_offset as inputs, 

and the modified chroma picture sample array recPictureCb as output. 

b. The filtering process for chroma block edges as specified in clause 8.7.2.5.5 is invoked with the chroma 

picture sample array recPictureCr, the location of the chroma coding block 

( xCb / SubWidthC, yCb / SubHeightC ), the chroma location of the block ( xDk, yDm ), a variable 

edgeType set equal to EDGE_HOR and a variable cQpPicOffset set equal to pps_cr_qp_offset as inputs, 

and the modified chroma picture sample array recPictureCr as output. 

8.7.2.5.3 Decision process for luma block edges 

Inputs to this process are: 

ï a luma picture sample array recPictureL, 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a luma location ( xBl, yBl ) specifying the top-left sample of the current luma block relative to the top-left sample of 

the current luma coding block, 

ï a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 

ï a variable bS specifying the boundary filtering strength. 

Outputs of this process are: 

ï the variables dE, dEp and dEq containing decisions, 

ï the variables ɓ and tC. 

If edgeType is equal to EDGE_VER, the sample values pi,k and qi,k with i = 0..3 and k = 0 and 3 are derived as follows: 

qi,k = recPictureL[ xCb + xBl + i ][  yCb + yBl + k ] (8-343) 

pi,k = recPictureL[ xCb + xBl ī i ī 1 ][  yCb + yBl + k ] (8-344) 



 

192 Rec. ITU-T H.265 v8 (08/2021) 

Otherwise (edgeType is equal to EDGE_HOR), the sample values pi,k and qi,k with i = 0..3 and k = 0 and 3 are derived as 

follows: 

qi,k = recPictureL[ xCb + xBl + k ][  yCb + yBl + i ] (8-345) 

pi,k = recPictureL[ xCb + xBl + k ][  yCb + yBl ī i ī 1 ] (8-346) 

The variables QpQ and QpP are set equal to the QpY values of the coding units which include the coding blocks 

containing the sample q0,0 and p0,0, respectively. 

The variable qPL is derived as follows: 

qPL = ( ( QpQ + QpP + 1 )  >>  1 ) (8-347) 

The value of the variable ɓǋ is determined as specified in Table 8-12 based on the luma quantization parameter Q derived 

as follows: 

Q = Clip3( 0, 51, qPL + ( slice_beta_offset_div2  <<  1 ) ) (8-348) 

where slice_beta_offset_div2 is the value of the syntax element slice_beta_offset_div2 for the slice that contains sample 

q0,0. 

The variable ɓ is derived as follows: 

ɓ = ɓǋ *  ( 1  <<  ( BitDepthY ī 8 ) ) (8-349) 

The value of the variable tCǋ is determined as specified in Table 8-12 based on the luma quantization parameter Q derived 

as follows: 

Q = Clip3( 0, 53, qPL + 2 *  ( bS ī 1 ) + ( slice_tc_offset_div2  <<  1 ) ) (8-350) 

where slice_tc_offset_div2 is the value of the syntax element slice_tc_offset_div2 for the slice that contains sample q0,0.  

The variable tC is derived as follows: 

tC = tCǋ *  ( 1  <<  ( BitDepthY ī 8 ) ) (8-351) 

Depending on the value of edgeType, the following applies: 

ï If edgeType is equal to EDGE_VER, the following ordered steps apply: 

1. The variables dpq0, dpq3, dp, dq and d are derived as follows: 

dp0 = Abs( p2,0 ī 2 *  p1,0 + p0,0 )  (8-352) 

dp3 = Abs( p2,3 ī 2 *  p1,3 + p0,3 )  (8-353) 

dq0 = Abs( q2,0 ī 2 *  q1,0 + q0,0 )  (8-354) 

dq3 = Abs( q2,3 ī 2 *  q1,3 + q0,3 )  (8-355) 

dpq0 = dp0 + dq0  (8-356) 

dpq3 = dp3 + dq3  (8-357) 

dp = dp0 + dp3  (8-358) 

dq = dq0 + dq3  (8-359) 

d = dpq0 + dpq3  (8-360) 

2. The variables dE, dEp and dEq are set equal to 0. 

3. When d is less than ɓ, the following ordered steps apply: 



 

  Rec. ITU-T H.265 v8 (08/2021) 193 

a. The variable dpq is set equal to 2 *  dpq0. 

b. For the sample location ( xCb + xBl, yCb + yBl ), the decision process for a luma sample as specified in 

clause 8.7.2.5.6 is invoked with sample values p0,0, p3,0, q0,0, and q3,0, the variables dpq, ɓ and tC as inputs, 

and the output is assigned to the decision dSam0. 

c. The variable dpq is set equal to 2 *  dpq3. 

d. For the sample location ( xCb + xBl, yCb + yBl + 3 ), the decision process for a luma sample as specified in 

clause 8.7.2.5.6 is invoked with sample values p0,3, p3,3, q0,3, and q3,3, the variables dpq, ɓ and tC as inputs, 

and the output is assigned to the decision dSam3. 

e. The variable dE is set equal to 1. 

f. When dSam0 is equal to 1 and dSam3 is equal to 1, the variable dE is set equal to 2. 

g. When dp is less than ( ɓ + ( ɓ  >>  1 ) )  >>  3, the variable dEp is set equal to 1. 

h. When dq is less than ( ɓ + ( ɓ  >>  1 ) )  >>  3, the variable dEq is set equal to 1. 

ï Otherwise (edgeType is equal to EDGE_HOR), the following ordered steps apply: 

1. The variables dpq0, dpq3, dp, dq and d are derived as follows: 

dp0 = Abs( p2,0 ī 2 *  p1,0 + p0,0 )  (8-361) 

dp3 = Abs( p2,3 ī 2 *  p1,3 + p0,3 )  (8-362) 

dq0 = Abs( q2,0 ī 2 *  q1,0 + q0,0 )  (8-363) 

dq3 = Abs( q2,3 ī 2 *  q1,3 + q0,3 )  (8-364) 

dpq0 = dp0 + dq0  (8-365) 

dpq3 = dp3 + dq3  (8-366) 

dp = dp0 + dp3  (8-367) 

dq = dq0 + dq3  (8-368) 

d = dpq0 + dpq3  (8-369) 

2. The variables dE, dEp and dEq are set equal to 0. 

3. When d is less than ɓ, the following ordered steps apply: 

a. The variable dpq is set equal to 2 *  dpq0. 

b. For the sample location ( xCb + xBl, yCb + yBl ), the decision process for a luma sample as specified in 

clause 8.7.2.5.6 is invoked with sample values p0,0, p3,0, q0,0 and q3,0, the variables dpq, ɓ and tC as inputs, and 

the output is assigned to the decision dSam0. 

c. The variable dpq is set equal to 2 *  dpq3. 

d. For the sample location ( xCb + xBl + 3, yCb + yBl ), the decision process for a luma sample as specified in 

clause 8.7.2.5.6 is invoked with sample values p0,3, p3,3, q0,3 and q3,3, the variables dpq, ɓ and tC as inputs, and 

the output is assigned to the decision dSam3. 

e. The variable dE is set equal to 1. 

f. When dSam0 is equal to 1 and dSam3 is equal to 1, the variable dE is set equal to 2. 

g. When dp is less than ( ɓ + ( ɓ  >>  1 ) )  >>  3, the variable dEp is set equal to 1. 

h. When dq is less than ( ɓ + ( ɓ  >>  1 ) )  >>  3, the variable dEq is set equal to 1. 



 

194 Rec. ITU-T H.265 v8 (08/2021) 

Table 8-12 ï Derivation of threshold variables ɓǋ and tCǋ from input Q 
 

Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

ɓǋ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 7 8 

tCǋ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Q 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

ɓǋ 9 10 11 12 13 14 15 16 17 18 20 22 24 26 28 30 32 34 36 

tCǋ 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 

Q 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53    

ɓǋ 38 40 42 44 46 48 50 52 54 56 58 60 62 64 - -    

tCǋ 5 5 6 6 7 8 9 10 11 13 14 16 18 20 22 24    

 

8.7.2.5.4 Filtering process for luma block edges 

Inputs to this process are: 

ï a luma picture sample array recPictureL, 

ï a luma location ( xCb, yCb ) specifying the top-left sample of the current luma coding block relative to the top-left 

luma sample of the current picture, 

ï a luma location ( xBl, yBl ) specifying the top-left sample of the current luma block relative to the top-left sample of 

the current luma coding block, 

ï a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 

ï the variables dE, dEp and dEq containing decisions, 

ï the variables ɓ and tC. 

Output of this process is the modified luma picture sample array recPictureL. 

Depending on the value of edgeType, the following applies: 

ï If edgeType is equal to EDGE_VER, the following ordered steps apply: 

1. The sample values pi,k and qi,k with i = 0..3 and k = 0..3 are derived as follows: 

qi,k = recPictureL[ xCb + xBl + i ][  yCb + yBl + k ] (8-370) 

pi,k = recPictureL[ xCb + xBl ī i ī 1 ][  yCb + yBl + k ] (8-371) 

2. When dE is not equal to 0, for each sample location ( xCb + xBl, yCb + yBl + k ), k = 0..3, the following ordered 

steps apply: 

a. The filtering process for a luma sample as specified in clause 8.7.2.5.7 is invoked with the sample values pi,k, 

qi,k with i = 0..3, the locations ( xPi, yPi ) set equal to ( xCb + xBl ī i ī 1, yCb + yBl + k ) and ( xQi, yQi ) set 

equal to ( xCb + xBl + i, yCb + yBl + k ) with i = 0..2, the decision dE, the variables dEp and dEq and the 

variable tC as inputs, and the number of filtered samples nDp and nDq from each side of the block boundary 

and the filtered sample values pi' and qj' as outputs. 

b. When nDp is greater than 0, the filtered sample values pi' with i = 0..nDp ī 1 replace the corresponding 

samples inside the sample array recPictureL as follows: 

recPictureL[ xCb + xBl ī i ī 1 ][  yCb + yBl + k ] = pi' (8-372) 

c. When nDq is greater than 0, the filtered sample values qj' with j = 0..nDq ī 1 replace the corresponding 

samples inside the sample array recPictureL as follows: 

recPictureL[ xCb + xBl + j ][  yCb + yBl + k ] = qj' (8-373) 

ï Otherwise (edgeType is equal to EDGE_HOR), the following ordered steps apply: 

1. The sample values pi,k and qi,k with i = 0..3 and k = 0..3 are derived as follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 195 

qi,k = recPictureL[ xCb + xBl + k ][  yCb + yBl + i ] (8-374) 

pi,k = recPictureL[ xCb + xBl + k ][  yCb + yBl ī i ī 1 ] (8-375) 

2. When dE is not equal to 0, for each sample location ( xCb + xBl + k, yCb + yBl ), k = 0..3, the following ordered 

steps apply: 

a. The filtering process for a luma sample as specified in clause 8.7.2.5.7 is invoked with the sample values pi,k, 

qi,k with i = 0..3, the locations ( xPi, yPi ) set equal to ( xCb + xBl + k, yCb + yBl ī i ī 1 ) and ( xQi, yQi ) set 

equal to ( xCb + xBl + k, yCb + yBl + i ) with i = 0..2, the decision dE, the variables dEp and dEq, and the 

variable tC as inputs, and the number of filtered samples nDp and nDq from each side of the block boundary 

and the filtered sample values pi' and qj' as outputs. 

b. When nDp is greater than 0, the filtered sample values pi' with i = 0..nDp ī 1 replace the corresponding 

samples inside the sample array recPictureL as follows: 

recPictureL[ xCb + xBl + k ][  yCb + yBl ī i ī 1 ] = pi' (8-376) 

c. When nDq is greater than 0, the filtered sample values qj' with j = 0..nDq ī 1 replace the corresponding 

samples inside the sample array recPictureL as follows: 

recPictureL[ xCb + xBl + k ][  yCb + yBl + j ] = qj' (8-377) 

8.7.2.5.5 Filtering process for chroma block edges 

This process is only invoked when ChromaArrayType is not equal to 0. 

Inputs to this process are: 

ï a chroma picture sample array sǋ, 

ï a chroma location ( xCb, yCb ) specifying the top-left sample of the current chroma coding block relative to the top-

left chroma sample of the current picture, 

ï a chroma location ( xBl, yBl ) specifying the top-left sample of the current chroma block relative to the top-left sample 

of the current chroma coding block, 

ï a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 

ï a variable cQpPicOffset specifying the picture-level chroma quantization parameter offset. 

Output of this process is the modified chroma picture sample array sǋ. 

If edgeType is equal to EDGE_VER, the values pi and qi with i = 0..1 and k = 0..3 are derived as follows: 

qi,k = sǋ[ xCb + xBl + i ][  yCb + yBl + k ] (8-378) 

pi,k = sǋ[ xCb + xBl ī i ī 1 ][  yCb + yBl + k ] (8-379) 

Otherwise (edgeType is equal to EDGE_HOR), the sample values pi and qi with i = 0..1 and k = 0..3 are derived as follows: 

qi,k = sǋ[ xCb + xBl + k ][  yCb + yBl + i ] (8-380) 

pi,k = sǋ[ xCb + xBl + k ][  yCb + yBl ī i ī 1 ] (8-381) 

The variables QpQ and QpP are set equal to the QpY values of the coding units which include the coding blocks containing 

the sample q0,0 and p0,0, respectively. 

The index qPi is derived as follows: 

qPi = ( ( QpQ + QpP + 1 )  >>  1 ) + cQpPicOffset (8-382) 

The variable QpC is derived as follows: 

ï If ChromaArrayType is equal to 1, the variable QpC is determined based on qPi as specified in Table 8-10. 

ï Otherwise (ChromaArrayType is greater than 1), the variable QpC is set equal to Min( qPi, 51 ). 



 

196 Rec. ITU-T H.265 v8 (08/2021) 

NOTE ï The variable cQpPicOffset provides an adjustment for the value of pps_cb_qp_offset or pps_cr_qp_offset, according to 

whether the filtered chroma component is the Cb or Cr component. However, to avoid the need to vary the amount of the adjustment 

within the picture, the filtering process does not include an adjustment for the value of slice_cb_qp_offset or slice_cr_qp_offset, nor 

(when chroma_qp_offset_list_enabled_flag is equal to 1) for the value of CuQpOffsetCb or CuQpOffsetCr. 

The value of the variable tCǋ is determined as specified in Table 8-12 based on the chroma quantization parameter Q derived 

as follows: 

Q = Clip3( 0, 53, QpC + 2 + ( slice_tc_offset_div2  <<  1 ) ) (8-383) 

where slice_tc_offset_div2 is the value of the syntax element slice_tc_offset_div2 for the slice that contains sample q0,0.  

The variable tC is derived as follows: 

tC = tCǋ *  ( 1  <<  ( BitDepthC ī 8 ) ) (8-384) 

Depending on the value of edgeType, the following applies: 

ï If edgeType is equal to EDGE_VER, for each sample location ( xCb + xBl, yCb + yBl + k ), k = 0..3, the following 

ordered steps apply: 

1. The filtering process for a chroma sample as specified in clause 8.7.2.5.8 is invoked with the sample values pi,k, 

qi,k, with i = 0..1, the locations ( xCb + xBl ī 1, yCb + yBl + k ) and ( xCb + xBl, yCb + yBl + k ) and the variable 

tC as inputs, and the filtered sample values p0ǋ and q0ǋ as outputs. 

2. The filtered sample values p0ǋ and q0ǋ replace the corresponding samples inside the sample array sǋ as follows: 

sǋ[ xCb + xBl ][  yCb + yBl + k ] = q0ǋ (8-385) 

sǋ[ xCb + xBl ī 1 ][  yCb + yBl + k ] = p0ǋ (8-386) 

ï Otherwise (edgeType is equal to EDGE_HOR), for each sample location ( xCb + xBl + k, yCb + yBl ), k = 0..3, the 

following ordered steps apply: 

1. The filtering process for a chroma sample as specified in clause 8.7.2.5.8 is invoked with the sample values pi,k, 

qi,k, with i = 0..1, the locations ( xCb + xBl + k, yCb + yBl ī 1 ) and ( xCb + xBl + k, yCb + yBl ), and the 

variable tC as inputs, and the filtered sample values p0ǋ and q0ǋ as outputs. 

2. The filtered sample values p0ǋ and q0ǋ replace the corresponding samples inside the sample array sǋ as follows: 

sǋ[ xCb + xBl + k ][  yCb + yBl ] = q0ǋ (8-387) 

sǋ[ xCb + xBl + k ][  yCb + yBl ī 1 ] = p0ǋ (8-388) 

8.7.2.5.6 Decision process for a luma sample 

Inputs to this process are: 

ï the sample values p0, p3, q0 and q3, 

ï the variables dpq, ɓ and tC. 

Output of this process is the variable dSam containing a decision. 

The variable dSam is specified as follows: 

ï If dpq is less than ( ɓ  >>  2 ), Abs( p3 ī p0 ) + Abs( q0 ī q3 ) is less than ( ɓ  >>  3 ) and Abs( p0 ī q0 ) is less than 

( 5 *  tC + 1 )  >>  1, dSam is set equal to 1. 

ï Otherwise, dSam is set equal to 0. 

8.7.2.5.7 Filtering process for a luma sample 

Inputs to this process are: 

ï the luma sample values pi and qi with i = 0..3, 

ï the luma locations of pi and qi, ( xPi, yPi ) and ( xQi, yQi ) with i = 0..2, 

ï a variable dE, 



 

  Rec. ITU-T H.265 v8 (08/2021) 197 

ï the variables dEp and dEq containing decisions to filter samples p1 and q1, respectively, 

ï a variable tC. 

Outputs of this process are: 

ï the number of filtered samples nDp and nDq, 

ï the filtered sample values piǋ and qjǋ with i = 0..nDp ī 1, j = 0..nDq ī 1. 

Depending on the value of dE, the following applies: 

ï If the variable dE is equal to 2, nDp and nDq are both set equal to 3 and the following strong filtering applies: 

p0ǋ = Clip3( p0 ī 2 *  tC, p0 + 2 *  tC, ( p2 + 2 *  p1 + 2 *  p0 + 2 *  q0 + q1 + 4 )  >>  3 ) (8-389) 

p1ǋ = Clip3( p1 ī 2 *  tC, p1 + 2 *  tC, ( p2 + p1 + p0 + q0 + 2 )  >>  2 ) (8-390) 

p2ǋ = Clip3( p2 ī 2 *  tC, p2 + 2*tC, ( 2 *  p3 + 3 *  p2 + p1 + p0 + q0 + 4 )  >>  3 ) (8-391) 

q0ǋ = Clip3( q0 ī 2 *  tC, q0 + 2 *  tC, ( p1 + 2 *  p0 + 2 *  q0 + 2 *  q1 + q2 + 4 )  >>  3 ) (8-392) 

q1ǋ = Clip3( q1 ī 2 *  tC, q1 + 2 *  tC, ( p0 + q0 + q1 + q2 + 2 )  >>  2 ) (8-393) 

q2ǋ= Clip3( q2 ī 2 *  tC, q2 + 2 *  tC, ( p0 + q0 + q1 + 3 *  q2 + 2 *  q3 + 4 )  >>  3 ) (8-394) 

ï Otherwise, nDp and nDq are set both equal to 0 and the following weak filtering applies: 

ï The following applies: 

D = ( 9 *  ( q0 ī  p0 ) ī 3 *  ( q1 ī p1 ) + 8 )  >>  4 (8-395) 

ï When Abs(D) is less than tC *  10, the following ordered steps apply: 

1. The filtered sample values p0ǋ and q0ǋ are specified as follows: 

D = Clip3( ītC, tC, D )  (8-396) 

p0ǋ = Clip1Y( p0 + D )  (8-397) 

q0ǋ = Clip1Y( q0 ī D )  (8-398) 

2. When dEp is equal to 1, the filtered sample value p1ǋ is specified as follows: 

Dp = Clip3( ī( tC  >>  1 ), tC  >>  1, ( ( ( p2 + p0 + 1 )  >>  1 ) ī p1 + D )  >>  1 ) (8-399) 

p1ǋ = Clip1Y( p1 + Dp )  (8-400) 

3. When dEq is equal to 1, the filtered sample value q1ǋ is specified as follows: 

Dq = Clip3( ī( tC  >>  1 ), tC  >>  1, ( ( ( q2 + q0 + 1 )  >>  1 ) ī q1 ī D )  >>  1 ) (8-401) 

q1ǋ = Clip1Y( q1 + Dq )  (8-402) 

4. nDp is set equal to dEp + 1 and nDq is set equal to dEq + 1. 

When nDp is greater than 0 and one or more of the following conditions are true, nDp is set equal to 0: 

ï pcm_loop_filter_disabled_flag is equal to 1 and pcm_flag[ xP0 ][  yP0 ] is equal to 1. 

ï cu_transquant_bypass_flag of the coding unit that includes the coding block containing the sample p0 is equal to 1. 

ï palette_mode_flag of the coding unit that includes the coding block containing the sample p0 is equal to 1. 

When nDq is greater than 0 and one or more of the following conditions are true, nDq is set equal to 0: 



 

198 Rec. ITU-T H.265 v8 (08/2021) 

ï pcm_loop_filter_disabled_flag is equal to 1 and pcm_flag[ xQ0 ][  yQ0 ] is equal to 1. 

ï cu_transquant_bypass_flag of the coding unit that includes the coding block containing the sample q0 is equal to 1. 

ï palette_mode_flag of the coding unit that includes the coding block containing the sample q0 is equal to 1. 

8.7.2.5.8 Filtering process for a chroma sample 

This process is only invoked when ChromaArrayType is not equal to 0. 

Inputs to this process are: 

ï the chroma sample values pi and qi with i = 0..1, 

ï the chroma locations of p0 and q0, ( xP0, yP0 ) and ( xQ0, yQ0 ), 

ï a variable tC. 

Outputs of this process are the filtered sample values p0ǋ and q0ǋ. 

The filtered sample values p0ǋ and q0ǋ are derived as follows: 

D = Clip3( ītC, tC, ( ( ( ( q0 ī p0 )  <<  2 ) + p1 ī q1 + 4 )  >>  3 ) ) (8-403) 

p0ǋ = Clip1C( p0 + D )  (8-404) 

q0ǋ = Clip1C( q0 ī D )  (8-405) 

When one or more of the following conditions are true, the filtered sample value, p0ǋ is substituted by the corresponding 

input sample value p0: 

ï pcm_loop_filter_disabled_flag is equal to 1 and pcm_flag[ xP0 *  SubWidthC ][  yP0 *  SubHeightC ] is equal to 1. 

ï cu_transquant_bypass_flag of the coding unit that includes the coding block containing the sample p0 is equal to 1. 

ï palette_mode_flag of the coding unit that includes the coding block containing the sample p0 is equal to 1. 

When one or more of the following conditions are true, the filtered sample value, q0ǋ is substituted by the corresponding 

input sample value q0: 

ï pcm_loop_filter_disabled_flag is equal to 1 and pcm_flag[ xQ0 *  SubWidthC ][  yQ0 *  SubHeightC ] is equal to 1. 

ï cu_transquant_bypass_flag of the coding unit that includes the coding block containing the sample q0 is equal to 1. 

ï palette_mode_flag of the coding unit that includes the coding block containing the sample q0 is equal to 1. 

8.7.3 Sample adaptive offset process 

8.7.3.1 General 

Inputs to this process are the reconstructed picture sample array prior to sample adaptive offset recPictureL and, when 

ChromaArrayType is not equal to 0, the arrays recPictureCb and recPictureCr. 

Outputs of this process are the modified reconstructed picture sample array after sample adaptive offset saoPictureL and, 

when ChromaArrayType is not equal to 0, the arrays saoPictureCb and saoPictureCr. 

This process is performed on a CTB basis after the completion of the deblocking filter process for the decoded picture. 

The sample values in the modified reconstructed picture sample array saoPictureL and, when ChromaArrayType is not 

equal to 0, the arrays saoPictureCb and saoPictureCr are initially set equal to the sample values in the reconstructed picture 

sample array recPictureL and, when ChromaArrayType is not equal to 0, the arrays recPictureCb and recPictureCr, 

respectively. 

For every CTU with CTB location ( rx, ry ), where rx = 0..PicWidthInCtbsY ī 1 and ry = 0..PicHeightInCtbsY ī 1, the 

following applies: 

ï When slice_sao_luma_flag of the current slice is equal to 1, the CTB modification process as specified in clause 8.7.3.2 

is invoked with recPicture set equal to recPictureL, cIdx set equal to 0, ( rx, ry ), and both nCtbSw and nCtbSh set equal 

to CtbSizeY as inputs, and the modified luma picture sample array saoPictureL as output. 

ï When ChromaArrayType is not equal to 0 and slice_sao_chroma_flag of the current slice is equal to 1, the CTB 

modification process as specified in clause 8.7.3.2 is invoked with recPicture set equal to recPictureCb, cIdx set equal 



 

  Rec. ITU-T H.265 v8 (08/2021) 199 

to 1, ( rx, ry ), nCtbSw set equal to ( 1  <<  CtbLog2SizeY ) / SubWidthC and nCtbSh set equal to 

( 1  <<  CtbLog2SizeY ) / SubHeightC as inputs, and the modified chroma picture sample array saoPictureCb as output. 

ï When ChromaArrayType is not equal to 0 and slice_sao_chroma_flag of the current slice is equal to 1, the CTB 

modification process as specified in clause 8.7.3.2 is invoked with recPicture set equal to recPictureCr, cIdx set equal 

to 2, ( rx, ry ), nCtbSw set equal to ( 1  <<  CtbLog2SizeY ) / SubWidthC and nCtbSh set equal to 

( 1  <<  CtbLog2SizeY ) / SubHeightC as inputs, and the modified chroma picture sample array saoPictureCr as output. 

8.7.3.2 CTB modification process 

Inputs to this process are: 

ï the picture sample array recPicture for the colour component cIdx, 

ï a variable cIdx specifying the colour component index, 

ï a pair of variables ( rx, ry ) specifying the CTB location, 

ï the CTB width nCtbSw and height nCtbSh. 

Output of this process is a modified picture sample array saoPicture for the colour component cIdx. 

The variable bitDepth is derived as follows: 

ï If cIdx is equal to 0, bitDepth is set equal to BitDepthY. 

ï Otherwise, bitDepth is set equal to BitDepthC. 

The location ( xCtb, yCtb ), specifying the top-left sample of the current CTB for the colour component cIdx relative to 

the top-left sample of the current picture component cIdx, is derived as follows: 

( xCtb, yCtb ) = ( rx *  nCtbSw, ry *  nCtbSh )  (8-406) 

The sample locations inside the current CTB are derived as follows: 

( xSi, ySj ) = ( xCtb + i, yCtb + j )  (8-407) 

( xY i, yY j ) = ( cIdx  = =  0 ) ? ( xSi, ySj ) : ( xSi *  SubWidthC, ySj *  SubHeightC ) (8-408) 

For all sample locations ( xSi, ySj ) and ( xY i, yY j ) with i = 0..nCtbSw ī 1 and j = 0..nCtbSh ī 1, depending on the values 

of pcm_loop_filter_disabled_flag, pcm_flag[ xY i ][  yY j ] and cu_transquant_bypass_flag of the coding unit which includes 

the coding block covering recPicture[ xSi ][  ySj ], the following applies: 

ï If one or more of the following conditions are true, saoPicture[ xSi ][  ySj ] is not modified: 

ï pcm_loop_filter_disabled_flag and pcm_flag[ xY i ][  yY j ] are both equal to 1. 

ï cu_transquant_bypass_flag is equal to 1. 

ï SaoTypeIdx[ cIdx ][  rx ][  ry ] is equal to 0. 

ï Otherwise, if SaoTypeIdx[ cIdx ][  rx ][  ry ] is equal to 2, the following ordered steps apply: 

1. The values of hPos[ k ] and vPos[ k ] for k = 0..1 are specified in Table 8-13 based on 

SaoEoClass[ cIdx ][  rx ][  ry ]. 

2. The variable edgeIdx is derived as follows: 

ï The modified sample locations ( xSikǋ, ySjkǋ ) and ( xY ikǋ, yY jkǋ ) are derived as follows: 

( xSikǋ, ySjkǋ ) = ( xSi + hPos[ k ], ySj + vPos[ k ] ) (8-409) 

( xY ikǋ, yY jkǋ ) = ( cIdx  = =  0 ) ? ( xSikǋ, ySjkǋ ) : ( xSikǋ *  SubWidthC, ySjkǋ *  SubHeightC )

 (8-410) 

ï If one or more of the following conditions for all sample locations ( xSikǋ, ySjkǋ ) and ( xY ikǋ, yY jkǋ ) with 

k = 0..1 are true, edgeIdx is set equal to 0: 

ï The sample at location ( xSikǋ, ySjkǋ ) is outside the picture boundaries. 

ï The sample at location ( xSikǋ, ySjkǋ ) belongs to a different slice and one of the following two 

conditions is true: 



 

200 Rec. ITU-T H.265 v8 (08/2021) 

ï MinTbAddrZs[ xY ikǋ  >>  MinTbLog2SizeY ][  yY jkǋ  >>  MinTbLog2SizeY ] is less than 

MinTbAddrZs[ xY i  >>  MinTbLog2SizeY ][  yY j  >>  MinTbLog2SizeY ] and 

slice_loop_filter_across_slices_enabled_flag in the slice which the sample recPicture[ xSi ][  ySj ] 

belongs to is equal to 0. 

ï MinTbAddrZs[ xY i  >>  MinTbLog2SizeY ][  yY j  >>  MinTbLog2SizeY ] is less than 

MinTbAddrZs[ xY ikǋ  >>  MinTbLog2SizeY ][  yY jkǋ  >>  MinTbLog2SizeY ] and 

slice_loop_filter_across_slices_enabled_flag in the slice which the sample recPicture[ xSikǋ ][  ySjkǋ ] 

belongs to is equal to 0. 

ï loop_filter_across_tiles_enabled_flag is equal to 0 and the sample at location ( xSikǋ, ySjkǋ ) belongs to a 

different tile. 

ï Otherwise, edgeIdx is derived as follows: 

ï The following applies: 

edgeIdx = 

2 + Sign( recPicture[ xSi ][  ySj ] ī recPicture[ xSi + hPos[ 0 ] ][  ySj + vPos[ 0 ] ] ) + 

  Sign( recPicture[ xSi ][  ySj ] ī recPicture[ xSi + hPos[ 1 ] ][  ySj + vPos[ 1 ] ] ) (8-411) 

ï When edgeIdx is equal to 0, 1, or 2, edgeIdx is modified as follows: 

edgeIdx = ( edgeIdx  = =  2 ) ? 0 : ( edgeIdx + 1 ) (8-412) 

3. The modified picture sample array saoPicture[ xSi ][  ySj ] is derived as follows: 

saoPicture[ xSi ][  ySj ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, recPicture[ xSi ][  ySj ] + 

  SaoOffsetVal[ cIdx ][  rx ][  ry ][  edgeIdx ] ) (8-413) 

ï Otherwise (SaoTypeIdx[ cIdx ][  rx ][  ry ] is equal to 1), the following ordered steps apply: 

1. The variable bandShift is set equal to bitDepth ī 5. 

2. The variable saoLeftClass is set equal to sao_band_position[ cIdx ][  rx ][  ry ]. 

3. The list bandTable is defined with 32 elements and all elements are initially set equal to 0. Then, four of its 

elements (indicating the starting position of bands for explicit offsets) are modified as follows: 

for( k = 0; k < 4; k++ ) 

 bandTable[ ( k + saoLeftClass ) & 31 ] = k + 1 (8-414) 

4. The variable bandIdx is set equal to bandTable[ recPicture[ xSi ][  ySj ]  >>  bandShift ]. 

5. The modified picture sample array saoPicture[ xSi ][  ySj ] is derived as follows: 

saoPicture[ xSi ][  ySj ] = Clip3( 0, ( 1  <<  bitDepth ) ī 1, recPicture[ xSi ][  ySj ] + 

  SaoOffsetVal[ cIdx ][  rx ][  ry ][  bandIdx ] ) (8-415) 

Table 8-13 ï Specification of hPos and vPos according to the sample adaptive offset class 

SaoEoClass[ cIdx ][  rx  ][  ry  ] 0 1 2 3 

hPos[ 0 ] ī1 0 ī1 1 

hPos[ 1 ] 1 0 1 ī1 

vPos[ 0 ] 0 ī1 ī1 ī1 

vPos[ 1 ] 0 1 1 1 

9 Parsing process 

9.1 General 

Inputs to this process are bits from the RBSP. 



 

  Rec. ITU-T H.265 v8 (08/2021) 201 

Outputs of this process are syntax element values. 

This process is invoked when the descriptor of a syntax element in the syntax tables is equal to ue(v), se(v) (see clause 9.2), 

or ae(v) (see clause 9.3). 

9.2 Parsing process for 0-th order Exp-Golomb codes 

9.2.1 General 

This process is invoked when the descriptor of a syntax element in the syntax tables is equal to ue(v) or se(v). 

Inputs to this process are bits from the RBSP. 

Outputs of this process are syntax element values. 

Syntax elements coded as ue(v) or se(v) are Exp-Golomb-coded. The parsing process for these syntax elements begins 

with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and counting 

the number of leading bits that are equal to 0. This process is specified as follows: 

leadingZeroBits = ī1 

for( b = 0; !b; leadingZeroBits++ ) (9-1) 

 b = read_bits( 1 ) 

The variable codeNum is then assigned as follows: 

codeNum = 2leadingZeroBits ī 1 + read_bits( leadingZeroBits ) (9-2) 

where the value returned from read_bits( leadingZeroBits ) is interpreted as a binary representation of an unsigned integer 

with most significant bit written first. 

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The 

"prefix" bits are those bits that are parsed as specified above for the computation of leadingZeroBits, and are shown as 

either 0 or 1 in the bit string column of Table 9-1. The "suffix" bits are those bits that are parsed in the computation of 

codeNum and are shown as xi in Table 9-1, with i in the range of 0 to leadingZeroBits ī 1, inclusive. Each xi is equal to 

either 0 or 1. 

Table 9-1 ï Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative) 

Bit string form  Range of codeNum 

1 0 

0 1 x0 1..2 

0 0 1 x1 x0 3..6 

0 0 0 1 x2 x1 x0 7..14 

0 0 0 0 1 x3 x2 x1 x0 15..30 

0 0 0 0 0 1 x4 x3 x2 x1 x0 31..62 

... ... 

 



 

202 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values. 

Table 9-2 ï Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative) 
 

Bit string  codeNum 

1 0 

0 1 0 1 

0 1 1 2 

0 0 1 0 0 3 

0 0 1 0 1 4 

0 0 1 1 0 5 

0 0 1 1 1 6 

0 0 0 1 0 0 0 7 

0 0 0 1 0 0 1 8 

0 0 0 1 0 1 0 9 

... ... 

 

Depending on the descriptor, the value of a syntax element is derived as follows: 

ï If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum. 

ï Otherwise (the syntax element is coded as se(v)), the value of the syntax element is derived by invoking the mapping 

process for signed Exp-Golomb codes as specified in clause 9.2.2 with codeNum as input. 

9.2.2 Mapping process for signed Exp-Golomb codes 

Input to this process is codeNum as specified in clause 9.2. 

Output of this process is a value of a syntax element coded as se(v). 

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order 

and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the assignment 

rule. 

Table 9-3 ï Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v) 
 

codeNum syntax element value 

0 0 

1 1 

2 ī1 

3 2 

4 ī2 

5 3 

6 ī3 

k (ī1)k + 1 Ceil( k ÷ 2 ) 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 203 

9.3 CABAC parsing process for slice segment data 

9.3.1 General 

This process is invoked when parsing syntax elements with descriptor ae(v) in clauses 7.3.8.1 through 7.3.8.12. 

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements. 

Output of this process is the value of the syntax element. 

The initialization process as specified in clause 9.3.2 is invoked when starting the parsing of one or more of the following: 

1. The slice segment data syntax specified in clause 7.3.8.1, 

2. The CTU syntax specified in clause 7.3.8.2 and the CTU is the first CTU in a tile, 

3. The CTU syntax specified in clause 7.3.8.2, entropy_coding_sync_enabled_flag is equal to 1 and the associated luma 

CTB is the first luma CTB in a CTU row of a tile. 

The parsing of syntax elements proceeds as follows: 

When cabac_bypass_alignment_enabled_flag is equal to 1, the request for a value of a syntax element is for either the 

syntax elements coeff_abs_level_remaining[ ] or coeff_sign_flag[ ] and escapeDataPresent is equal to 1, the alignment 

process prior to aligned bypass decoding as specified in clause 9.3.4.3.6 is invoked. 

For each requested value of a syntax element a binarization is derived as specified in clause 9.3.3. 

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as described 

in clause 9.3.4. 

In case the request for a value of a syntax element is processed for the syntax element pcm_flag and the decoded value of 

pcm_flag is equal to 1, the decoding engine is initialized after the decoding of any pcm_alignment_zero_bit and all 

pcm_sample_luma and pcm_sample_chroma data as specified in clause 9.3.2.6. 

The storage process for context variables is applied as follows: 

ï When ending the parsing of the CTU syntax in clause 7.3.8.2, entropy_coding_sync_enabled_flag is equal to 1 and 

either CtbAddrInRs % PicWidthInCtbsY is equal to 1 or both CtbAddrInRs is greater than 1 and 

TileId[ CtbAddrInTs ] is not equal to TileId[ CtbAddrRsToTs[ CtbAddrInRs ī 2 ] ], the storage process for context 

variables, Rice parameter initialization states, and palette predictor variables as specified in clause 9.3.2.4 is invoked 

with TableStateIdxWpp, TableMpsValWpp, TableStatCoeffWpp when persistent_rice_adaptation_enabled_flag is 

equal to 1, and PredictorPaletteSizeWpp and PredictorPaletteEntriesWpp when palette_mode_enabled_flag is equal 

to 1 as outputs. 

ï When ending the parsing of the general slice segment data syntax in clause 7.3.8.1, 

dependent_slice_segments_enabled_flag is equal to 1 and end_of_slice_segment_flag is equal to 1, the storage process 

for context variables, Rice parameter initialization states, and palette predictor variables as specified in clause 9.3.2.4 

is invoked with TableStateIdxDs, TableMpsValDs, TableStatCoeffDs when persistent_rice_adaptation_enabled_flag 

is equal to 1, and PredictorPaletteSizeDs and PredictorPaletteEntriesDs when palette_mode_enabled_flag is equal to 

1 as outputs. 

The whole CABAC parsing process for a syntax element synEl is illustrated in Figure 9-1. 



 

204 Rec. ITU-T H.265 v8 (08/2021) 

 

Figure 9-1 ï Illustration of CABAC parsing process for a syntax element synEl (informative) 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 205 

9.3.2 In itialization process 

9.3.2.1 General 

Outputs of this process are initialized CABAC internal variables, the initialized Rice parameter initialization states 

StatCoeff, and the initialized palette predictor variables. 

Current 

coding tree 

block

Two coding tree blocks

T

Left edge of picture Right edge of picture
 

Figure 9-2 ï Spatial neighbour T that is used to invoke the CTB availability derivation process relative to the 

current CTB (informative)  

 

The context variables of the arithmetic decoding engine, Rice parameter initialization states, and palette predictor variables 

are initialized as follows: 

ï If the CTU is the first CTU in a tile, the following applies: 

ï The initialization process for context variables is invoked as specified in clause 9.3.2.2. 

ï The variables StatCoeff[ k ] are set equal to 0, for k in the range 0 to 3, inclusive. 

ï The initialization process for palette predictor variables is invoked as specified in clause 9.3.2.3. 

ï Otherwise, if entropy_coding_sync_enabled_flag is equal to 1 and either CtbAddrInRs % PicWidthInCtbsY is equal 

to 0 or TileId[ CtbAddrInTs ] is not equal to TileId[ CtbAddrRsToTs[ CtbAddrInRs ī 1 ] ], the following applies: 

ï The location ( xNbT, yNbT ) of the top-left luma sample of the spatial neighbouring block T (Figure 9-2) is 

derived using the location ( x0, y0 ) of the top-left luma sample of the current CTB as follows: 

( xNbT, yNbT ) = ( x0 + CtbSizeY, y0 ī CtbSizeY ) (9-3) 

ï The availability derivation process for a block in z-scan order as specified in clause 6.4.1 is invoked with the 

location ( xCurr, yCurr ) set equal to ( x0, y0 ) and the neighbouring location ( xNbY, yNbY ) set equal to 

( xNbT, yNbT ) as inputs, and the output is assigned to availableFlagT. 

ï The synchronization process for context variables, Rice parameter initialization states, and palette predictor 

variables is invoked as follows: 

ï If availableFlagT is equal to 1, the synchronization process for context variables, Rice parameter initialization 

states, and palette predictor variables as specified in clause 9.3.2.5 is invoked with TableStateIdxWpp, 

TableMpsValWpp, TableStatCoeffWpp, PredictorPaletteSizeWpp, and TablePredictorPaletteEntriesWpp as 

inputs. 

ï Otherwise, the following applies: 

ï The initialization process for context variables is invoked as specified in clause 9.3.2.2. 



 

206 Rec. ITU-T H.265 v8 (08/2021) 

ï The variables StatCoeff[ k ] are set equal to 0, for k in the range 0 to 3, inclusive. 

ï The initialization process for palette predictor variables is invoked as specified in clause 9.3.2.3. 

ï Otherwise, if CtbAddrInRs is equal to slice_segment_address and dependent_slice_segment_flag is equal to 1, the 

synchronization process for context variables and Rice parameter initialization states as specified in clause 9.3.2.5 is 

invoked with TableStateIdxDs, TableMpsValDs, TableStatCoeffDs, PredictorPaletteSizeDs, and 

TablePredictorPaletteEntriesDs as inputs. 

ï Otherwise, the following applies: 

ï The initialization process for context variables is invoked as specified in clause 9.3.2.2. 

ï The variables StatCoeff[ k ] are set equal to 0, for k in the range 0 to 3, inclusive. 

ï The initialization process for palette predictor variables is invoked as specified in clause 9.3.2.3. 

The initialization process for the arithmetic decoding engine is invoked as specified in clause 9.3.2.6. 

The whole initialization process for a syntax element synEl is illustrated in the flowchart of Figure 9-3. 

 

Figure 9-3 ï Illustration of CABAC initialization process (informative)  

 

9.3.2.2 Initialization process for context variables 

Outputs of this process are the initialized CABAC context variables indexed by ctxTable and ctxIdx. 

Table 9-5 to Table 9-37contain the values of the 8 bit variable initValue used in the initialization of context variables that 

are assigned to all syntax elements in clauses 7.3.8.1 through 7.3.8.12, except end_of_slice_segment_flag, 

end_of_subset_one_bit and pcm_flag. 



 

  Rec. ITU-T H.265 v8 (08/2021) 207 

For each context variable, the two variables pStateIdx and valMps are initialized. 

NOTE 1 ï The variable pStateIdx corresponds to a probability state index and the variable valMps corresponds to the value of the 

most probable symbol as further described in clause 9.3.4.3. 

From the 8 bit table entry initValue, the two 4 bit variables slopeIdx and offsetIdx are derived as follows: 

slopeIdx = initValue  >>  4 

offsetIdx = initValue & 15 (9-4) 

The variables m and n, used in the initialization of context variables, are derived from slopeIdx and offsetIdx as follows: 

m = slopeIdx * 5 ī 45 

n = ( offsetIdx  <<  3 ) ī 16 (9-5) 

The two values assigned to pStateIdx and valMps for the initialization are derived from SliceQpY, which is derived in 

Equation 7-54. Given the variables m and n, the initialization is specified as follows: 

preCtxState = Clip3( 1, 126, ( ( m * Clip3( 0, 51, SliceQpY ) )  >>  4 ) + n ) 

valMps = ( preCtxState  <=  63 ) ? 0 : 1 

pStateIdx = valMps ? ( preCtxState ī 64 ) : ( 63 ī preCtxState ) (9-6) 

In Table 9-4, the ctxIdx for which initialization is needed for each of the three initialization types, specified by the variable 

initType, are listed. Also listed is the table number that includes the values of initValue needed for the initialization. For P 

and B slice types, the derivation of initType depends on the value of the cabac_init_flag syntax element. The variable 

initType is derived as follows: 

if( slice_type  = =  I ) 

 initType = 0 

else if( slice_type  = =  P ) 

 initType = cabac_init_flag ? 2 : 1 (9-7) 

else 

 initType = cabac_init_flag ? 1 : 2 

Table 9-4 ï Association of ctxIdx and syntax elements for each initializationType 

in the initialization process 

Syntax structure Syntax element ctxTable 
initType 

0 1 2 

sao( ) 

sao_merge_left_flag 

sao_merge_up_flag 

Table 9-5 
0 1 2 

sao_type_idx_luma 

sao_type_idx_chroma 

Table 9-6 
0 1 2 

coding_quadtree( ) split_cu_flag[ ][  ] Table 9-7 0..2 3..5 6..8 

coding_unit( ) 

cu_transquant_bypass_flag Table 9-8 0 1 2 

cu_skip_flag Table 9-9  0..2 3..5 

palette_mode_flag Table 9-38 0 1 2 

pred_mode_flag Table 9-10  0 1 

part_mode Table 9-11 0 1..4 5..8 

prev_intra_luma_pred_flag[ ][  ] Table 9-12 0 1 2 

intra_chroma_pred_mode[ ][  ] Table 9-13 0 1 2 

rqt_root_cbf Table 9-14  0 1 

prediction_unit( ) merge_flag[ ][  ] Table 9-15  0 1 



 

208 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-4 ï Association of ctxIdx and syntax elements for each initializationType 

in the initialization process 

Syntax structure Syntax element ctxTable 
initType 

0 1 2 

merge_idx[ ][  ] Table 9-16  0 1 

inter_pred_idc[ ][  ] Table 9-17  0..4 5..9 

ref_idx_l0[ ][  ], ref_idx_l1[ ][  ] Table 9-18  0..1 2..3 

mvp_l0_flag[ ][  ], mvp_l1_flag[ ][  ] Table 9-19  0 1 

transform_tree( ) 

split_transform_flag[ ][  ][  ] Table 9-20 0..2 3..5 6..8 

cbf_luma[ ][  ][  ] Table 9-21 0..1 2..3 4..5 

cbf_cb[ ][  ][  ], cbf_cr[ ][  ][  ] 
Table 9-22 0..3 

12 

4..7 

13 

8..11 

14 

mvd_coding( ) 
abs_mvd_greater0_flag[ ] Table 9-23  0 2 

abs_mvd_greater1_flag[ ] Table 9-23  1 3 

transform_unit( ) tu_residual_act_flag Table 9-39 0 1 2 

cross_comp_pred( ) 
log2_res_scale_abs_plus1[ ] Table 9-36 0..7 8..15 16..23 

res_scale_sign_flag[ ] Table 9-37 0..1 2..3 4..5 

residual_coding( ) 

transform_skip_flag[ ][  ][  0 ] Table 9-25 0 1 2 

transform_skip_flag[ ][  ][  1 ] 

transform_skip_flag[ ][  ][  2 ] 

Table 9-25 
3 4 5 

explicit_rdpcm_flag[ ][  ][  0 ] Table 9-32  0 1 

explicit_rdpcm_flag[ ][  ][  1 ] 

explicit_rdpcm_flag[ ][  ][  2 ] 

Table 9-32 
 2 3 

explicit_rdpcm_dir_flag[ ][  ][  0 ] Table 9-33  0 1 

explicit_rdpcm_dir_flag[ ][  ][  1 ] 

explicit_rdpcm_dir_flag[ ][  ][  2 ] 

Table 9-33 
 2 3 

last_sig_coeff_x_prefix Table 9-26 0..17 18..35 36..53 

last_sig_coeff_y_prefix Table 9-27 0..17 18..35 36..53 

coded_sub_block_flag[ ][  ] Table 9-28 0..3 4..7 8..11 

sig_coeff_flag[ ][  ] 
Table 9-29 0..41 

126..127 

42..83 

128..129 

84..125 

130..131 

coeff_abs_level_greater1_flag[ ] Table 9-30 0..23 24..47 48..71 

coeff_abs_level_greater2_flag[ ] Table 9-31 0..5 6..11 12..17 

palette_coding( ) 

palette_run_prefix Table 9-40 0..7 8..15 16..23 

copy_above_palette_indices_flag Table 9-41 0 1 2 

copy_above_indices_for_final_run_flag Table 9-41 0 1 2 

palette_transpose_flag Table 9-42 0 1 2 

delta_qp( ) cu_qp_delta_abs Table 9-24 0..1 2..3 4..5 

chroma_qp_offset( ) 
cu_chroma_qp_offset_flag Table 9-34 0 1 2 

cu_chroma_qp_offset_idx Table 9-35 0 1 2 

 

NOTE 2 ï ctxTable equal to 0 and ctxIdx equal to 0 are associated with end_of_slice_segment_flag, end_of_subset_one_bit and 

pcm_flag. The decoding process specified in clause 9.3.4.3.5 applies to ctxTable equal to 0 and ctxIdx equal to 0. This decoding 

process, however, may also be implemented by using the decoding process specified in clause 9.3.4.3.2. In this case, the initial 

values associated with ctxTable equal to 0 and ctxIdx equal to 0 are specified to be pStateIdx = 63 and valMps = 0, where 

pStateIdx = 63 represents a non-adapting probability state. 



 

  Rec. ITU-T H.265 v8 (08/2021) 209 

Table 9-5 ï Values of initValue for ctxIdx of sao_merge_left_flag and sao_merge_up_flag 

Initialization 

variable 

ctxIdx of 

sao_merge_left_flag and 

sao_merge_up_flag 

0 1 2 

initValue 153 153 153 

 

Table 9-6 ï Values of initValue for ctxIdx of sao_type_idx_luma and sao_type_idx_chroma 

Initialization 

variable 

ctxIdx of 

sao_type_idx_luma and 

sao_type_idx_chroma 

0 1 2 

initValue 200 185 160 

 

Table 9-7 ï Values of initValue for ctxIdx of split_cu_flag 

Initialization 

variable 

ctxIdx of split_cu_flag 

0 1 2 3 4 5 6 7 8 

initValue  139 141 157 107 139 126 107 139 126 

 

Table 9-8 ï Values of initValue for ctxIdx of cu_transquant_bypass_flag 

Initialization 

variable 

ctxIdx of 

cu_transquant_bypass_flag 

0 1 2 

initValue 154 154 154 

 

Table 9-9 ï Values of initValue for ctxIdx of cu_skip_flag 

Initialization 

variable 

ctxIdx of cu_skip_flag 

0 1 2 3 4 5 

initValue  197 185 201 197 185 201 

 

Table 9-10 ï Values of initValue for ctxIdx of pred_mode_flag 

Initialization 

variable 

ctxIdx of pred_mode_flag 

0 1 

initValue  149 134 

 



 

210 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-11 ï Values of initValue for ctxIdx of part_mode 

Initialization 

variable 

ctxIdx of part_mode 

0 1 2 3 4 5 6 7 8 

initValue  184 154 139 154 154 154 139 154 154 

 

Table 9-12 ï Values of initValue for ctxIdx of prev_intra_luma_pred_flag 

Initialization 

variable 

ctxIdx of prev_intra_luma_pred_flag 

0 1 2 

initValue  184 154 183 

 

Table 9-13 ï Values of initValue for ctxIdx of intra_chroma_pred_mode 

Initialization 

variable 

ctxIdx of 

intra_chroma_pred_mode 

0 1 2 

initValue  63 152 152 

 

Table 9-14 ï Values of initValue for ctxIdx of rqt_root_cbf  

Initialization 

variable 

ctxIdx of 

rqt_root_cbf  

0 1 

initValue  79 79 

 

Table 9-15 ï Values of initValue for ctxIdx of merge_flag 

Initialization 

variable 

ctxIdx of merge_flag 

0 1 

initValue  110 154 

 

Table 9-16 ï Values of initValue for ctxIdx of merge_idx 

Initialization 

variable 

ctxIdx of merge_idx 

0 1 

initValue  122 137 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 211 

Table 9-17 ï Values of initValue for ctxIdx of inter_pred_idc  

Initialization 

variable 

ctxIdx of inter_pred_idc 

0 1 2 3 4 5 6 7 8 9 

initValue  95 79 63 31 31 95 79 63 31 31 

 

Table 9-18 ï Values of initValue for ctxIdx of ref_idx_l0 and ref_idx_l1 

Initialization 

variable 

ctxIdx of ref_idx_l0 and ref_idx_l1 

0 1 2 3 

initValue  153 153 153 153 

 

Table 9-19 ï Values of initValue for ctxIdx of mvp_l0_flag and mvp_l1_flag 

Initialization 

variable 

ctxIdx of mvp_l0_flag 

and mvp_l1_flag 

0 1 

initValue  168 168 

 

Table 9-20 ï Values of initValue for ctxIdx of split_transform_flag  

Initialization 

variable 

ctxIdx of split_transform_flag  

0 1 2 3 4 5 6 7 8 

initValue  153 138 138 124 138 94 224 167 122 

 

Table 9-21 ï Values of initValue for ctxIdx of cbf_luma 

Initialization 

variable 

ctxIdx of cbf_luma 

0 1 2 3 4 5 

initValue  111 141 153 111 153 111 

 

Table 9-22 ï Values of initValue for ctxIdx of cbf_cb and cbf_cr 

Initialization 

variable 

ctxIdx of cbf_cb and cbf_cr 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

initValue  94 138 182 154 149 107 167 154 149 92 167 154 154 154 154 

 



 

212 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-23 ï Values of initValue for ctxIdx of abs_mvd_greater0_flag and abs_mvd_greater1_flag 

Initialization 

variable 

ctxIdx of abs_mvd_greater0_flag 

and abs_mvd_greater1_flag 

0 1 2 3 

initValue  140 198 169 198 

 

Table 9-24 ï Values of initValue for ctxIdx of cu_qp_delta_abs 

Initialization 

variable 

ctxIdx of cu_qp_delta_abs 

0 1 2 3 4 5 

initValue  154 154 154 154 154 154 

 

Table 9-25 ï Values of initValue for ctxIdx of transform_skip_flag 

Initialization 

variable 

ctxIdx of transform_skip_flag 

0 1 2 3 4 5 

initValue 139 139 139 139 139 139 

 

Table 9-26 ï Values of initValue for ctxIdx of last_sig_coeff_x_prefix 

Initialization 

variable 

ctxIdx of last_sig_coeff_x_prefix 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

initValue  110 110 124 125 140 153 125 127 140 109 111 143 127 111 79 108 123 63 

 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

initValue  125 110 94 110 95 79 125 111 110 78 110 111 111 95 94 108 123 108 

 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 

initValue  125 110 124 110 95 94 125 111 111 79 125 126 111 111 79 108 123 93 

 

Table 9-27 ï Values of initValue for ctxIdx of last_sig_coeff_y_prefix 

Initialization 

variable 

ctxIdx of last_sig_coeff_y_prefix 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

initValue  110 110 124 125 140 153 125 127 140 109 111 143 127 111 79 108 123 63 

 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

initValue  125 110 94 110 95 79 125 111 110 78 110 111 111 95 94 108 123 108 

 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 

initValue  125 110 124 110 95 94 125 111 111 79 125 126 111 111 79 108 123 93 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 213 

Table 9-28 ï Values of initValue for ctxIdx of coded_sub_block_flag 

Initialization 

variable 

ctxIdx of coded_sub_block_flag 

0 1 2 3 4 5 6 7 8 9 10 11 

initValue  91 171 134 141 121 140 61 154 121 140 61 154 

 

Table 9-29 ï Values of initValue for ctxIdx of sig_coeff_flag 

Initialization 

variable 

ctxIdx of sig_coeff_flag 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

initValue  111 111 125 110 110 94 124 108 124 107 125 141 179 153 125 107 

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

initValue  125 141 179 153 125 107 125 141 179 153 125 140 139 182 182 152 

 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

initValue  136 152 136 153 136 139 111 136 139 111 155 154 139 153 139 123 

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

initValue  123 63 153 166 183 140 136 153 154 166 183 140 136 153 154 166 

 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

initValue  183 140 136 153 154 170 153 123 123 107 121 107 121 167 151 183 

 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

initValue  140 151 183 140 170 154 139 153 139 123 123 63 124 166 183 140 

 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

initValue  136 153 154 166 183 140 136 153 154 166 183 140 136 153 154 170 

 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 

initValue  153 138 138 122 121 122 121 167 151 183 140 151 183 140 141 111 

 128 129 130 131             

initValue  140 140 140 140             

 

Table 9-30 ï Values of initValue for ctxIdx of coeff_abs_level_greater1_flag 

Initialization 

variable 

ctxIdx of coeff_abs_level_greater1_flag 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

initValue  140 92 137 138 140 152 138 139 153 74 149 92 139 107 122 152 

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

initValue  140 179 166 182 140 227 122 197 154 196 196 167 154 152 167 182 

 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

initValue  182 134 149 136 153 121 136 137 169 194 166 167 154 167 137 182 

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

initValue  154 196 167 167 154 152 167 182 182 134 149 136 153 121 136 122 

 64 65 66 67 68 69 70 71         

initValue  169 208 166 167 154 152 167 182         

 



 

214 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-31 ï Values of initValue for ctxIdx of coeff_abs_level_greater2_flag 

Initialization 

variable 

ctxIdx of coeff_abs_level_greater2_flag 

0 1 2 3 4 5 6 7 8 

 

 

 

initValue  138 153 136 167 152 152 107 167 91 

 

 

 

 9 10 11 12 13 14 15 16 17 

initValue  122 107 167 107 167 91 107 107 167 

 

Table 9-32 ï Values of initValue for ctxIdx of explicit_rdpcm_flag  

Initialization 

variable 

ctxIdx of 

explicit_rdpcm_flag 

0 1 2 3 

initValue  139 139 139 139 

 

Table 9-33 ï Values of initValue for ctxIdx of explicit_rdpcm_dir_flag  

Initialization 

variable 

ctxIdx of 

explicit_rdpcm_dir_flag  

0 1 2 3 

initValue  139 139 139 139 

 

Table 9-34 ï Values of initValue for ctxIdx of cu_chroma_qp_offset_flag 

Initialization 

variable 

ctxIdx of 

cu_chroma_qp_offset_flag 

0 1 2 

initValue  154 154 154 

 

Table 9-35 ï Values of initValue for ctxIdx of cu_chroma_qp_offset_idx 

Initialization 

variable 

ctxIdx of 

cu_chroma_qp_offset_idx 

0 1 2 

initValue  154 154 154 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 215 

Table 9-36 ï Values of initValue for ctxIdx of log2_res_scale_abs_plus1 

Initialization 

variable 

ctxIdx of log2_res_scale_abs_plus1 

0 1 2 3 4 5 6 7 8 

initValue  154 154 154 154 154 154 154 154 154 

 9 10 11 12 13 14 15 16 17 

initValue  154 154 154 154 154 154 154 154 154 

 18 19 20 21 22 23    

initValue  154 154 154 154 154 154    

 

Table 9-37 ï Values of initValue for ctxIdx of res_scale_sign_flag 

Initialization 

variable 

ctxIdx of res_scale_sign_flag 

0 1 2 3 4 5 

initValue  154 154 154 154 154 154 

 

Table 9-38 ï Values of initValue for ctxIdx of palette_mode_flag 

Initialization 

variable 

ctxIdx of palette_mode_flag 

0 1 2 

initValue  154 154 154 

 

Table 9-39 ï Values of initValue for ctxIdx of tu_residual_act_flag 

Initialization 

variable 

ctxIdx of 

tu_residual_act_flag 

0 1 2 

initValue 154 154 154 

 

Table 9-40 ï Values of initValue for ctxIdx of palette_run_prefix 

Initialization 

variable 

ctxIdx of palette_run_prefix 

0 1 2 3 4 5 6 7 8 

 

 

 

9 10 11 

initValue  154 154 154 154 154 154 154 154 154 154 154 154 

 12 13 14 15 16 17 18 19 20 21 22 23 

initValue  154 154 154 154 154 154 154 154 154 154 154 154 

 



 

216 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-41 ï Values of initValue for ctxIdx of copy_above_palette_indices_flag and copy_above_indices_for_

final_run_flag 

Initialization 

variable 

ctxIdx of 

copy_above_palette_indices_flag and 

copy_above_indices_for_final_run_flag 

0 1 2 

initValue 154 154 154 

 

Table 9-42 ï Values of initValue for ctxIdx of palette_transpose_flag 

Initialization 

variable 

ctxIdx of palette_transpose_flag 

0 1 2 

initValue 154 154 154 

 

9.3.2.3 Initialization  process for palette predictor entries 

Outputs of this process are the initialized palette predictor variables PredictorPaletteSize and PredictorPaletteEntries. 

The variable numComps is derived as follows: 

numComps = ( ChromaArrayType  = =  0 ) ? 1 : 3 (9-8) 

ï If pps_palette_predictor_initializers_present_flag is equal to 1, the following applies: 

ï PredictorPaletteSize is set equal to pps_num_palette_predictor_initializers. 

ï The array PredictorPaletteEntries is derived as follows: 

for( comp = 0; comp < numComps; comp++ ) 

 for( i = 0; i < PredictorPaletteSize; i++ ) (9-9) 

  PredictorPaletteEntries[ comp ][  i ] = pps_palette_predictor_initializer[ comp ][  i ] 

ï Otherwise (pps_palette_predictor_initializers_present_flag is equal to 0), if sps_palette_predictor_initializers_

present_flag is equal to 1, the following applies: 

ï PredictorPaletteSize is set equal to sps_num_palette_predictor_initializers_minus1 plus 1. 

ï The array PredictorPaletteEntries is derived as follows: 

for( comp = 0; comp < numComps; comp++ ) 

 for( i = 0; i < PredictorPaletteSize; i++ ) (9-10) 

  PredictorPaletteEntries[ comp ][  i ] = sps_palette_predictor_initializer[ comp ][  i ] 

Otherwise (pps_palette_predictor_initializers_present_flag is equal to 0 and sps_palette_predictor_initializers_

present_flag is equal to 0), PredictorPaletteSize is set equal to 0. 

9.3.2.4 Storage process for context variables, Rice parameter initialization states, and palette predictor variables 

Inputs to this process are: 

ï The CABAC context variables indexed by ctxTable and ctxIdx. 

ï The Rice parameter initialization states indexed by k. 

ï The palette predictor variables, PredictorPaletteSize and PredictorPaletteEntries. 

Outputs of this process are: 

ï The variables tableStateSync and tableMPSSync containing the values of the variables pStateIdx and valMps used in 

the initialization process of context variables and Rice parameter initialization states that are assigned to all syntax 

elements in clauses 7.3.8.1 through 7.3.8.12, except end_of_slice_segment_flag, end_of_subset_one_bit and pcm_flag. 



 

  Rec. ITU-T H.265 v8 (08/2021) 217 

ï The variables tableStatCoeffSync containing the values of the variables StatCoeff[ k ] used in the initialization process 

of context variables and Rice parameter initialization states. 

ï The variables PredictorPaletteSizeSync and tablePredictorPaletteEntriesSync containing the values used in the 

initialization process of palette predictor variables. 

For each context variable, the corresponding entries pStateIdx and valMps of tables tableStateSync and tableMPSSync are 

initialized to the corresponding pStateIdx and valMps. 

For each Rice parameter initialization state k, each entry of the table tableStatCoeffSync is initialized to the corresponding 

value of StatCoeff[ k ]. 

For palette predictor variables, PredictorPaletteSizeSync is initialized to PredictorPaletteSize. For 

tablePredictorPaletteEntriesSync, each entry is initialized to the corresponding value of PredictorPaletteEntries. 

The storage process for context variables is illustrated in the flowchart of Figure 9-4. 

 

Figure 9-4 ï Illustration of CABAC storage process (informative) 

 

9.3.2.5 Synchronization process for context variables, Rice parameter initialization states, and palette predictor 

variables 

Inputs to this process are: 

ï The variables tableStateSync and tableMPSSync containing the values of the variables pStateIdx and valMps used in 

the storage process of context variables that are assigned to all syntax elements in clauses 7.3.8.1 through 7.3.8.12, 

except end_of_slice_segment_flag, end_of_subset_one_bit and pcm_flag. 

ï The variable tableStatCoeffSync containing the values of the variables StatCoeff[ k ] used in the storage process of 

context variables and Rice parameter initialization states. 

ï The variables PredictorPaletteSizeSync and tablePredictorPaletteEntriesSync containing the values used in the storage 

process of palette predictor variables. 

Outputs of this process are: 

ï The initialized CABAC context variables indexed by ctxTable and ctxIdx. 

ï The initialized Rice parameter initialization states StatCoeff indexed by k. 

ï The palette predictor variables, PredictorPaletteSize and PredictorPaletteEntries. 



 

218 Rec. ITU-T H.265 v8 (08/2021) 

For each context variable, the corresponding context variables pStateIdx and valMps are initialized to the corresponding 

entries pStateIdx and valMps of tables tableStateSync and tableMPSSync. 

For each Rice parameter initialization state, each variable StatCoeff[ k ] is initialized to the corresponding entry of table 

tableStatCoeffSync. 

For palette predictor variables, PredictorPaletteSize is initialized to PredictorPaletteSizeSync. For PredictorPaletteEntries, 

each entry is initialized to the corresponding value of tablePredictorPaletteEntriesSync. 

9.3.2.6 Initialization process for the arithmetic decoding engine 

Outputs of this process are the initialized decoding engine registers ivlCurrRange and ivlOffset both in 16 bit register 

precision. 

The status of the arithmetic decoding engine is represented by the variables ivlCurrRange and ivlOffset. In the initialization 

procedure of the arithmetic decoding process, ivlCurrRange is set equal to 510 and ivlOffset is set equal to the value 

returned from read_bits( 9 ) interpreted as a 9 bit binary representation of an unsigned integer with the most significant bit 

written first. 

The bitstream shall not contain data that result in a value of ivlOffset being equal to 510 or 511. 

NOTE ï The description of the arithmetic decoding engine in this Specification utilizes 16 bit register precision. However, a 

minimum register precision of 9 bits is required for storing the values of the variables ivlCurrRange and ivlOffset after invocation 

of the arithmetic decoding process (DecodeBin) as specified in clause 9.3.4.3. The arithmetic decoding process for a binary decision 

(DecodeDecision) as specified in clause 9.3.4.3.2 and the decoding process for a binary decision before termination 

(DecodeTerminate) as specified in clause 9.3.4.3.5 require a minimum register precision of 9 bits for the variables ivlCurrRange and 

ivlOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in clause 9.3.4.3.4 requires a minimum 

register precision of 10 bits for the variable ivlOffset and a minimum register precision of 9 bits for the variable ivlCurrRange. 

9.3.3 Binarization process 

9.3.3.1 General 

Input to this process is a request for a syntax element. 

Output of this process is the binarization of the syntax element. 

Table 9-43 specifies the type of binarization process associated with each syntax element and corresponding inputs. 

The specification of the truncated Rice (TR) binarization process, the k-th order Exp-Golomb (EGk) binarization process, 

limited k-th order Exp-Golomb (EGk) binarization process, the fixed-length (FL) binarization process, and the truncated 

binary binarization process are given in clauses 9.3.3.2 through 9.3.3.6, respectively. Other binarizations are specified in 

clauses 9.3.3.7  through 9.3.3.14. 

Table 9-43 ï Syntax elements and associated binarizations 

Syntax structure Syntax element Binarization  

Process Input parameters 

slice_segment_data( ) end_of_slice_segment_flag FL cMax = 1 

end_of_subset_one_bit FL cMax = 1 

sao( ) sao_merge_left_flag FL cMax = 1 

sao_merge_up_flag FL cMax = 1 

sao_type_idx_luma TR cMax = 2, cRiceParam = 0 

sao_type_idx_chroma TR cMax = 2, cRiceParam = 0 

sao_offset_abs[ ][  ][  ][  ] TR cMax = ( 1  <<  ( Min( bitDepth, 10 ) ī 5 ) ) ī 1, cRiceParam = 0 

sao_offset_sign[ ][  ][  ][  ] FL cMax = 1 

sao_band_position[ ][  ][  ] FL cMax = 31 

sao_eo_class_luma FL cMax = 3 

sao_eo_class_chroma FL cMax = 3 



 

  Rec. ITU-T H.265 v8 (08/2021) 219 

Table 9-43 ï Syntax elements and associated binarizations 

Syntax structure Syntax element Binarization  

Process Input parameters 

coding_quadtree( ) split_cu_flag[ ][  ] FL cMax = 1 

coding_unit( ) cu_transquant_bypass_flag FL cMax = 1 

cu_skip_flag FL cMax = 1 

palette_mode_flag FL cMax = 1 

pred_mode_flag FL cMax = 1 

part_mode 9.3.3.7 ( xCb, yCb ) = ( x0, y0), log2CbSize 

pcm_flag[ ][  ] FL cMax = 1 

prev_intra_luma_pred_flag[ ][  ] FL cMax = 1 

mpm_idx[ ][  ] TR cMax = 2, cRiceParam = 0 

rem_intra_luma_pred_mode[ ][  ] FL cMax = 31 

intra_chroma_pred_mode[ ][  ] 9.3.3.8 - 

rqt_root_cbf FL cMax = 1 

prediction_unit( ) merge_flag[ ][  ] FL cMax = 1 

merge_idx[ ][  ] TR cMax = MaxNumMergeCand ī 1, cRiceParam = 0 

inter_pred_idc[ x0 ][  y0 ] 9.3.3.9 nPbW, nPbH 

ref_idx_l0[ ][  ] TR cMax = num_ref_idx_l0_active_minus1, cRiceParam = 0 

mvp_l0_flag[ ][  ] FL cMax = 1 

ref_idx_l1[ ][  ] TR cMax = num_ref_idx_l1_active_minus1, cRiceParam = 0 

mvp_l1_flag[ ][  ] FL cMax = 1 

transform_tree( ) split_transform_flag[ ][  ][  ] FL cMax = 1 

cbf_luma[ ][  ][  ] FL cMax = 1 

cbf_cb[ ][  ][  ] FL cMax = 1 

cbf_cr[ ][  ][  ] FL cMax = 1 

mvd_coding( ) abs_mvd_greater0_flag[ ] FL cMax = 1 

abs_mvd_greater1_flag[ ] FL cMax = 1 

abs_mvd_minus2[ ] EG1 - 

mvd_sign_flag[ ] FL cMax = 1 

transform_unit( ) tu_residual_act_flag FL cMax = 1 



 

220 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-43 ï Syntax elements and associated binarizations 

Syntax structure Syntax element Binarization  

Process Input parameters 

cross_comp_pred( ) log2_res_scale_abs_plus1 TR cMax = 4, cRiceParam = 0 

res_scale_sign_flag FL cMax = 1 

residual_coding( ) transform_skip_flag[ ][  ][  ] FL cMax = 1 

explicit_rdpcm_flag[ ][  ][  ] FL cMax = 1 

explicit_rdpcm_dir_flag[ ][  ][  ] FL cMax = 1 

last_sig_coeff_x_prefix TR cMax = ( log2TrafoSize  <<  1 ) ī 1, cRiceParam = 0 

last_sig_coeff_y_prefix TR cMax = ( log2TrafoSize  <<  1 ) ī 1, cRiceParam = 0 

last_sig_coeff_x_suffix FL cMax = ( 1  <<  ( ( last_sig_coeff_x_prefix  >>  1 ) ī 1 ) ī 1 ) 

last_sig_coeff_y_suffix FL cMax = ( 1  <<  ( ( last_sig_coeff_y_prefix  >>  1 ) ī 1 ) ī 1 ) 

coded_sub_block_flag[ ][  ] FL cMax = 1 

sig_coeff_flag[ ][  ] FL cMax = 1 

coeff_abs_level_greater1_flag[ ] FL cMax = 1 

coeff_abs_level_greater2_flag[ ] FL cMax = 1 

coeff_abs_level_remaining[ ] 9.3.3.11 current sub-block scan index i, baseLevel 

coeff_sign_flag[ ] FL cMax = 1 

palette_coding( ) palette_predictor_run EG0 - 

num_signalled_palette_entries EG0 - 

new_palette_entries 
FL cMax = cIdx  = =  0 ? 

( ( 1  <<  BitDepthY ) ī 1 ) : ( (1  <<  BitDepthC ) ī 1 ) 

palette_escape_val_present_flag FL cMax = 1 

num_palette_indices_minus1 9.3.3.14 MaxPaletteIndex 

palette_idx_idc 9.3.3.13 MaxPaletteIndex 

copy_above_indices_for_final_ru

n_flag 

FL 
cMax = 1 

palette_transpose_flag FL cMax = 1 

copy_above_palette_indices_flag FL cMax = 1 

palette_run_prefix 
TR cMax = Floor( Log2( PaletteMaxRunMinus1 ) ) + 1, 

cRiceParam = 0 

palette_run_suffix 
TB cMax = ( PrefixOffset  <<  1 ) > PaletteMaxRunMinus1 ? 

( PaletteMaxRunMinus1 ī PrefixOffset ) : ( PrefixOffset ī 1 ) 

palette_escape_val 9.3.3.12 cIdx, cu_transquant_bypass_flag 

delta_qp( ) cu_qp_delta_abs 9.3.3.10 - 

cu_qp_delta_sign_flag FL cMax = 1 

chroma_qp_offset( ) cu_chroma_qp_offset_flag FL cMax = 1 

cu_chroma_qp_offset_idx TR cMax = chroma_qp_offset_list_len_minus1, cRiceParam = 0 



 

  Rec. ITU-T H.265 v8 (08/2021) 221 

 

9.3.3.2 Truncated Rice binarization process 

Input to this process is a request for a truncated Rice (TR) binarization, cMax and cRiceParam. 

Output of this process is the TR binarization associating each value symbolVal with a corresponding bin string. 

A TR bin string is a concatenation of a prefix bin string and, when present, a suffix bin string. 

For the derivation of the prefix bin string, the following applies: 

ï The prefix value of symbolVal, prefixVal, is derived as follows: 

prefixVal = symbolVal  >>  cRiceParam  (9-11) 

ï The prefix of the TR bin string is specified as follows: 

ï If prefixVal is less than cMax  >>  cRiceParam, the prefix bin string is a bit string of length prefixVal + 1 indexed 

by binIdx. The bins for binIdx less than prefixVal are equal to 1. The bin with binIdx equal to prefixVal is equal 

to 0. Table 9-44 illustrates the bin strings of this unary binarization for prefixVal. 

ï Otherwise, the bin string is a bit string of length cMax  >>  cRiceParam with all bins being equal to 1. 

Table 9-44 ï Bin string of the unary binarization (informative)  

prefixVal  Bin string 

0 0      

1 1 0     

2 1 1 0    

3 1 1 1 0   

4 1 1 1 1 0  

5 1 1 1 1 1 0 

...       

binIdx 0 1 2 3 4 5 

 

When cMax is greater than symbolVal and cRiceParam is greater than 0, the suffix of the TR bin string is present and it is 

derived as follows: 

ï The suffix value suffixVal is derived as follows: 

suffixVal = symbolVal ī ( ( prefixVal )  <<  cRiceParam ) (9-12) 

ï The suffix of the TR bin string is specified by invoking the fixed-length (FL) binarization process as specified in 

clause 9.3.3.5 for suffixVal with a cMax value equal to ( 1  <<  cRiceParam ) ī 1. 

NOTE ï For the input parameter cRiceParam = 0, the TR binarization is exactly a truncated unary binarization and it is always 

invoked with a cMax value equal to the largest possible value of the syntax element being decoded. 

9.3.3.3 k-th order Exp-Golomb binarization process 

Inputs to this process is a request for a k-th order Exp-Golomb (EGk) binarization. 

Output of this process is the EGk binarization associating each value symbolVal with a corresponding bin string. 

The bin string of the EGk binarization process for each value symbolVal is specified as follows, where each call of the 

function put( X ), with X being equal to 0 or 1, adds the binary value X at the end of the bin string: 

absV = Abs( symbolVal ) 

stopLoop = 0 

do 



 

222 Rec. ITU-T H.265 v8 (08/2021) 

 if( absV  >=  ( 1  <<  k ) ) { 

  put( 1 ) 

  absV = absV ī ( 1  <<  k ) 

  k++ 

 } else { 

  put( 0 )   (9-13) 

  while( kī ī ) 

   put( ( absV  >>  k ) & 1 ) 

  stopLoop = 1 

 }  

while( !stopLoop ) 

NOTE ï The specification for the k-th order Exp-Golomb (EGk) code uses 1's and 0's in reverse meaning for the unary part of the 

Exp-Golomb code of 0-th order as specified in clause 9.2. 

9.3.3.4 Limited EGk binarization process 

This process is only invoked when extended_precision_processing_flag is equal to 1. 

Inputs to this process is a request for a limited EGk binarization, the Rice parameter riceParam and the colour component 

cIdx. 

Output of this process is the limited EGk binarization associating each value symbolVal with a corresponding bin string. 

The variables log2TransformRange and maxPrefixExtensionLength are derived as follows: 

log2TransformRange = cIdx  = =  0 ? Max( 15, BitDepthY + 6 ) : Max( 15, BitDepthC + 6 ) (9-14) 

maxPrefixExtensionLength = 28 ī log2TransformRange (9-15) 

The bin string of the limited EGk binarization process for each value symbolVal is specified as follows, where each call 

of the function put( X ), with X being equal to 0 or 1, adds the binary value X at the end of the bin string: 

codeValue = symbolVal  >>  riceParam 

PrefixExtensionLength = 0 

while( ( PrefixExtensionLength < maxPrefixExtensionLength )  && 

  ( codeValue > ( ( 2  <<  PrefixExtensionLength ) ī 2 ) ) ) { 

 PrefixExtensionLength++ 

 put( 1 ) 

}  

if( PrefixExtensionLength  = =  maxPrefixExtensionLength ) 

 escapeLength = log2TransformRange 

else {     (9-16) 

 escapeLength = PrefixExtensionLength + riceParam 

 put( 0 ) 

}  

symbolVal = symbolVal ī ( ( ( 1  <<  PrefixExtensionLength ) ī 1 )  <<  riceParam ) 

while( ( escapeLengthī ī ) > 0 ) 

 put( ( symbolVal  >>  escapeLength ) & 1 ) 

9.3.3.5 Fixed-length binarization process 

Inputs to this process are a request for a fixed-length (FL) binarization and cMax. 

Output of this process is the FL binarization associating each value symbolVal with a corresponding bin string. 

FL binarization is constructed by using the fixedLength-bit unsigned integer bin string of the symbol value symbolVal, 

where fixedLength = Ceil( Log2( cMax + 1 ) ). The indexing of bins for the FL binarization is such that the binIdx = 0 

relates to the most significant bit with increasing values of binIdx towards the least significant bit. 



 

  Rec. ITU-T H.265 v8 (08/2021) 223 

9.3.3.6 Truncated Binary (TB) binarization process 

Input to this process is a request for a TB binarization for a syntax element with value synVal and cMax. Output of this 

process is the TB binarization of the syntax element.The bin string of the TB binarization process of a syntax element 

synVal is specified as follows: 

n = cMax + 1 

k = Floor( Log2( n ) )  (9-17) 

u = ( 1  <<  ( k + 1) ) ī n 

ï If synVal is less than u, the TB bin string is derived by invoking the FL binarization process specified in clause 9.3.3.5 

for synVal with a cMax value equal to ( 1  <<  k ) ī 1. 

ï Otherwise (synVal is greater than or equal to u), the TB bin string is derived by invoking the FL binarization process 

specified in clause 9.3.3.5 for ( synVal + u ) with a cMax value equal to ( 1  <<  ( k + 1) ) ī 1. 

9.3.3.7 Binarization process for part_mode 

Inputs to this process are a request for a binarization for the syntax element part_mode, a luma location ( xCb, yCb ), 

specifying the top-left sample of the current luma coding block relative to the top-left luma sample of the current picture 

and a variable log2CbSize specifying the current luma coding block size. 

Output of this process is the binarization of the syntax element. 

The binarization for the syntax element part_mode is specified in Table 9-45 depending on the values of 

CuPredMode[ xCb ][  yCb ] and log2CbSize. 

Table 9-45 ï Binarization for part_mode 

CuPredMode[ xCb ][  yCb ] part_mode PartMode 

Bin string 

log2CbSize >  

MinCbLog2SizeY 

log2CbSize  = =  MinCbLog2SizeY 

!amp_enabled_flag amp_enabled_flag log2CbSize  = =  3 log2CbSize > 3 

MODE_INTRA 
0 PART_2Nx2N - - 1 1 

1 PART_NxN - - 0 0 

MODE_INTER 

0 PART_2Nx2N 1 1 1 1 

1 PART_2NxN 01 011 01 01 

2 PART_Nx2N 00 001 00 001 

3 PART_NxN - - - 000 

4 PART_2NxnU  - 0100 - - 

5 PART_2NxnD  - 0101 - - 

6 PART_nLx2N - 0000 - - 

7 PART_nRx2N - 0001 - - 

 

9.3.3.8 Binarization process for intra_chroma_pred_mode 

Input to this process is a request for a binarization for the syntax element intra_chroma_pred_mode. 

Output of this process is the binarization of the syntax element. 

The binarization for the syntax element intra_chroma_pred_mode is specified in Table 9-46. 



 

224 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-46 ï Binarization for  intra_chroma_pred_mode 

Value of 

intra_chroma_pred_mode 
Bin string 

4 0 

0 100 

1 101 

2 110 

3 111 

 

9.3.3.9 Binarization process for inter_pred_idc 

Inputs to this process are a request for a binarization for the syntax element inter_pred_idc, the current luma prediction 

block width nPbW and the current luma prediction block height nPbH. 

Output of this process is the binarization of the syntax element. 

The binarization for the syntax element inter_pred_idc is specified in Table 9-47. 

Table 9-47 ï Binarization for inter_pred_idc  

Value of 

inter_pred_idc 

Name of 

inter_pred_idc 

Bin string 

( nPbW + nPbH )  !=  12 ( nPbW + nPbH )  = =  12 

0 PRED_L0 00 0 

1 PRED_L1 01 1 

2 PRED_BI 1 - 

 

9.3.3.10 Binarization process for cu_qp_delta_abs 

Input to this process is a request for a binarization for the syntax element cu_qp_delta_abs. 

Output of this process is the binarization of the syntax element. 

The binarization of the syntax element cu_qp_delta_abs is a concatenation of a prefix bin string and (when present) a suffix 

bin string. 

For the derivation of the prefix bin string, the following applies: 

ï The prefix value of cu_qp_delta_abs, prefixVal, is derived as follows: 

prefixVal = Min( cu_qp_delta_abs, 5 )  (9-18) 

ï The prefix bin string is specified by invoking the TR binarization process as specified in clause 9.3.3.2 for prefixVal 

with cMax = 5 and cRiceParam = 0. 

When prefixVal is greater than 4, the suffix bin string is present and it is derived as follows: 

ï The suffix value of cu_qp_delta_abs, suffixVal, is derived as follows: 

suffixVal = cu_qp_delta_abs ī 5  (9-19) 

ï The suffix bin string is specified by invoking the k-th order EGk binarization process as specified in clause 9.3.3.3 for 

suffixVal with the Exp-Golomb order k set equal to 0. 

9.3.3.11 Binarization process for coeff_abs_level_remaining[ ] 

Input to this process is a request for a binarization for the syntax element coeff_abs_level_remaining[ n ], the current sub-

block scan index i, baseLevel, the colour component cIdx and the luma location ( x0, y0 ) specifying the top-left sample 

of the current luma transform block relative to the top-left luma sample of the picture. 

Output of this process is the binarization of the syntax element. 



 

  Rec. ITU-T H.265 v8 (08/2021) 225 

Depending on the value of persistent_rice_adaptation_enabled_flag, the following applies: 

ï If persistent_rice_adaptation_enabled_flag is equal to 0, the variable initRiceValue is set equal to 0. 

ï Otherwise (persistent_rice_adaptation_enabled_flag is equal to 1), the following applies: 

ï The variable sbType is derived as follows: 

o If transform_skip_flag[ x0 ][  y0 ][  cIdx ] is equal to 0 and cu_transquant_bypass_flag is equal to 0, the 

following applies: 

sbType = 2 * ( cIdx  = =  0 ? 1 : 0 ) (9-20) 

o Otherwise, the following applies: 

sbType = 2 * ( cIdx  = =  0 ? 1 : 0 ) + 1 (9-21) 

ï The variable initRiceValue is derived as follows: 

initRiceValue = StatCoeff[ sbType ] / 4 (9-22) 

ï If this process is invoked for the first time for the current sub-block scan index i, StatCoeff[ sbType ] is modified 

as follows: 

if( coeff_abs_level_remaining[ n ]  >=  ( 3  <<  ( StatCoeff[ sbType ] / 4 ) ) ) 

 StatCoeff[ sbType ]++ 

else if( 2 *  coeff_abs_level_remaining[ n ] < ( 1  <<  ( StatCoeff[ sbType ] / 4 ) )  &&  

 StatCoeff[ sbType ] > 0 ) 

  StatCoeff[ sbType ]ī ī (9-23) 

The variables cLastAbsLevel and cLastRiceParam are derived as follows: 

ï If this process is invoked for the first time for the current sub-block scan index i, cLastAbsLevel is set equal to 0 and 

cLastRiceParam is set equal to initRiceValue. 

ï Otherwise (this process is not invoked for the first time for the current sub-block scan index i), cLastAbsLevel and 

cLastRiceParam are set equal to the values of cAbsLevel and cRiceParam, respectively, that have been derived during 

the last invocation of the binarization process for the syntax element coeff_abs_level_remaining[ n ] as specified in 

this clause. 

The variable cAbsLevel is set equal to baseLevel + coeff_abs_level_remaining[ n ]. 

The variable cRiceParam is derived from cLastAbsLevel and cLastRiceParam as follows: 

ï If persistent_rice_adaptation_enabled_flag is equal to 0, the following applies: 

cRiceParam = 

Min( cLastRiceParam + ( cLastAbsLevel > ( 3 *  ( 1  <<  cLastRiceParam ) ) ? 1 : 0 ), 4 ) (9-24) 

ï Otherwise (persistent_rice_adaptation_enabled_flag is equal to 1), the following applies: 

cRiceParam = cLastRiceParam + ( cLastAbsLevel > ( 3 *  ( 1  <<  cLastRiceParam ) ) ? 1 : 0 ) (9-25) 

The variable cMax is derived from cRiceParam as: 

cMax = 4  <<  cRiceParam  (9-26) 

The binarization of the syntax element coeff_abs_level_remaining[ n ] is a concatenation of a prefix bin string and (when 

present) a suffix bin string. 

For the derivation of the prefix bin string, the following applies: 

ï The prefix value of coeff_abs_level_remaining[ n ], prefixVal, is derived as follows: 

prefixVal = Min( cMax, coeff_abs_level_remaining[ n ] ) (9-27) 



 

226 Rec. ITU-T H.265 v8 (08/2021) 

ï The prefix bin string is specified by invoking the TR binarization process as specified in clause 9.3.3.2 for prefixVal 

with the variables cMax and cRiceParam as inputs. 

When the prefix bin string is equal to the bit string of length 4 with all bits equal to 1, the suffix bin string is present and it 

is derived as follows: 

ï The suffix value of coeff_abs_level_remaining[ n ], suffixVal, is derived as follows: 

suffixVal = coeff_abs_level_remaining[ n ] ī cMax (9-28) 

ï If extended_precision_processing_flag is equal to 0, the suffix bin string is specified by invoking the k-th order EGk 

binarization process as specified in clause 9.3.3.3 for the binarization of suffixVal with the Exp-Golomb order k set 

equal to cRiceParam + 1. 

ï Otherwise (extended_precision_processing_flag is equal to 1), the suffix bin string is specified by invoking the limited 

k-th order EGk binarization process as specified in clause 9.3.3.4 for the binarization of suffixVal with the variable 

riceParam set equal to cRiceParam + 1 and the colour component cIdx. 

9.3.3.12 Binarization process for palette_escape_val 

Input to this process is a request for a binarization for the syntax element palette_escape_val, cu_transquant_bypass_flag 

and colour component index cIdx. 

Output of this process is the binarization of palette_escape_val. 

The variable bitDepth is derived as follows: 

bitDepth = ( cIdx  = =  0 ) ? BitDepthY : BitDepthC (9-29) 

The binarization of palette_escape_val is derived as follows: 

ï If cu_transquant_bypass_flag is equal to 1, the binarization of palette_escape_val is derived by invoking the FL 

binarization process specified in clause 9.3.3.5 with the input parameter set to ( 1  <<  bitdepth ) ī 1. 

Otherwise (cu_transquant_bypass_flag is equal to 0), the binarization of palette_escape_val is derived by invoking the k-

th order Exp-Golomb binarization process specified in clause 9.3.3.3 with k set equal to 3. 

9.3.3.13 Binarization process for palette_idx_idc 

Input to this process is a request for a binarization for the syntax element palette_idx_idc and the variable MaxPaletteIndex. 

Output of this process is the binarization of the syntax element. 

The variable cMax is derived as follows: 

ï If this process is invoked for the first time for the current block, cMax is set equal to MaxPaletteIndex. 

ï Otherwise (this process is not invoked for the first time for the current block), cMax is set equal to MaxPaletteIndex 

minus 1. 

The binarization for the palette_idx_idc is derived by invoking the TB binarization process specified in clause 9.3.3.6 with 

cMax. 

9.3.3.14 Binarization process for num_palette_indices_minus1 

Input to this process is a request for a binarization for the syntax element num_palette_indices_minus1, and 

MaxPaletteIndex. 

Output of this process is the binarization of the syntax element. 

The variable cRiceParam is derived as follows: 

cRiceParam = 3 + ( ( MaxPaletteIndex + 1 )  >>  3 ) (9-30) 

The variable cMax is derived from cRiceParam as: 

cMax = 4  <<  cRiceParam  (9-31) 

The binarization of the syntax element num_palette_indices_minus1 is a concatenation of a prefix bin string and (when 

present) a suffix bin string. 



 

  Rec. ITU-T H.265 v8 (08/2021) 227 

For the derivation of the prefix bin string, the following applies: 

ï The prefix value of num_palette_indices_minus1, prefixVal, is derived as follows: 

prefixVal = Min( cMax, num_palette_indices_minus1 ) (9-32) 

ï The prefix bin string is specified by invoking the TR binarization process as specified in clause 9.3.3.2 for prefixVal 

with the variables cMax and cRiceParam as inputs. 

When the prefix bin string is equal to the bit string of length 4 with all bits equal to 1, the suffix bin string is present and it 

is derived as follows: 

ï The suffix value of num_palette_indices_minus1, suffixVal, is derived as follows: 

suffixVal = num_palette_indices_minus1 ī cMax (9-33) 

The suffix bin string is specified by invoking the k-th order EGk binarization process as specified in clause 9.3.3.3 for the 

binarization of suffixVal with the Exp-Golomb order k set equal to cRiceParam + 1. 

9.3.4 Decoding process flow 

9.3.4.1 General 

Inputs to this process are all bin strings of the binarization of the requested syntax element as specified in clause 9.3.3. 

Output of this process is the value of the syntax element. 

This process specifies how each bin of a bin string is parsed for each syntax element. After parsing each bin, the resulting 

bin string is compared to all bin strings of the binarization of the syntax element and the following applies: 

ï If the bin string is equal to one of the bin strings, the corresponding value of the syntax element is the output. 

ï Otherwise (the bin string is not equal to one of the bin strings), the next bit is parsed. 

While parsing each bin, the variable binIdx is incremented by 1 starting with binIdx being set equal to 0 for the first bin.  

The parsing of each bin is performed by invoking the derivation process for ctxTable, ctxIdx, and bypassFlag as specified 

in clause 9.3.4.2 with binIdx as input and ctxTable, ctxIdx and bypassFlag as outputs. 

NOTE ï As a consequence of invoking the process specified in clause 9.3.4.2, the arithmetic decoding process as specified in 

clause 9.3.4.3 is invoked with ctxTable, ctxIdx and bypassFlag as inputs and the value of the bin as output. 

9.3.4.2 Derivation process for ctxTable, ctxIdx and bypassFlag 

9.3.4.2.1 General 

Input to this process is the position of the current bin within the bin string, binIdx. 

Outputs of this process are ctxTable, ctxIdx and bypassFlag. 

The values of ctxTable, ctxIdx and bypassFlag are derived as follows based on the entries for binIdx of the corresponding 

syntax element in Table 9-48: 

ï If the entry in Table 9-48 is not equal to "bypass", "terminate" or "na", the values of binIdx are decoded by invoking 

the DecodeDecision process as specified in clause 9.3.4.3.2 and the following applies: 

ï ctxTable is specified in Table 9-4. 

ï The variable ctxInc is specified by the corresponding entry in Table 9-48 and when more than one value is listed 

in Table 9-48 for a binIdx, the assignment process for ctxInc for that binIdx is further specified in the clauses 

given in parenthesis. 

ï The variable ctxIdxOffset is specified by the lowest value of ctxIdx in Table 9-4 depending on the current value 

of initType. 

ï ctxIdx is set equal to the sum of ctxInc and ctxIdxOffset. 

ï bypassFlag is set equal to 0. 

ï Otherwise, if the entry in Table 9-48 is equal to "bypass", the values of binIdx are decoded by invoking the 

DecodeBypass process as specified in clause 9.3.4.3.4 and the following applies: 

ï ctxTable is set equal to 0. 



 

228 Rec. ITU-T H.265 v8 (08/2021) 

ï ctxIdx is set equal to 0. 

ï bypassFlag is set equal to 1. 

ï Otherwise, if the entry in Table 9-48 is equal to "terminate", the values of binIdx are decoded by invoking the 

DecodeTerminate process as specified in clause 9.3.4.3.5 and the following applies: 

ï ctxTable is set equal to 0. 

ï ctxIdx is set equal to 0. 

ï bypassFlag is set equal to 0. 

ï Otherwise (the entry in Table 9-48 is equal to "na"), the values of binIdx do not occur for the corresponding syntax 

element. 

Table 9-48 ï Assignment of ctxInc to syntax elements with context coded bins 

Syntax element 
binIdx  

0 1 2 3 4 >=  5 

end_of_slice_segment_flag terminate na na na na na 

end_of_subset_one_bit terminate na na na na na 

sao_merge_left_flag 0 na na na na na 

sao_merge_up_flag 0 na na na na na 

sao_type_idx_luma 0 bypass na na na na 

sao_type_idx_chroma 0 bypass na na na na 

sao_offset_abs[ ][  ][  ][  ] bypass bypass bypass bypass bypass na 

sao_offset_sign[ ][  ][  ][  ] bypass na na na na na 

sao_band_position[ ][  ][  ] bypass bypass bypass bypass bypass bypass 

sao_eo_class_luma bypass bypass na na na na 

sao_eo_class_chroma bypass bypass na na na na 

split_cu_flag[ ][  ] 0,1,2 

(clause 9.3.4.2.2) 
na na na na na 

cu_transquant_bypass_flag 0 na na na na na 

cu_skip_flag 0,1,2 

(clause 9.3.4.2.2) 
na na na na na 

palette_mode_flag 0 na na na na na 

pred_mode_flag 0 na na na na na 

part_mode 
log2CbSize = = MinCbLog2SizeY 

0 1 2 bypass na na 

part_mode 
log2CbSize > MinCbLog2SizeY 

0 1 3 bypass na na 

pcm_flag[ ][  ] terminate na na na na na 

prev_intra_luma_pred_flag[ ][  ] 0 na na na na na 

mpm_idx[ ][  ] bypass bypass na na na na 

rem_intra_luma_pred_mode[ ][  ] bypass bypass bypass bypass bypass na 

intra_chroma_pred_mode[ ][  ] 0 bypass bypass na na na 

rqt_root_cbf 0 na na na na na 

tu_residual_act_flag 0 na na na na na 

merge_flag[ ][  ] 0 na na na na na 

merge_idx[ ][  ] 0 bypass bypass bypass na na 

inter_pred_idc[ x0 ][  y0 ] ( nPbW + nPbH ) 

!= 12 ? 

CtDepth[ x0 ][  y0 ] 

: 4 

4 na na na na 



 

  Rec. ITU-T H.265 v8 (08/2021) 229 

Table 9-48 ï Assignment of ctxInc to syntax elements with context coded bins 

Syntax element 
binIdx  

0 1 2 3 4 >=  5 

ref_idx_l0[ ][  ] 0 1 bypass bypass bypass bypass 

ref_idx_l1[ ][  ] 0 1 bypass bypass bypass bypass 

mvp_l0_flag[ ][  ] 0 na na na na na 

mvp_l1_flag[ ][  ] 0 na na na na na 

split_transform_flag[ ][  ][  ] 5 ī log2TrafoSize na na na na na 

cbf_cb[ ][  ][  ] trafoDepth na na na na na 

cbf_cr[ ][  ][  ] trafoDepth na na na na na 

cbf_luma[ ][  ][  ] trafoDepth = = 0 ? 

1 : 0 
na na na na na 

abs_mvd_greater0_flag[ ] 0 na na na na na 

abs_mvd_greater1_flag[ ] 0 na na na na na 

abs_mvd_minus2[ ] bypass bypass bypass bypass bypass bypass 

mvd_sign_flag[ ] bypass na na na na na 

cu_qp_delta_abs 0 1 1 1 1 bypass 

cu_qp_delta_sign_flag bypass na na na na na 

cu_chroma_qp_offset_flag 0 na na na na na 

cu_chroma_qp_offset_idx 0 0 0 0 0 na 

log2_res_scale_abs_plus1[ c ] 4 * c + 0 4 * c + 1 4 * c + 2 4 * c + 3 na na 

res_scale_sign_flag[ c ] c na na na na na 

transform_skip_flag[ ][  ][  ] 0 na na na na na 

explicit_rdpcm_flag[ ][  ][  ] 0 na na na na na 

explicit_rdpcm_dir_flag[ ][  ][  ] 0 na na na na na 

last_sig_coeff_x_prefix 0..17 (clause 9.3.4.2.3) 

last_sig_coeff_y_prefix 0..17 (clause 9.3.4.2.3) 

last_sig_coeff_x_suffix bypass bypass bypass na na na 

last_sig_coeff_y_suffix bypass bypass bypass na na na 

coded_sub_block_flag[ ][  ] 0..3 

(clause 9.3.4.2.4) 

na na na na na 

sig_coeff_flag[ ][  ] 0..43 

(clause 9.3.4.2.5) 

na na na na na 

coeff_abs_level_greater1_flag[ ] 0..23 

(clause 9.3.4.2.6) 

na na na na na 

coeff_abs_level_greater2_flag[ ] 0..5 

(clause 9.3.4.2.7) 

na na na na na 

coeff_abs_level_remaining[ ] bypass bypass bypass bypass bypass bypass 

coeff_sign_flag[ ] bypass na na na na na 

palette_predictor_run bypass bypass bypass bypass bypass bypass 

num_signalled_palette_entries bypass bypass bypass bypass bypass bypass 

new_palette_entries bypass bypass bypass bypass bypass bypass 

palette_escape_val_present_flag bypass na na na na na 

palette_transpose_flag 0 na na na na na 

num_palette_indices_minus1 bypass bypass bypass bypass bypass bypass 



 

230 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-48 ï Assignment of ctxInc to syntax elements with context coded bins 

Syntax element 
binIdx  

0 1 2 3 4 >=  5 

palette_idx_idc bypass bypass bypass bypass bypass bypass 

copy_above_palette_indices_flag and 

copy_above_indices_for_final_run_flag 
0 

na na na na na 

palette_run_prefix 0..7 (clause 9.3.4.2.8) 

palette_run_suffix bypass bypass bypass bypass bypass bypass 

palette_escape_val bypass bypass bypass bypass bypass bypass 

 

9.3.4.2.2 Derivation process of ctxInc using left and above syntax elements 

Input to this process is the luma location ( x0, y0 ) specifying the top-left luma sample of the current luma block relative 

to the top-left sample of the current picture. 

Output of this process is ctxInc. 

The location ( xNbL, yNbL ) is set equal to ( x0 ī 1, y0 ) and the variable availableL, specifying the availability of the 

block located directly to the left of the current block, is derived by invoking the availability derivation process for a block 

in z-scan order as specified in clause 6.4.1 with the location ( xCurr, yCurr ) set equal to ( x0, y0 ) and the neighbouring 

location ( xNbY, yNbY ) set equal to ( xNbL, yNbL ) as inputs, and the output is assigned to availableL.  

The location ( xNbA, yNbA ) is set equal to ( x0, y0 ī 1 ) and the variable availableA specifying the availability of the 

coding block located directly above the current block, is derived by invoking the availability derivation process for a block 

in z-scan order as specified in clause 6.4.1 with the location ( xCurr, yCurr ) set equal to ( x0, y0 ) and the neighbouring 

location ( xNbY, yNbY ) set equal to ( xNbA, yNbA ) as inputs, and the output is assigned to availableA. 

The assignment of ctxInc for the syntax elements split_cu_flag[ x0 ][  y0 ] and cu_skip_flag[ x0 ][  y0 ] is specified in 

Table 9-49. 

Table 9-49 ï Specification of ctxInc using left and above syntax elements 

Syntax element condL condA ctxInc 

split_cu_flag[ x0 ][  y0 ] CtDepth[ xNbL ][  yNbL ] > cqtDepth CtDepth[ xNbA ][  yNbA ] > cqtDepth ( condL  &&   availableL ) + 

( condA  &&   availableA ) 

cu_skip_flag[ x0 ][  y0 ] cu_skip_flag[ xNbL ][  yNbL ] cu_skip_flag[ xNbA ][  yNbA ] ( condL  &&   availableL ) + 

( condA  &&   availableA ) 

 

9.3.4.2.3 Derivation process of ctxInc for the syntax elements last_sig_coeff_x_prefix and last_sig_coeff_y_prefix 

Inputs to this process are the variable binIdx, the colour component index cIdx and the transform block size log2TrafoSize. 

Output of this process is the variable ctxInc. 

The variables ctxOffset and ctxShift are derived as follows: 

ï If cIdx is equal to 0, ctxOffset is set equal to 3 *  ( log2TrafoSize ī 2 ) + ( ( log2TrafoSize ī 1 )  >>  2 ) and ctxShift 

is set equal to ( log2TrafoSize + 1 )  >>  2. 

ï Otherwise (cIdx is greater than 0), ctxOffset is set equal to 15 and ctxShift is set equal to log2TrafoSize ī 2. 

The variable ctxInc is derived as follows: 

ctxInc =  ( binIdx  >>  ctxShift ) + ctxOffset 

 (9-34) 

9.3.4.2.4 Derivation process of ctxInc for the syntax element coded_sub_block_flag 

Inputs to this process are the colour component index cIdx, the current sub-block scan location ( xS, yS ), the previously 

decoded bins of the syntax element coded_sub_block_flag and the transform block size log2TrafoSize. 



 

  Rec. ITU-T H.265 v8 (08/2021) 231 

Output of this process is the variable ctxInc. 

The variable csbfCtx is derived using the current location ( xS, yS ), two previously decoded bins of the syntax element 

coded_sub_block_flag in scan order and the transform block size log2TrafoSize, as follows: 

ï csbfCtx is initialized with 0 as follows: 

csbfCtx = 0  (9-35) 

ï When xS is less than ( 1  <<  ( log2TrafoSize ī 2 ) ) ī 1, csbfCtx is modified as follows: 

csbfCtx  +=  coded_sub_block_flag[ xS + 1 ][  yS ] (9-36) 

ï When yS is less than ( 1  <<  ( log2TrafoSize ī 2 ) ) ī 1, csbfCtx is modified as follows: 

csbfCtx  +=  coded_sub_block_flag[ xS ][  yS + 1 ] (9-37) 

The context index increment ctxInc is derived using the colour component index cIdx and csbfCtx as follows: 

ï If cIdx is equal to 0, ctxInc is derived as follows: 

ctxInc = Min( csbfCtx, 1 )  (9-38) 

ï Otherwise (cIdx is greater than 0), ctxInc is derived as follows: 

ctxInc = 2 + Min( csbfCtx, 1 )  (9-39) 

9.3.4.2.5 Derivation process of ctxInc for the syntax element sig_coeff_flag 

Inputs to this process are the colour component index cIdx, the luma location ( x0, y0 ) specifying the top-left sample of 

the current transform block relative to the top-left sample of the current picture, the current coefficient scan location 

( xC, yC ), the scan order index scanIdx and the transform block size log2TrafoSize. 

Output of this process is the variable ctxInc. 

The variable sigCtx depends on the current location ( xC, yC ), the colour component index cIdx, the value of 

transform_skip_flag, the value of cu_transquant_bypass_flag, the transform block size and previously decoded bins of the 

syntax element coded_sub_block_flag. For the derivation of sigCtx, the following applies: 

ï If transform_skip_context_enabled_flag is equal to 1 and either or both transform_skip_flag[ x0 ][  y0 ][  cIdx ] is equal 

to 1 or cu_transquant_bypass_flag is equal to 1, sigCtx is derived as follows: 

sigCtx = ( cIdx  = =  0 ) ? 42 : 16 (9-40) 

ï Otherwise, if log2TrafoSize is equal to 2, sigCtx is derived using ctxIdxMap[ ] specified in Table 9-50 as follows: 

sigCtx = ctxIdxMap[ ( yC  <<  2 ) + xC ] (9-41) 

ï Otherwise, if xC + yC is equal to 0, sigCtx is derived as follows: 

sigCtx = 0  (9-42) 

ï Otherwise, sigCtx is derived using previous values of coded_sub_block_flag as follows: 

ï The sub-block location ( xS, yS ) is set equal to ( xC  >>  2, yC  >>  2 ). 

ï The variable prevCsbf is set equal to 0. 

ï When xS is less than ( 1  <<  ( log2TrafoSize ī 2 ) ) ī 1, the following applies: 

prevCsbf  +=  coded_sub_block_flag[ xS + 1 ][  yS ] (9-43) 

ï When yS is less than ( 1  <<  ( log2TrafoSize ī 2 ) ) ī 1, the following applies: 

prevCsbf  +=  ( coded_sub_block_flag[ xS ][  yS + 1 ]  <<  1 ) (9-44) 

ï The inner sub-block location ( xP, yP ) is set equal to ( xC & 3, yC & 3 ). 



 

232 Rec. ITU-T H.265 v8 (08/2021) 

ï The variable sigCtx is derived as follows: 

ï If prevCsbf is equal to 0, the following applies: 

sigCtx = ( xP + yP  = =  0 ) ? 2 : ( xP + yP < 3 ) ? 1: 0 (9-45) 

ï Otherwise, if prevCsbf is equal to 1, the following applies: 

sigCtx = ( yP  = =  0 ) ? 2 : ( yP  = =  1 ) ? 1: 0 (9-46)  

ï Otherwise, if prevCsbf is equal to 2, the following applies: 

sigCtx = ( xP  = =  0 ) ? 2 : ( xP  = =  1 ) ? 1: 0 (9-47) 

ï Otherwise (prevCsbf is equal to 3), the following applies: 

sigCtx = 2 

 (9-48) 

ï The variable sigCtx is modified as follows: 

ï If cIdx is equal to 0, the following applies: 

ï When ( xS + yS ) is greater than 0, the following applies: 

sigCtx  +=  3  (9-49) 

ï The variable sigCtx is modified as follows: 

ï If log2TrafoSize is equal to 3, the following applies: 

sigCtx  +=  ( scanIdx  = =  0 ) ? 9 : 15 (9-50) 

ï Otherwise, the following applies: 

sigCtx  +=  21  (9-51) 

ï Otherwise (cIdx is greater than 0), the following applies: 

ï If log2TrafoSize is equal to 3, the following applies: 

sigCtx  +=  9  (9-52) 

ï Otherwise, the following applies: 

sigCtx  +=  12  (9-53) 

The context index increment ctxInc is derived using the colour component index cIdx and sigCtx as follows: 

ï If cIdx is equal to 0, ctxInc is derived as follows: 

ctxInc = sigCtx  (9-54) 

ï Otherwise (cIdx is greater than 0), ctxInc is derived as follows: 

ctxInc = 27 + sigCtx  (9-55) 

Table 9-50 ï Specification of ctxIdxMap[ i ] 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

ctxIdxMap[  i ] 0 1 4 5 2 3 4 5 6 6 8 8 7 7 8 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 233 

9.3.4.2.6 Derivation process of ctxInc for the syntax element coeff_abs_level_greater1_flag 

Inputs to this process are the colour component index cIdx, the current sub-block scan index i and the current coefficient 

scan index n within the current sub-block. 

Output of this process is the variable ctxInc. 

The variable ctxSet specifies the current context set and for its derivation the following applies: 

ï If this process is invoked for the first time for the current sub-block scan index i, the following applies: 

ï The variable ctxSet is initialized as follows: 

ï If the current sub-block scan index i is equal to 0 or cIdx is greater than 0, the following applies: 

ctxSet = 0  

 (9-56) 

ï Otherwise (i is greater than 0 and cIdx is equal to 0), the following applies: 

ctxSet = 2  

 (9-57) 

ï The variable lastGreater1Ctx is derived as follows: 

ï If the current sub-block with scan index i is the first one to be processed in this clause for the current transform 

block, the variable lastGreater1Ctx is set equal to 1. 

ï Otherwise, the following applies: 

ï The variable lastGreater1Ctx is set equal to the value of greater1Ctx that has been derived during the last 

invocation of the process specified in this clause for a previous sub-block. 

ï When lastGreater1Ctx is greater than 0, the variable lastGreater1Flag is set equal to the value of the 

syntax element coeff_abs_level_greater1_flag that has been used during the last invocation of the process 

specified in this clause for a previous sub-block and lastGreater1Ctx is modified as follows: 

ï If lastGreater1Flag is equal to 1, lastGreater1Ctx is set equal to 0. 

ï Otherwise (lastGreater1Flag is equal to 0), lastGreater1Ctx is incremented by 1. 

ï When lastGreater1Ctx is equal to 0, ctxSet is incremented by one as follows: 

ctxSet = ctxSet + 1  (9-58) 

ï The variable greater1Ctx is set equal to 1. 

ï Otherwise (this process is not invoked for the first time for the current sub-block scan index i), the following applies: 

ï The variable ctxSet is set equal to the variable ctxSet that has been derived during the last invocation of the process 

specified in this clause. 

ï The variable greater1Ctx is set equal to the variable greater1Ctx that has been derived during the last invocation 

of the process specified in this clause. 

ï When greater1Ctx is greater than 0, the variable lastGreater1Flag is set equal to the syntax element 

coeff_abs_level_greater1_flag that has been used during the last invocation of the process specified in this clause 

and greater1Ctx is modified as follows: 

ï If lastGreater1Flag is equal to 1, greater1Ctx is set equal to 0. 

ï Otherwise (lastGreater1Flag is equal to 0), greater1Ctx is incremented by 1. 

The context index increment ctxInc is derived using the current context set ctxSet and the current context greater1Ctx as 

follows: 

ctxInc = ( ctxSet * 4 ) + Min( 3, greater1Ctx ) (9-59) 

When cIdx is greater than 0, ctxInc is modified as follows: 

ctxInc =  ctxInc + 16  (9-60) 



 

234 Rec. ITU-T H.265 v8 (08/2021) 

9.3.4.2.7 Derivation process of ctxInc for the syntax element coeff_abs_level_greater2_flag 

Inputs to this process are the colour component index cIdx, the current sub-block scan index i and the current coefficient 

scan index n within the current sub-block. 

Output of this process is the variable ctxInc. 

The variable ctxSet specifies the current context set and is set equal to the value of the variable ctxSet that has been derived 

in clause 9.3.4.2.6 for the same subset i. 

The context index increment ctxInc is set equal to the variable ctxSet as follows: 

ctxInc = ctxSet  (9-61) 

When cIdx is greater than 0, ctxInc is modified as follows: 

ctxInc =  ctxInc + 4  (9-62) 

9.3.4.2.8 Derivation process of ctxInc for the syntax element palette_run_prefix 

Inputs to this process are the bin index binIdx and the syntax elements copy_above_palette_indices_flag and 

palette_idx_idc. 

Output of this process is the variable ctxInc. 

The variable ctxInc is derived as follows: 

ï If copy_above_palette_indices_flag is equal to 0 and binIdx is equal to 0, ctxInc is derived as follows: 

ctxInc = ( palette_idx_idc < 1 ) ? 0 : ( ( palette_idx_idc < 3 ) ? 1 : 2 ) (9-63) 

ï Otherwise, ctxInc is provided by Table 9-51. 

Table 9-51 ï Specification of ctxIdxMap[ copy_above_palette_indices_flag ][  binIdx  ] 

binIdx  0 1 2 3 4 > 4 

copy_above_palette_indices_flag  = =  1 5 6 6 7 7 bypass 

copy_above_palette_indices_flag  = =  0 0, 1, 2 3 3 4 4 bypass 

 

9.3.4.3 Arithmetic decoding process 

9.3.4.3.1 General 

Inputs to this process are ctxTable, ctxIdx and bypassFlag, as derived in clause 9.3.4.2, and the state variables ivlCurrRange 

and ivlOffset of the arithmetic decoding engine. 

Output of this process is the value of the bin. 

Figure 9-5 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context 

index table ctxTable and the ctxIdx are passed to the arithmetic decoding process DecodeBin( ctxTable, ctxIdx ), which is 

specified as follows: 

ï If bypassFlag is equal to 1, DecodeBypass( ) as specified in clause 9.3.4.3.4 is invoked. 

ï Otherwise, if bypassFlag is equal to 0, ctxTable is equal to 0 and ctxIdx is equal to 0, DecodeTerminate( ) as specified 

in clause 9.3.4.3.5 is invoked. 

ï Otherwise (bypassFlag is equal to 0 and ctxTable is not equal to 0), DecodeDecision( ) as specified in clause 9.3.4.3.2 

is invoked. 



 

  Rec. ITU-T H.265 v8 (08/2021) 235 

 

Figure 9-5 ï Overview of the arithmetic decoding process for a single bin (informative) 

 

NOTE ï Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p( 0 ) and 

p( 1 ) = 1 ī p( 0 ) of a binary decision ( 0, 1 ), an initially given code sub-interval with the range ivlCurrRange will be subdivided 

into two sub-intervals having range p( 0 ) *  ivlCurrRange and ivlCurrRange ī p( 0 ) *  ivlCurrRange, respectively. Depending on 

the decision, which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code 

string pointing into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the most 

probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or LPS, 

rather than 0 or 1. Given this terminology, each context is specified by the probability pLPS of the LPS and the value of MPS (valMps), 

which is either 0 or 1. The arithmetic core engine in this Specification has three distinct properties: 

ï The probability estimation is performed by means of a finite-state machine with a table-based transition process between 64 

different representative probability states { pLPS( pStateIdx ) | 0  <=  pStateIdx < 64 } for the LPS probability pLPS. The 

numbering of the states is arranged in such a way that the probability state with index pStateIdx = 0 corresponds to an LPS 

probability value of 0.5, with decreasing LPS probability towards higher state indices. 

ï The range ivlCurrRange representing the state of the coding engine is quantized to a small set {Q1,...,Q4} of pre-set 

quantization values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed product 

values of Qi *  pLPS( pStateIdx ) allows a multiplication-free approximation of the product ivlCurrRange *  pLPS( pStateIdx ). 

ï For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a 

separate simplified encoding and decoding bypass process is used.  

9.3.4.3.2 Arithmetic decoding process for a binary decision 

9.3.4.3.2.1 General 

Inputs to this process are the variables ctxTable, ctxIdx, ivlCurrRange and ivlOffset. 

Outputs of this process are the decoded value binVal and the updated variables ivlCurrRange and ivlOffset. 

Figure 9-6 shows the flowchart for decoding a single decision (DecodeDecision): 

1. The value of the variable ivlLpsRange is derived as follows: 

ï Given the current value of ivlCurrRange, the variable qRangeIdx is derived as follows: 

qRangeIdx =( ivlCurrRange  >>  6 ) & 3  (9-64) 

ï Given qRangeIdx and pStateIdx associated with ctxTable and ctxIdx, the value of the variable rangeTabLps 

as specified in Table 9-52 is assigned to ivlLpsRange: 

ivlLpsRange = rangeTabLps[ pStateIdx ][  qRangeIdx ] (9-65) 



 

236 Rec. ITU-T H.265 v8 (08/2021) 

2. The variable ivlCurrRange is set equal to ivlCurrRange - ivlLpsRange and the following applies: 

ï If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 ī valMps, ivlOffset 

is decremented by ivlCurrRange and ivlCurrRange is set equal to ivlLpsRange. 

ï Otherwise, the variable binVal is set equal to valMps. 

Given the value of binVal, the state transition is performed as specified in clause 9.3.4.3.2.2. Depending on the current 

value of ivlCurrRange, renormalization is performed as specified in clause 9.3.4.3.3. 

9.3.4.3.2.2 State transition process 

Inputs to this process are the current pStateIdx, the decoded value binVal and valMps values of the context variable 

associated with ctxTable and ctxIdx. 

Outputs of this process are the updated pStateIdx and valMps of the context variable associated with ctxIdx. 

Depending on the decoded value binVal, the update of the two variables pStateIdx and valMps associated with ctxIdx is 

derived as follows: 

if( binVal  = =  valMps )  

 pStateIdx = transIdxMps( pStateIdx ) 

else {    (9-66) 

 if( pStateIdx  = =  0 ) 

  valMps = 1 - valMps 

 pStateIdx = transIdxLps( pStateIdx ) 

}  

Table 9-53 specifies the transition rules transIdxMps( ) and transIdxLps( ) after decoding the value of valMps and 

1 - valMps, respectively. 



 

  Rec. ITU-T H.265 v8 (08/2021) 237 

 

Figure 9-6 ï Flowchart for decoding a decision 

 



 

238 Rec. ITU-T H.265 v8 (08/2021) 

Table 9-52 ï Specification of rangeTabLps depending on the values of pStateIdx and qRangeIdx 

pStateIdx 

qRangeIdx 

pStateIdx 

qRangeIdx 

0 1 2 3 0 1 2 3 

0 128 176 208 240 32 27 33 39 45 

1 128 167 197 227 33 26 31 37 43 

2 128 158 187 216 34 24 30 35 41 

3 123 150 178 205 35 23 28 33 39 

4 116 142 169 195 36 22 27 32 37 

5 111 135 160 185 37 21 26 30 35 

6 105 128 152 175 38 20 24 29 33 

7 100 122 144 166 39 19 23 27 31 

8 95 116 137 158 40 18 22 26 30 

9 90 110 130 150 41 17 21 25 28 

10 85 104 123 142 42 16 20 23 27 

11 81 99 117 135 43 15 19 22 25 

12 77 94 111 128 44 14 18 21 24 

13 73 89 105 122 45 14 17 20 23 

14 69 85 100 116 46 13 16 19 22 

15 66 80 95 110 47 12 15 18 21 

16 62 76 90 104 48 12 14 17 20 

17 59 72 86 99 49 11 14 16 19 

18 56 69 81 94 50 11 13 15 18 

19 53 65 77 89 51 10 12 15 17 

20 51 62 73 85 52 10 12 14 16 

21 48 59 69 80 53 9 11 13 15 

22 46 56 66 76 54 9 11 12 14 

23 43 53 63 72 55 8 10 12 14 

24 41 50 59 69 56 8 9 11 13 

25 39 48 56 65 57 7 9 11 12 

26 37 45 54 62 58 7 9 10 12 

27 35 43 51 59 59 7 8 10 11 

28 33 41 48 56 60 6 8 9 11 

29 32 39 46 53 61 6 7 9 10 

30 30 37 43 50 62 6 7 8 9 

31 29 35 41 48 63 2 2 2 2 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 239 

Table 9-53 ï State transition table 

pStateIdx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

transIdxLps 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12 

transIdxMps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

pStateIdx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

transIdxLps 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24 

transIdxMps 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

pStateIdx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

transIdxLps 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33 

transIdxMps 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

pStateIdx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

transIdxLps 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63 

transIdxMps 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63 

 

9.3.4.3.3 Renormalization process in the arithmetic decoding engine  

Inputs to this process are bits from slice segment data and the variables ivlCurrRange and ivlOffset. 

Outputs of this process are the updated variables ivlCurrRange and ivlOffset. 

A flowchart of the renormalization is shown in Figure 9-7. The current value of ivlCurrRange is first compared to 256 and 

then the following applies: 

ï If ivlCurrRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished; 

ï Otherwise (ivlCurrRange is less than 256), the renormalization loop is entered. Within this loop, the value of 

ivlCurrRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using read_bits( 1 ). 

The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to ivlCurrRange upon 

completion of this process. 

 

Figure 9-7 ï Flowchart of renormalization 

 



 

240 Rec. ITU-T H.265 v8 (08/2021) 

9.3.4.3.4 Bypass decoding process for binary decisions 

Inputs to this process are bits from slice segment data and the variables ivlCurrRange and ivlOffset. 

Outputs of this process are the updated variable ivlOffset and the decoded value binVal. 

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-8 shows a flowchart of the corresponding 

process. 

First, the value of ivlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using read_bits( 1 ). 

Then, the value of ivlOffset is compared to the value of ivlCurrRange and then the following applies: 

ï If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 and ivlOffset is decremented 

by ivlCurrRange. 

ï Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0. 

The bitstream shall not contain data that result in a value of ivlOffset being greater than or equal to ivlCurrRange upon 

completion of this process. 

 

Figure 9-8 ï Flowchart of bypass decoding process 

 

9.3.4.3.5 Decoding process for binary decisions before termination 

Inputs to this process are bits from slice segment data and the variables ivlCurrRange and ivlOffset. 

Outputs of this process are the updated variables ivlCurrRange and ivlOffset, and the decoded value binVal. 

This decoding process applies to decoding of end_of_slice_segment_flag, end_of_subset_one_bit and pcm_flag 

corresponding to ctxTable equal to 0 and ctxIdx equal to 0. Figure 9-9 shows the flowchart of the corresponding decoding 

process, which is specified as follows: 

First, the value of ivlCurrRange is decremented by 2. Then, the value of ivlOffset is compared to the value of ivlCurrRange 

and then the following applies: 

ï If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1, no renormalization is carried 

out, and CABAC decoding is terminated. The last bit inserted in register ivlOffset is equal to 1. When decoding 

end_of_slice_segment_flag, this last bit inserted in register ivlOffset is interpreted as rbsp_stop_one_bit. When 

decoding end_of_subset_one_bit, this last bit inserted in register ivlOffset is interpreted as 

alignment_bit_equal_to_one. 

ï Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0 and renormalization is performed 

as specified in clause 9.3.4.3.3. 

NOTE ï This procedure may also be implemented using DecodeDecision( ctxTable, ctxIdx, bypassFlag ) with ctxTable = 0, 

ctxIdx = 0 and bypassFlag = 0. In the case where the decoded value is equal to 1, seven more bits would be read by 

DecodeDecision( ctxTable, ctxIdx, bypassFlag ) and a decoding process would have to adjust its bitstream pointer accordingly to 

properly decode following syntax elements. 



 

  Rec. ITU-T H.265 v8 (08/2021) 241 

 

Figure 9-9 ï Flowchart of decoding a decision before termination 

 

9.3.4.3.6 Alignment process prior to aligned bypass decoding 

Input to this process is the variable ivlCurrRange. 

Output of this process is the updated variable ivlCurrRange. 

This process applies prior to the decoding of syntax elements coeff_abs_level_remaining[ ] and coeff_sign_flag[ ]. 

ivlCurrRange is set equal to 256. 

NOTE ï When ivlCurrRange is 256, ivlOffset and the bit-stream can be considered as a shift register, and binVal as the register's 

second most significant bit (the most significant bit is always 0 due to the restriction of ivlOffset being less than ivlCurrRange). 

9.3.5 Arithmetic encoding process (informative) 

9.3.5.1 General 

This clause does not form an integral part of this Specification. 

Inputs to this process are decisions that are to be encoded and written. 

Outputs of this process are bits that are written to the RBSP. 

This informative clause describes an arithmetic encoding engine that matches the arithmetic decoding engine described in 

clause 9.3.4.3. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures are called in the 

same order. The following procedures are described in this clause: InitEncoder, EncodeDecision, EncodeBypass, 

EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass and DecodeTerminate, respectively. 

The state of the arithmetic encoding engine is represented by a value of the variable ivlLow pointing to the lower end of a 

sub-interval and a value of the variable ivlCurrRange specifying the corresponding range of that sub-interval. 

9.3.5.2 Initialization process for the arithmetic encoding engine (informative) 

This clause does not form an integral part of this Specification. 

This process is invoked before encoding the first coding block of a slice segment, and after encoding any 

pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data for a coding unit with pcm_flag equal 

to 1. 

Outputs of this process are the values ivlLow, ivlCurrRange, firstBitFlag, bitsOutstanding and BinCountsInNalUnits of 

the arithmetic encoding engine. 

In the initialization procedure of the encoder, ivlLow is set equal to 0 and ivlCurrRange is set equal to 510. Furthermore, 

firstBitFlag is set equal to 1 and the counter bitsOutstanding is set equal to 0. 



 

242 Rec. ITU-T H.265 v8 (08/2021) 

Depending on whether the current slice segment is the first slice segment of a coded picture, the following applies: 

ï If the current slice segment is the first slice segment of a coded picture, the counter BinCountsInNalUnits is set equal 

to 0. 

ï Otherwise (the current slice segment is not the first slice segment of a coded picture), the counter 

BinCountsInNalUnits is not modified. The value of BinCountsInNalUnits is the result of encoding all the slice 

segments of a coded picture that precede the current slice segment in decoding order. After initializing for the first 

slice segment of a coded picture as specified in this clause, BinCountsInNalUnits is incremented as specified in 

clauses 9.3.5.3, 9.3.5.5 and 9.3.5.6. 

NOTE ï The minimum register precision required for storing the values of the variables ivlLow and ivlCurrRange after invocation 

of any of the arithmetic encoding processes specified in clauses 9.3.5.3, 9.3.5.5 and 9.3.5.6 is 10 bits and 9 bits, respectively. The 

encoding process for a binary decision (EncodeDecision) as specified in clause 9.3.5.3 and the encoding process for a binary decision 

before termination (EncodeTerminate) as specified in clause 9.3.5.6 require a minimum register precision of 10 bits for the variable 

ivlLow and a minimum register precision of 9 bits for the variable ivlCurrRange. The bypass encoding process for binary decisions 

(EncodeBypass) as specified in clause 9.3.5.5 requires a minimum register precision of 11 bits for the variable ivlLow and a 

minimum register precision of 9 bits for the variable ivlCurrRange. The precision required for the counters bitsOutstanding and 

BinCountsInNalUnits should be sufficiently large to prevent overflow of the related registers. When maxBinCountInSlice denotes 

the maximum total number of binary decisions to encode in one slice segment and maxBinCountInPic denotes the maximum total 

number of binary decisions to encode a picture, the minimum register precision required for the variables bitsOutstanding and 

BinCountsInNalUnits is given by Ceil( Log2( maxBinCountInSlice + 1 ) ) and Ceil( Log2( maxBinCountInPic + 1 ) ), respectively. 

9.3.5.3 Encoding process for a binary decision (informative) 

This clause does not form an integral part of this Specification. 

Inputs to this process are the context index ctxIdx, the value of binVal to be encoded and the variables ivlCurrRange, 

ivlLow and BinCountsInNalUnits. 

Outputs of this process are the variables ivlCurrRange, ivlLow and BinCountsInNalUnits. 

Figure 9-10 shows the flowchart for encoding a single decision. In a first step, the variable ivlLpsRange is derived as 

follows: 

Given the current value of ivlCurrRange, ivlCurrRange is mapped to the index qRangeIdx of a quantized value of 

ivlCurrRange by using Equation 9-64. The value of qRangeIdx and the value of pStateIdx associated with ctxIdx are used 

to determine the value of the variable rangeTabLps as specified in Table 9-52, which is assigned to ivlLpsRange. The value 

of ivlCurrRange ī ivlLpsRange is assigned to ivlCurrRange. 

In a second step, the value of binVal is compared to valMps associated with ctxIdx. When binVal is different from valMps, 

ivlCurrRange is added to ivlLow and ivlCurrRange is set equal to the value ivlLpsRange. Given the encoded decision, the 

state transition is performed as specified in clause 9.3.4.3.2.2. Depending on the current value of ivlCurrRange, 

renormalization is performed as specified in clause 9.3.5.4. Finally, the variable BinCountsInNalUnits is incremented by 1. 



 

  Rec. ITU-T H.265 v8 (08/2021) 243 

 

Figure 9-10 ï Flowchart for encoding a decision 

 

9.3.5.4 Renormalization process in the arithmetic encoding engine (informative)  

This clause does not form an integral part of this Specification. 

Inputs to this process are the variables ivlCurrRange, ivlLow, firstBitFlag and bitsOutstanding. 

Outputs of this process are zero or more bits written to the RBSP and the updated variables ivlCurrRange, ivlLow, 

firstBitFlag and bitsOutstanding. 



 

244 Rec. ITU-T H.265 v8 (08/2021) 

Renormalization in the encoder is illustrated in Figure 9-11. 

 

Figure 9-11 ï Flowchart of renormalization in the encoder 

 

The PutBit( ) procedure described in Figure 9-12 provides carry over control. It uses the function WriteBits( B, N ) that 

writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes 

the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the 

encoding process. 

 

Figure 9-12 ï Flowchart of PutBit(B)  

 

9.3.5.5 Bypass encoding process for binary decisions (informative) 

This clause does not form an integral part of this Specification. 

Inputs to this process are the variables binVal, ivlLow, ivlCurrRange, bitsOutstanding and BinCountsInNalUnits. 



 

  Rec. ITU-T H.265 v8 (08/2021) 245 

Output of this process is a bit written to the RBSP and the updated variables ivlLow, bitsOutstanding and 

BinCountsInNalUnits. 

This encoding process applies to all binary decisions with bypassFlag equal to 1. 

When cabac_bypass_alignment_enabled_flag is equal to 1 and coeff_abs_level_remaining[ ] is present for any coefficients 

in the current sub-block, an alignment process is performed. This alignment process applies prior to the encoding of the 

syntax elements coeff_abs_level_remaining[ ] and coeff_sign_flag[ ] and sets ivlCurrRange to 256. 

Renormalization is included in the specification of this bypass encoding process as given in Figure 9-13. 

 

Figure 9-13 ï Flowchart of encoding bypass 

 

9.3.5.6 Encoding process for a binary decision before termination (informative) 

This clause does not form an integral part of this Specification. 

Inputs to this process are the variables binVal, ivlCurrRange, ivlLow, bitsOutstanding and BinCountsInNalUnits. 

Outputs of this process are zero or more bits written to the RBSP and the updated variables ivlLow, ivlCurrRange, 

bitsOutstanding and BinCountsInNalUnits. 

This encoding routine shown in Figure 9-14 applies to encoding of end_of_slice_segment_flag, end_of_subset_one_bit, 

and pcm_flag, all associated with ctxIdx equal to 0.  



 

246 Rec. ITU-T H.265 v8 (08/2021) 

 

Figure 9-14 ï Flowchart of encoding a decision before termination 

 

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in 

Figure 9-15 is applied. In this flushing procedure, the last bit written by WriteBits( B, N ) is equal to 1. When encoding 

end_of_slice_segment_flag, this last bit is interpreted as rbsp_stop_one_bit. When encoding end_of_subset_one_bit, this 

last bit is interpreted as alignment_bit_equal_to_one. 

 

Figure 9-15 ï Flowchart of flushing at termination 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 247 

9.3.5.7 Byte stuffing process (informative)  

This clause does not form an integral part of this Specification. 

This process is invoked after encoding the last coding block of the last slice segment of a picture and after encapsulation. 

Inputs to this process are the number of bytes NumBytesInVclNalUnits of all VCL NAL units of a picture, the number of 

minimum CUs PicSizeInMinCbsY in the picture and the number of binary symbols BinCountsInNalUnits resulting from 

encoding the contents of all VCL NAL units of the picture. 

NOTE ï The value of BinCountsInNalUnits is the result of encoding all slice segments of a coded picture. After initializing for the 

first slice segment of a coded picture as specified in clause 9.3.5.2, BinCountsInNalUnits is incremented as specified in 

clauses 9.3.5.3, 9.3.5.5 and 9.3.5.6. 

Outputs of this process are zero or more bytes appended to the NAL unit. 

Let the variable k be set equal to Ceil( ( Ceil( 3 *  ( 32 *  BinCountsInNalUnits ī RawMinCuBits *  PicSizeInMinCbsY ) ÷ 

1 024 ) ī NumBytesInVclNalUnits ) ÷ 3 ). Depending on the value of k the following applies: 

ï If k is less than or equal to 0, no cabac_zero_word is appended to the NAL unit. 

ï Otherwise (k is greater than 0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after encapsulation, 

where the first two bytes 0x0000 represent a cabac_zero_word and the third byte 0x03 represents an 

emulation_prevention_three_byte. 

10 Sub-bitstream extraction process 

Inputs to this process are a bitstream, a target highest TemporalId value tIdTarget and a target layer identifier list 

layerIdListTarget. 

Output of this process is a sub-bitstream. 

It is a requirement of bitstream conformance for the input bitstream that any output sub-bitstream that is the output of the 

process specified in this clause with the bitsteam, tIdTarget equal to any value in the range of 0 to 6, inclusive, and 

layerIdListTarget either equal to the layer identifier list associated with a layer set specified in the active VPS or consisting 

of all the nuh_layer_id values of the VCL NAL units present in the input bitstream as inputs, and that satisfies both of the 

following conditions shall be a conforming bitstream: 

ï The output sub-bitstream contains at least one VCL NAL unit with nuh_layer_id equal to each of the nuh_layer_id 

values in layerIdListTarget. 

ï The output sub-bitstream contains at least one VCL NAL unit with TemporalId equal to tIdTarget. 

NOTE 1 ï A bitstream conforming to a profile specified in Annex A contains one or more coded slice segment NAL units with 

nuh_layer_id equal to 0. 

NOTE 2 ï A conforming bitstream contains one or more coded slice segment NAL units with TemporalId equal to 0. 

The output sub-bitstream is derived as follows: 

ï When one or more of the following two conditions are true, remove all SEI NAL units that have nuh_layer_id equal 

to 0 and that contain a non-scalable-nested buffering period SEI message, a non-scalable-nested picture timing SEI 

message, or a non-scalable-nested decoding unit information SEI message: 

ï layerIdListTarget does not include all the values of nuh_layer_id in all NAL units in the bitstream. 

ï tIdTarget is less than the greatest TemporalId in all NAL units in the bitstream. 

NOTE 3 ï A "smart" bitstream extractor may include appropriate non-scalable-nested buffering picture SEI messages, non-

scalable-nested picture timing SEI messages and non-scalable-nested decoding unit information SEI messages in the 

extracted sub-bitstream, provided that the SEI messages applicable to the sub-bitstream were present as scalable-nested SEI 

messages in the original bitstream. 

ï Remove all NAL units with TemporalId greater than tIdTarget or nuh_layer_id not among the values included in 

layerIdListTarget. 



 

248 Rec. ITU-T H.265 v8 (08/2021) 

Annex A 

 

Profiles, tiers and levels 

(This annex forms an integral part of this Recommendation | International Standard.) 

A.1 Overview of profiles, tiers and levels 

Profiles, tiers and levels specify restrictions on the bitstreams and hence limits on the capabilities needed to decode the 

bitstreams. Profiles, tiers and levels may also be used to indicate interoperability points between individual decoder 

implementations. 

NOTE 1 ï This Specification does not include individually selectable "options" at the decoder, as this would increase interoperability 

difficulties. 

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to that 

profile. 

NOTE 2 ï Encoders are not required to make use of any particular subset of features supported in a profile. 

Each level of a tier specifies a set of limits on the values that may be taken by the syntax elements of this Specification. 

The same set of tier and level definitions is used with all profiles, but individual implementations may support a different 

tier and within a tier a different level for each supported profile. For any given profile, a level of a tier generally corresponds 

to a particular decoder processing load and memory capability. 

The profiles that are specified in clause A.3 are also referred to as the profiles specified in Annex A. 

A.2 Requirements on video decoder capability 

Capabilities of video decoders conforming to this Specification are specified in terms of the ability to decode video streams 

conforming to the constraints of profiles, tiers and levels specified in this annex and other annexes. When expressing the 

capabilities of a decoder for a specified profile, the tier and level supported for that profile should also be expressed. 

Specific values are specified in this annex and other annexes for the syntax elements general_profile_idc, general_tier_flag, 

general_level_idc, sub_layer_profile_idc[ i ], sub_layer_tier_flag[ i ] and sub_layer_level_idc[ i ]. All other values of 

general_profile_idc, general_level_idc, sub_layer_profile_idc[ i ] and sub_layer_level_idc[ i ] are reserved for future use 

by ITU-T | ISO/IEC. 

NOTE ï Decoders should not infer that a reserved value of general_profile_idc or sub_layer_profile_idc[ i ] between the values 

specified in this Specification indicates intermediate capabilities between the specified profiles, as there are no restrictions on the 

method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values. However, decoders should infer that a reserved 

value of general_level_idc or sub_layer_level_idc[ i ] associated with a particular value of general_tier_flag or 

sub_layer_tier_flag[ i ], respectively, between the values specified in this Specification indicates intermediate capabilities between 

the specified levels of the tier. 

A.3 Profiles 

A.3.1 General 

All constraints for PPSs that are specified are constraints for PPSs that are activated when the bitstream is decoded. All 

constraints for SPSs that are specified are constraints for SPSs that are activated when the bitstream is decoded. 

The variable RawCtuBits is derived as follows: 

RawCtuBits = CtbSizeY *  CtbSizeY *  BitDepthY + 

  2 *  ( CtbWidthC *  CtbHeightC ) *  BitDepthC (A-1) 

A.3.2 Main profile  

Bitstreams conforming to the Main profile shall obey the following constraints: 

ï Active VPSs shall have vps_base_layer_internal_flag and vps_base_layer_available_flag both equal to 1 only. 

ï Active SPSs for the base layer shall have chroma_format_idc equal to 1 only. 

ï Active SPSs for the base layer shall have bit_depth_luma_minus8 equal to 0 only. 

ï Active SPSs for the base layer shall have bit_depth_chroma_minus8 equal to 0 only. 

ï Active SPSs for the base layer shall have transform_skip_rotation_enabled_flag, 

transform_skip_context_enabled_flag, implicit_rdpcm_enabled_flag, explicit_rdpcm_enabled_flag, 



 

  Rec. ITU-T H.265 v8 (08/2021) 249 

extended_precision_processing_flag, intra_smoothing_disabled_flag, high_precision_offsets_enabled_flag, 

persistent_rice_adaptation_enabled_flag, cabac_bypass_alignment_enabled_flag, sps_curr_pic_ref_enabled_flag, 

palette_mode_enabled_flag, motion_vector_resolution_control_idc, and intra_boundary_filtering_disabled_flag, 

when present, equal to 0 only. 

ï CtbLog2SizeY derived according to active SPSs for the base layer shall be in the range of 4 to 6, inclusive. 

ï Active PPSs for the base layer shall have log2_max_transform_skip_block_size_minus2, 

chroma_qp_offset_list_enabled_flag, and residual_adaptive_colour_transform_enabled_flag, when present, equal to 

0 only. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, it shall have 

entropy_coding_sync_enabled_flag equal to 0. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, ColumnWidthInLumaSamples[ i ] shall be 

greater than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 

num_tile_rows_minus1, inclusive. 

ï The number of times read_bits( 1 ) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree_unit( ) data 

for any CTU shall be less than or equal to 5 *  RawCtuBits / 3. 

ï general_level_idc and sub_layer_level_idc[ i ] for all values of i in active SPSs for the base layer shall not be equal to 

255 (which indicates level 8.5). 

ï The tier and level constraints specified for the Main profile in clause A.4 shall be fulfilled. 

Conformance of a bitstream to the Main profile is indicated by general_profile_idc being equal to 1 or 

general_profile_compatibility_flag[ 1 ] being equal to 1. Conformance of a sub-layer representation with TemporalId equal 

to i to the Main profile is indicated by sub_layer_profile_idc[ i ] being equal to 1 or 

sub_layer_profile_compatibility_flag[ i ][  1 ] being equal to 1. 

NOTE ï When general_profile_compatibility_flag[ 1 ] is equal to 1, general_profile_compatibility_flag[ 2 ] should also be equal to 

1. When sub_layer_profile_compatibility_flag[ i ][  1 ] is equal to 1 for a value of i, sub_layer_profile_compatibility_flag[ i ][  2 ] 

should also be equal to 1. 

Decoders conforming to the Main profile at a specific level (identified by a specific value of general_level_idc) of a specific 

tier (identified by a specific value of general_tier_flag) shall be capable of decoding all bitstreams and sub-layer 

representations for which all of the following conditions apply: 

ï The bitstream or sub-layer representation is indicated to conform to the Main profile or the Main Still Picture profile. 

ï The bitstream or sub-layer representation is indicated to conform to a level that is not level 8.5 and is lower than or 

equal to the specified level. 

ï The bitstream or sub-layer representation is indicated to conform to a tier that is lower than or equal to the specified 

tier. 

A.3.3 Main 10 and Main 10 Still Picture profiles 

Bitstreams conforming to the Main 10 or Main 10 Still Picture profile shall obey the following constraints: 

ï In bitstreams conforming to the Main 10 Still Picture profile, the bitstream shall contain only one picture with 

nuh_layer_id equal to 0. 

ï Active VPSs shall have vps_base_layer_internal_flag and vps_base_layer_available_flag both equal to 1 only. 

ï Active SPSs for the base layer shall have chroma_format_idc equal to 1 only. 

ï Active SPSs for the base layer shall have bit_depth_luma_minus8 in the range of 0 to 2, inclusive. 

ï Active SPSs for the base layer shall have bit_depth_chroma_minus8 in the range of 0 to 2, inclusive. 

ï In bitstreams conforming to the Main 10 Still Picture profile, active SPSs for the base layer shall have 

sps_max_dec_pic_buffering_minus1[ sps_max_sub_layers_minus1 ] equal to 0 only. 

ï Active SPSs for the base layer shall have transform_skip_rotation_enabled_flag, 

transform_skip_context_enabled_flag, implicit_rdpcm_enabled_flag, explicit_rdpcm_enabled_flag, 

extended_precision_processing_flag, intra_smoothing_disabled_flag, high_precision_offsets_enabled_flag, 

persistent_rice_adaptation_enabled_flag, cabac_bypass_alignment_enabled_flag, sps_curr_pic_ref_enabled_flag, 

palette_mode_enabled_flag, motion_vector_resolution_control_idc, and intra_boundary_filtering_disabled_flag, 

when present, equal to 0 only. 



 

250 Rec. ITU-T H.265 v8 (08/2021) 

ï CtbLog2SizeY derived according to active SPSs for the base layer shall be in the range of 4 to 6, inclusive. 

ï Active PPSs for the base layer shall have log2_max_transform_skip_block_size_minus2, 

chroma_qp_offset_list_enabled_flag, and residual_adaptive_colour_transform_enabled_flag, when present, equal to 

0 only. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, it shall have 

entropy_coding_sync_enabled_flag equal to 0. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, ColumnWidthInLumaSamples[ i ] shall be 

greater than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 

num_tile_rows_minus1, inclusive. 

ï The number of times read_bits( 1 ) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree_unit( ) data 

for any CTU shall be less than or equal to 5 *  RawCtuBits / 3. 

ï In bitstreams conforming to the Main 10 profile that do not conform to the Main 10 Still Picture profile, 

general_level_idc and sub_layer_level_idc[ i ] for all values of i in active SPSs for the base layer shall not be equal to 

255 (which indicates level 8.5). 

ï The tier and level constraints specified for the Main 10 or Main 10 Still Picture profile in clause A.4, as applicable, 

shall be fulfilled. 

Conformance of a bitstream to the Main 10 profile is indicated by general_profile_idc being equal to 2 or 

general_profile_compatibility_flag[ 2 ] being equal to 1. Conformance of a sub-layer representation with TemporalId equal 

to i to the Main 10 profile is indicated by sub_layer_profile_idc[ i ] being equal to 2 or 

sub_layer_profile_compatibility_flag[ i ][  2 ] being equal to 1. 

Conformance of a bitstream to the Main 10 Still Picture profile is indicated by general_one_picture_only_constraint_flag 

being equal to 1 together with general_profile_idc being equal to 2 or general_profile_compatibility_flag[ 2 ] being equal 

to 1. Conformance of a sub-layer representation with TemporalId equal to i to the Main 10 Still Picture profile is indicated 

by sub_layer_one_picture_only_constraint_flag being equal to 1 together with sub_layer_profile_idc[ i ] being equal to 2 

or sub_layer_profile_compatibility_flag[ i ][  2 ] being equal to 1. 

NOTE ï When the conformance of a bitstream to the Main 10 Still Picture profile is indicated as specified above, and the 

indicated level is not level 8.5, the conditions for indication of the conformance of the bitstream to the Main 10 profile 

are also fulfilled. 

Decoders conforming to the Main 10 profile at a specific level (identified by a specific value of general_level_idc) of a 

specific tier (identified by a specific value of general_tier_flag) shall be capable of decoding all bitstreams and sub-layer 

representations for which all of the following conditions apply: 

ï The bitstream or sub-layer representation is indicated to conform to the Main 10 profile, the Main profile or the Main 

Still Picture profile. 

ï The bitstream or sub-layer representation is indicated to conform to a level that is not level 8.5 and is lower than or 

equal to the specified level. 

ï The bitstream or sub-layer representation is indicated to conform to a tier that is lower than or equal to the specified 

tier. 

Decoders conforming to the Main 10 Still Picture profile at a specific level (identified by a specific value of 

general_level_idc) of a specific tier (identified by a specific value of general_tier_flag) shall be capable of decoding all 

bitstreams and sub-layer representations for which all of the following conditions apply: 

ï The bitstream or sub-layer representation is indicated to conform to the Main 10 Still Picture profile or the Main Still 

Picture profile. 

ï The bitstream or sub-layer representation is indicated to conform to a level that is not level 8.5 and is lower than or 

equal to the specified level. 

ï The bitstream or sub-layer representation is indicated to conform to a tier that is lower than or equal to the specified 

tier. 

A.3.4 Main Still Picture profile  

Bitstreams conforming to the Main Still Picture profile shall obey the following constraints: 

ï The bitstream shall contain only one picture with nuh_layer_id equal to 0. 

ï Active VPSs shall have vps_base_layer_internal_flag and vps_base_layer_available_flag both equal to 1 only. 



 

  Rec. ITU-T H.265 v8 (08/2021) 251 

ï Active SPSs for the base layer shall have chroma_format_idc equal to 1 only. 

ï Active SPSs for the base layer shall have bit_depth_luma_minus8 equal to 0 only. 

ï Active SPSs for the base layer shall have bit_depth_chroma_minus8 equal to 0 only. 

ï Active SPSs for the base layer shall have sps_max_dec_pic_buffering_minus1[ sps_max_sub_layers_minus1 ] equal 

to 0 only. 

ï Active SPSs for the base layer shall have transform_skip_rotation_enabled_flag, transform_skip_

context_enabled_flag, implicit_rdpcm_enabled_flag, explicit_rdpcm_enabled_flag, extended_precision_processing_

flag, intra_smoothing_disabled_flag, high_precision_offsets_enabled_flag, persistent_rice_adaptation_enabled_flag, 

cabac_bypass_alignment_enabled_flag, sps_curr_pic_ref_enabled_flag, palette_mode_enabled_flag, motion_vector_

resolution_control_idc, and intra_boundary_filtering_disabled_flag, when present, equal to 0 only. 

ï CtbLog2SizeY derived according to active SPSs for the base layer shall be in the range of 4 to 6, inclusive. 

ï Active PPSs for the base layer shall have log2_max_transform_skip_block_size_minus2, 

chroma_qp_offset_list_enabled_flag, and residual_adaptive_colour_transform_enabled_flag, when present, equal to 

0 only. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, it shall have entropy_coding_

sync_enabled_flag equal to 0. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, ColumnWidthInLumaSamples[ i ] shall be 

greater than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 

num_tile_rows_minus1, inclusive. 

ï The number of times read_bits( 1 ) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree_unit( ) data 

for any CTU shall be less than or equal to 5 *  RawCtuBits / 3. 

ï The tier and level constraints specified for the Main Still Picture profile in clause A.4 shall be fulfilled. 

Conformance of a bitstream to the Main Still Picture profile is indicated by general_profile_idc being equal to 3 or 

general_profile_compatibility_flag[ 3 ] being equal to 1. 

NOTE ï When general_profile_compatibility_flag[ 3 ] is equal to 1, general_profile_compatibility_flag[ 1 ] and general_profile_

compatibility_flag[ 2 ] should also be equal to 1. When sub_layer_profile_compatibility_flag[ i ][  3 ] is equal to 1 for a value of i, 

sub_layer_profile_compatibility_flag[ i ][  1 ] and sub_layer_profile_compatibility_flag[ i ][  2 ] should also be equal to 1. 

Decoders conforming to the Main Still Picture profile at a specific level (identified by a specific value of general_level_idc) 

of a specific tier (identified by a specific value of general_tier_flag) shall be capable of decoding all bitstreams for which 

all of the following conditions apply: 

ï general_profile_idc is equal to 3 or general_profile_compatibility_flag[ 3 ] is equal to 1. 

ï general_level_idc is not equal to 255 and represents a level lower than or equal to the specified level. 

ï general_tier_flag represents a tier lower than or equal to the specified tier. 

A.3.5 Format range extensions profiles 

The following profiles, collectively referred to as the format range extensions profiles, are specified in this clause: 

ï The Monochrome, Monochrome 10, Monochrome 12 and Monochrome 16 profiles 

ï The Main 12 profile 

ï The Main 4:2:2 10 and Main 4:2:2 12 profiles 

ï The Main 4:4:4, Main 4:4:4 10 and Main 4:4:4 12 profiles 

ï The Main Intra, Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, Main 4:4:4 Intra, Main 4:4:4 10 

Intra, Main 4:4:4 12 Intra and Main 4:4:4 16 Intra profiles 

ï The Main 4:4:4 Still Picture and Main 4:4:4 16 Still Picture profiles 

Bitstreams conforming to the format range extensions profiles shall obey the following constraints: 

ï The constraints specified in Table A.1 shall apply, in which entries marked with "ï" indicate that the table entry does 

not impose a profile-specific constraint on the corresponding syntax element. 

NOTE ï For some syntax elements with table entries marked with "ï", a constraint may be imposed indirectly ï e.g., by 

semantics constraints that are imposed elsewhere in this Specification when other specified constraints are fulfilled. 



 

252 Rec. ITU-T H.265 v8 (08/2021) 

ï Active VPSs shall have vps_base_layer_internal_flag and vps_base_layer_available_flag both equal to 1 only. 

ï Active SPSs for the base layer shall have separate_colour_plane_flag, cabac_bypass_alignment_enabled_flag, 

sps_curr_pic_ref_enabled_flag, palette_mode_enabled_flag, motion_vector_resolution_control_idc, and 

intra_boundary_filtering_disabled_flag, when present, equal to 0 only. 

ï CtbLog2SizeY derived according to active SPSs for the base layer shall be in the range of 4 to 6, inclusive. 

ï Active PPSs for the base layer shall have residual_adaptive_colour_transform_enabled_flag, when present, equal to 0 

only. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, it shall have 

entropy_coding_sync_enabled_flag equal to 0. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, ColumnWidthInLumaSamples[ i ] shall be 

greater than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 

num_tile_rows_minus1, inclusive. 

ï In bitstreams conforming to the Main Intra, Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, 

Main 4:4:4 Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra or Main 4:4:4 16 Intra profiles, all pictures with 

nuh_layer_id equal to 0 shall be IRAP pictures and the output order indicated in the bitstream among these pictures 

shall be the same as the decoding order. 

ï The number of times read_bits( 1 ) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree_unit( ) data 

for any CTU shall be less than or equal to 5 *  RawCtuBits / 3. 

ï In bitstreams conforming to the Main 4:4:4 Still Picture and Main 4:4:4 16 Still Picture profiles, the following 

constraints shall apply: 

ï The bitstream shall contain only one picture with nuh_layer_id equal to 0. 

ï Active SPSs for the base layer shall have sps_max_dec_pic_buffering_minus1[ sps_max_sub_layers_minus1 ] 

equal to 0 only. 

ï In bitstreams conforming to the Monochrome, Monochrome 10, Monochrome 12, Monochrome 16, Main 12, Main 

4:2:2 10, Main 4:2:2 12, Main 4:4:4, Main 4:4:4 10, Main 4:4:4 12, Main Intra, Main 10 Intra, Main 12 Intra, Main 

4:2:2 10 Intra, Main 4:2:2 12 Intra, Main 4:4:4 Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra or Main 4:4:4 16 Intra 

profiles, general_level_idc and sub_layer_level_idc[ i ] for all values of i in active SPSs for the base layer shall not be 

equal to 255 (which indicates level 8.5). 

ï The tier and level constraints specified for the Monochrome, Monochrome 10, Monochrome 12, Monochrome 16, 

Main 12, Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4 10, Main 4:4:4 12, Main Intra, Main 10 Intra, Main 12 Intra, Main 

4:2:2 10 Intra, Main 4:2:2 12 Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra or Main 4:4:4 16 Intra profiles in clause 

A.4, as applicable, shall be fulfilled. 



 

  Rec. ITU-T H.265 v8 (08/2021) 253 

Table A.1 ï Allowed values for syntax elements in the format range extensions profiles 

P
ro

file
 fo

r w
h
ic

h
 c

o
n
s
tra

in
t is

 s
p

e
c
ifie

d 

c
h

ro
m

a
_

fo
rm

a
t_

id
c 

b
it_

d
e

p
th

_
lu

m
a
_

m
in

u
s
8

 a
n

d 

b
it_

d
e

p
th

_
c
h

ro
m

a
_

m
in

u
s
8 

tra
n

s
fo

rm
_

s
k
ip

_
ro

ta
tio

n
_

e
n
a

b
le

d
_fla

g
, 

tra
n

s
fo

rm
_

s
k
ip

_
c
o

n
te

x
t_

e
n
a

b
le

d_
fla

g
, 

im
p

lic
it_

rd
p

c
m

_
e

n
a

b
le

d
_

fla
g

, 

e
x
p

lic
it_

rd
p

c
m

_
e

n
a

b
le

d_
fla

g
, 

in
tra

_
s
m

o
o

th
in

g
_

d
is

a
b

le
d

_fla
g

, 

p
e

rs
is

te
n
t_

ric
e

_
a

d
a

p
ta

tio
n

_
e

n
a

b
le

d_
fla

g
 a

nd
 

lo
g

2
_

m
a

x
_

tra
n

s
fo

rm
_

s
k
ip

_
b

lo
c
k
_

s
iz

e
_

m
in

u
s
2 

e
x
te

n
d

e
d
_

p
re

c
is

io
n

_
p

ro
c
e

s
s
in

g_fla
g 

c
h

ro
m

a
_

q
p
_

o
ffs

e
t_

lis
t_

e
n

a
b

le
d

_
fla

g 

Monochrome 0 0 0 0 0 

Monochrome 10 0 0..2 0 0 0 

Monochrome 12 0 0..4 0 0 0 

Monochrome 16 0 ï ï ï 0 

Main 12 0 or 1 0..4 0 0 0 

Main 4:2:2 10 0..2 0..2 0 0 ï 

Main 4:2:2 12 0..2 0..4 0 0 ï 

Main 4:4:4 ï 0 ï 0 ï 

Main 4:4:4 10 ï 0..2 ï 0 ï 

Main 4:4:4 12 ï 0..4 ï 0 ï 

Main Intra 0 or 1 0 0 0 0 

Main 10 Intra 0 or 1 0..2 0 0 0 

Main 12 Intra 0 or 1 0..4 0 0 0 

Main 4:2:2 10 Intra 0..2 0..2 0 0 ï 

Main 4:2:2 12 Intra 0..2 0..4 0 0 ï 

Main 4:4:4 Intra ï 0 ï 0 ï 

Main 4:4:4 10 Intra ï 0..2 ï 0 ï 

Main 4:4:4 12 Intra ï 0..4 ï 0 ï 

Main 4:4:4 16 Intra ï ï ï ï ï 

Main 4:4:4 Still Picture ï 0 ï 0 ï 

Main 4:4:4 16 Still Picture ï ï ï ï ï 

 

Conformance of a bitstream to the format range extensions profiles is indicated by general_profile_idc being equal to 4 or 

general_profile_compatibility_flag[ 4 ] being equal to 1 with the additional indications specified in Table A.2. 

Conformance of a sub-layer representation with TemporalId equal to i to the format range extensions profiles is indicated 

by sub_layer_profile_idc[ i ] being equal to 4 or sub_layer_profile_compatibility_flag[ i ][  4 ] being equal to 1 with the 

additional indications specified in Table A.2, with each of the syntax elements in Table A.2 being replaced by its i-th 

corresponding sub-layer syntax element. 



 

254 Rec. ITU-T H.265 v8 (08/2021) 

All other combinations of the syntax elements in Table A.2 with general_profile_idc equal to 4 or 

general_profile_compatibility_flag[ 4 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. All other combinations 

of the i-th corresponding sub-layer syntax elements of the syntax elements in Table A.2 with sub_layer_profile_idc[ i ] 

equal to 4 or sub_layer_profile_compatibility_flag[ i ][  4 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. Such 

combinations shall not be present in bitstreams conforming to this Specification. However, decoders conforming to the 

format range extensions profiles shall allow other combinations as specified below in this clause to occur in the bitstream. 

Table A.2 ï Bitstream indications for conformance to format range extensions profiles 

P
ro

file
 fo

r w
h
ic

h
 th

e
 b

its
tre

a
m

 in
d

ic
a

te
s
 

c
o

n
fo

rm
a

n
c
e 

g
e

n
e

ra
l_

m
a

x
_

1
2

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

1
0

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

8
b

it_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

2
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

0
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

m
o

n
o

c
h

ro
m

e
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

in
tra

_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

o
n

e
_

p
ic

tu
re

_
o

n
ly

_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

lo
w

e
r_

b
it_

ra
te

_
c
o

n
s
tra

in
t_

fla
g 

Monochrome 1 1 1 1 1 1 0 0 1 

Monochrome 10 1 1 0 1 1 1 0 0 1 

Monochrome 12 1 0 0 1 1 1 0 0 1 

Monochrome 16 0 0 0 1 1 1 0 0 1 

Main 12 1 0 0 1 1 0 0 0 1 

Main 4:2:2 10 1 1 0 1 0 0 0 0 1 

Main 4:2:2 12 1 0 0 1 0 0 0 0 1 

Main 4:4:4 1 1 1 0 0 0 0 0 1 

Main 4:4:4 10 1 1 0 0 0 0 0 0 1 

Main 4:4:4 12 1 0 0 0 0 0 0 0 1 

Main Intra 1 1 1 1 1 0 1 0 0 or 1 

Main 10 Intra 1 1 0 1 1 0 1 0 0 or 1 

Main 12 Intra 1 0 0 1 1 0 1 0 0 or 1 

Main 4:2:2 10 Intra 1 1 0 1 0 0 1 0 0 or 1 

Main 4:2:2 12 Intra 1 0 0 1 0 0 1 0 0 or 1 

Main 4:4:4 Intra 1 1 1 0 0 0 1 0 0 or 1 

Main 4:4:4 10 Intra 1 1 0 0 0 0 1 0 0 or 1 

Main 4:4:4 12 Intra 1 0 0 0 0 0 1 0 0 or 1 

Main 4:4:4 16 Intra 0 0 0 0 0 0 1 0 0 or 1 

Main 4:4:4 Still Picture 1 1 1 0 0 0 1 1 0 or 1 

Main 4:4:4 16 Still Picture 0 0 0 0 0 0 1 1 0 or 1 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 255 

Decoders conforming to a format range extensions profile at a specific level (identified by a specific value of 

general_level_idc) of a specific tier (identified by a specific value of general_tier_flag) shall be capable of decoding all 

bitstreams and sub-layer representations for which all of the following conditions apply: 

ï Any of the following conditions apply: 

ï The decoder conforms to the Main 12, Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4, Main 4:4:4 10 or Main 4:4:4 12 

profile, and the bitstream or sub-layer representation is indicated to conform to the Main profile or the Main Still 

Picture profile. 

ï The decoder conforms to the Main 12, Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4 10 or Main 4:4:4 12 profile, 

and the bitstream or sub-layer representation is indicated to conform to the Main 10 profile, the Main profile or 

the Main Still Picture profile. 

ï The decoder conforms to the Main Intra, Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, 

Main 4:4:4 Intra, Main 4:4:4 10 Intra, or Main 4:4:4 12 Intra, Main 4:4:4 16 Intra, Main 4:4:4 Still Picture, or 

Main 4:4:4 16 Still Picture profile, and the bitstream or sub-layer representation is indicated to conform to the 

Main Still Picture profile. 

ï general_profile_idc is equal to 4 or general_profile_compatibility_flag[ 4 ] is equal to 1 for the bitstream, and 

the value of each constraint flag listed in Table A.2 is greater than or equal to the value(s) specified in the row 

of Table A.2 for the format range extensions profile for which the decoder conformance is evaluated. 

ï sub_layer_profile_idc[ i ] is equal to 4 or sub_layer_profile_compatibility_flag[ i ][  4 ] is equal to 1 for the sub-

layer representation, and the value of each constraint flag listed in Table A.2 is greater than or equal to the 

value(s) specified in the row of Table A.2 for the format range extensions profile for which the decoder 

conformance is evaluated, with each of the syntax elements in Table A.2 being replaced by its i-th corresponding 

sub-layer syntax element. 

ï The bitstream or sub-layer representation is indicated to conform to a level that is not level 8.5 and is lower than or 

equal to the specified level. 

ï The bitstream or sub-layer representation is indicated to conform to a tier that is lower than or equal to the specified 

tier. 

For decoders conforming to the Main Intra, Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, 

Main 4:4:4 Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra, Main 4:4:4 16 Intra, Main 4:4:4 Still Picture, or Main 4:4:4 16 

Still picture profile, the application of either or both of the in-loop filters of the in-loop filter process specified in clause 8.7 

is optional. 

A.3.6 High throughput profil es 

The following profiles, collectively referred to as the high throughput profiles, are specified in this clause: 

ï The High Throughput 4:4:4, High Throughput 4:4:4 10 and High Throughput 4:4:4 14 profiles 

ï The High Throughput 4:4:4 16 Intra profile 

NOTE 1 ï For purposes of this terminology, the high-throughput screen content coding extensions profiles specified in clause 

A.3.8 are not included in the set of profiles that are collectively referred to as the high throughput profiles, although the 

names of some of the high-throughput screen content coding extensions profiles include the term "High Throughput". 

Bitstreams conforming to the high throughput profiles shall obey the following constraints: 

ï Active VPSs shall have vps_base_layer_internal_flag and vps_base_layer_available_flag both equal to 1 only. 

ï Active SPSs for the base layer shall have separate_colour_plane_flag, sps_curr_pic_ref_enabled_flag, 

palette_mode_enabled_flag, motion_vector_resolution_control_idc, and intra_boundary_filtering_disabled_flag, 

when present, equal to 0 only. 

ï In bitstreams conforming to the High Throughput 4:4:4 profile, active SPSs for the base layer shall have 

bit_depth_luma_minus8 equal to 0, bit_depth_chroma_minus8 equal to 0, extended_precision_processing_flag equal 

to 0, and cabac_bypass_alignment_enabled_flag equal to 0 only. 

ï In bitstreams conforming to the High Throughput 4:4:4 10 profile, active SPSs for the base layer shall have 

bit_depth_luma_minus8 less than or equal to 2, bit_depth_chroma_minus8 less than or equal to 2, 

extended_precision_processing_flag equal to 0, and cabac_bypass_alignment_enabled_flag equal to 0 only. 

ï In bitstreams conforming to the High Throughput 4:4:4 14 profile, active SPSs for the base layer shall have 

bit_depth_luma_minus8 less than or equal to 6 and bit_depth_chroma_minus8 less than or equal to 6. 



 

256 Rec. ITU-T H.265 v8 (08/2021) 

ï In bitstreams conforming to the High Throughput 4:4:4 16 Intra profile, active SPSs for the base layer shall have 

cabac_bypass_alignment_enabled_flag equal to 1 only. 

ï CtbLog2SizeY derived according to active SPSs for the base layer shall be in the range of 4 to 6, inclusive. 

ï Active PPSs for the base layer shall have residual_adaptive_colour_transform_enabled_flag, when present, equal to 0 

only. 

ï In bitstreams conforming to the High Throughput 4:4:4, High Throughput 4:4:4 10, or High Throughput 4:4:4 14 

profiles, active PPSs for the base layer shall have entropy_coding_sync_enabled_flag equal to 1 only. 

NOTE 2 ï Unlike for some other profiles specified in this annex, an active PPS for the base layer for the high throughput 

profiles may have tiles_enabled_flag equal to 1 with entropy_coding_sync_enabled_flag equal to 1. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, ColumnWidthInLumaSamples[ i ] shall be 

greater than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 

num_tile_rows_minus1, inclusive. 

ï In bitstreams conforming to the High Throughput 4:4:4 16 Intra profile, all pictures with nuh_layer_id equal to 0 shall 

be IRAP pictures and the output order indicated in the bitstream among these pictures shall be the same as the decoding 

order. 

ï The number of times read_bits( 1 ) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree_unit( ) data 

for any CTU shall be less than or equal to 5 *  RawCtuBits / 3. 

ï general_level_idc and sub_layer_level_idc[ i ] for all values of i in active SPSs for the base layer shall not be equal to 

255 (which indicates level 8.5). 

ï The tier and level constraints specified for the High Throughput 4:4:4, High Throughput 4:4:4 10, High Throughput 

4:4:4 14 or High Throughput 4:4:4 16 Intra profile in clause A.4, as applicable, shall be fulfilled. 

Conformance of a bitstream to the high throughput profiles is indicated by general_profile_idc being equal to 5 or 

general_profile_compatibility_flag[ 5 ] being equal to 1 with the additional indications specified in Table A.3. 

Conformance of a sub-layer representation with TemporalId equal to i to the high throughput profiles is indicated by 

sub_layer_profile_idc[ i ] being equal to 5 or sub_layer_profile_compatibility_flag[ i ][  5 ] being equal to 1 with the 

additional indications specified in Table A.3, with each of the syntax elements in Table A.3 being replaced by its i-th 

corresponding sub-layer syntax element. 

All other combinations of the syntax elements in Table A.3 with general_profile_idc equal to 5 or 

general_profile_compatibility_flag[ 5 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. All other combinations 

of the i-th corresponding sub-layer syntax elements of the syntax elements in Table A.3 with sub_layer_profile_idc[ i ] 

equal to 5 or sub_layer_profile_compatibility_flag[ i ][  5 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. Such 

combinations shall not be present in bitstreams conforming to this Specification. However, decoders conforming to the 

format range extensions profiles shall allow other combinations as specified below in this clause to occur in the bitstream. 



 

  Rec. ITU-T H.265 v8 (08/2021) 257 

Table A.3 ï Bitstream indications for conformance to high throughput profiles 

P
ro

file
 fo

r w
h
ic

h
 th

e
 b

its
tre

a
m

 in
d

ic
a

te
s
 

c
o

n
fo

rm
a

n
c
e 

g
e

n
e

ra
l_

m
a

x
_

1
4

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

1
2

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

1
0

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

8
b

it_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

2
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

0
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

m
o

n
o

c
h

ro
m

e
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

in
tra

_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

o
n

e
_

p
ic

tu
re

_
o

n
ly

_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

lo
w

e
r_

b
it_

ra
te

_
c
o

n
s
tra

in
t_

fla
g 

High Throughput 4:4:4 1 1 1 1 0 0 0 0 0 1 

High Throughput 4:4:4 10 1 1 1 0 0 0 0 0 0 1 

High Throughput 4:4:4 14 1 0 0 0 0 0 0 0 0 1 

High Throughput 4:4:4 16 Intra 0 0 0 0 0 0 0 1 0 0 or 1 

 

Decoders conforming to a high throughput profile at a specific level (identified by a specific value of general_level_idc) 

of a specific tier (identified by a specific value of general_tier_flag) shall be capable of decoding all bitstreams or sub-

layer representations for which all of the following conditions apply: 

ï Any of the following conditions apply: 

ï general_profile_idc is equal to 5 or general_profile_compatibility_flag[ 5 ] is equal to 1 for the bitstream and the 

value of each constraint flag listed in Table A.3 is greater than or equal to the value(s) specified in the row of 

Table A.3 for the high throughput profile for which the decoder conformance is evaluated. 

ï sub_layer_profile_idc[ i ] is equal to 5 or sub_layer_profile_compatibility_flag[ i ][  5 ] is equal to 1 for the sub-

layer representation, and the value of each constraint flag listed in Table A.3 is greater than or equal to the 

value(s) specified in the row of Table A.3 for the high throughput profile for which the decoder conformance is 

evaluated, with each of the syntax elements in Table A.3 being replaced by its i-th corresponding sub-layer 

syntax element. 

ï The bitstream or sub-layer representation is indicated to conform to a level that is not level 8.5 and is lower than or 

equal to the specified level. 

ï The bitstream or sub-layer representation is indicated to conform to a tier that is lower than or equal to the specified 

tier. 

For decoders conforming to the High Throughput 4:4:4 16 Intra profile, the application of either or both of the in-loop 

filters of the in-loop filter process specified in clause 8.7 is optional. 

A.3.7 Screen content coding extensions profiles 

The following profiles, collectively referred to as the screen content coding extensions profiles, are specified in this clause: 

ï The Screen-Extended Main and Screen-Extended Main 10 profiles 

ï The Screen-Extended Main 4:4:4 and Screen-Extended Main 4:4:4 10 profiles 

NOTE ï For purposes of this terminology, the high throughput screen content coding extensions profiles specified in clause 

A.3.8 are not included in the set of profiles that are collectively referred to as the screen content coding extensions profiles, 

although the names of some of the high throughput screen content coding extensions profiles include the term "Screen-

Extended". 

Bitstreams conforming to the screen content coding extensions profiles shall obey the following constraints: 

ï The constraints specified in Table A.4 shall apply, in which entries marked with "ï" indicate that the table entry does 

not impose a profile-specific constraint on the corresponding syntax element. 



 

258 Rec. ITU-T H.265 v8 (08/2021) 

ï Active VPSs shall have vps_base_layer_internal_flag and vps_base_layer_available_flag both equal to 1 only. 

ï Active SPSs for the base layer shall have separate_colour_plane_flag, when present, equal to 0 only. 

ï CtbLog2SizeY derived according to active SPSs for the base layer shall be in the range of 4 to 6, inclusive. 

ï When an active SPS for the base layer has palette_mode_enabled_flag equal to 1, palette_max_size shall be less than 

or equal to 64 and PaletteMaxPredictorSize shall be less than or equal to 128. 

ï In bitstreams conforming to the Screen-Extended Main, Screen-Extended Main 10, Screen-Extended Main 4:4:4, or 

Screen-Extended Main 4:4:4 10 profiles, active SPSs for the base layer shall have 

extended_precision_processing_flag, and cabac_bypass_alignment_enabled_flag, when present, equal to 0 only. 

ï In bitstreams conforming to the Screen-Extended Main or Screen-Extended Main 10 profiles, when an active PPS for 

the base layer has tiles_enabled_flag equal to 1, it shall have entropy_coding_sync_enabled_flag equal to 0. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, ColumnWidthInLumaSamples[ i ] shall be 

greater than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 

num_tile_rows_minus1, inclusive. 

ï The number of times read_bits( 1 ) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree_unit( ) data 

for any CTU shall be less than or equal to 5 * RawCtuBits / 3. 

ï general_level_idc and sub_layer_level_idc[ i ] for all values of i in active SPSs for the base layer shall not be equal to 

255 (which indicates level 8.5). 

ï The tier and level constraints specified for the Screen-Extended Main, Screen-Extended Main 10, Screen-Extended 

Main 4:4:4 or Screen-Extended Main 4:4:4 10 profiles in clause A.4, as applicable, shall be fulfilled.  

Table A.4 ï Allowed values for syntax elements in the screen content coding extensions profiles 

P
ro

file
 fo

r w
h
ic

h
 c

o
n
s
tra

in
t is

 s
p

e
c
ifie

d 

c
h

ro
m

a
_

fo
rm

a
t_

id
c 

b
it_

d
e

p
th

_
lu

m
a
_

m
in

u
s
8

 a
n

d 

b
it_

d
e

p
th

_
c
h

ro
m

a
_

m
in

u
s
8 

Screen-Extended Main 1 0 

Screen-Extended Main 10 1 0..2 

Screen-Extended Main 4:4:4 0, 1, or 3 0 

Screen-Extended Main 4:4:4 10 0, 1, or 3 0..2 

 

Conformance of a bitstream to the screen content coding extensions profiles is indicated by general_profile_idc being equal 

to 9 or general_profile_compatibility_flag[ 9 ] being equal to 1 with the additional indications specified in Table A.5. 

Conformance of a sub-layer representation with TemporalId equal to i to the screen content coding extensions profiles is 

indicated by sub_layer_profile_idc[ i ] being equal to 9 or sub_layer_profile_compatibility_flag[ i ][  9 ] being equal to 1 

with the additional indications specified in Table A.5, with each of the syntax elements in Table A.5 being replaced by its 

i-th corresponding sub-layer syntax element. 



 

  Rec. ITU-T H.265 v8 (08/2021) 259 

All other combinations of the syntax elements in Table A.5 with general_profile_idc equal to 9 or 

general_profile_compatibility_flag[ 9 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. All other combinations 

of the i-th corresponding sub-layer syntax elements of the syntax elements in Table A.5 with sub_layer_profile_idc[ i ] 

equal to 9 or sub_layer_profile_compatibility_flag[ i ][  9 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. Such 

combinations shall not be present in bitstreams conforming to this Specification. However, decoders conforming to the 

screen content coding extensions profiles shall allow other combinations as specified below in this clause to occur in the 

bitstream. 

Table A.5 ï Bitstream indications for conformance to screen content coding extensions profiles 

P
ro

file
 fo

r w
h
ic

h
 th

e
 b

its
tre

a
m

 in
d

ic
a

te
s
 

c
o

n
fo

rm
a

n
c
e 

g
e

n
e

ra
l_

m
a

x
_

1
4

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

1
2

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

1
0

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

8
b

it_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

2
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

0
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

m
o

n
o

c
h

ro
m

e
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ral_
in

tra
_

c
o

n
s
tra

in
t_

fla
g
 

g
e

n
e

ra
l_

o
n

e
_

p
ic

tu
re

_
o

n
ly

_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

lo
w

e
r_

b
it_

ra
te

_
c
o

n
s
tra

in
t_

fla
g 

Screen-Extended Main 1 1 1 1 1 1 0 0 0 1 

Screen-Extended Main 10 1 1 1 0 1 1 0 0 0 1 

Screen-Extended Main 4:4:4 1 1 1 1 0 0 0 0 0 1 

Screen-Extended Main 4:4:4 10 1 1 1 0 0 0 0 0 0 1 

 

Decoders conforming to a screen content coding extensions profile at a specific level (identified by a specific value of 

general_level_idc) of a specific tier (identified by a specific value of general_tier_flag) shall be capable of decoding all 

bitstreams and sub-layer representations for which all of the following conditions apply: 

ï Any of the following conditions apply: 

ï The bitstream or sub-layer representation is indicated to conform to the Main, Main Still Picture, or Monochrome 

profile. 

ï The decoder conforms to the Screen-Extended Main 10 or Screen-Extended Main 4:4:4 10 profile, and the 

bitstream or sub-layer representation is indicated to conform to the Main 10 profile. 

ï The decoder conforms to the Screen-Extended Main 4:4:4 or Screen-Extended Main 4:4:4 10 profile, and the 

bitstream or sub-layer representation is indicated to conform to the Main 4:4:4 profile. 

ï The decoder conforms to the Screen-Extended Main 4:4:4 10 profile, and the bitstream or sub-layer 

representation is indicated to conform to the Main 4:4:4 10 profile. 

ï general_profile_idc is equal to 4 or general_profile_compatibility_flag[ 4 ] is equal to 1 or general_profile_idc 

is equal to 9 or general_profile_compatibility_flag[ 9 ] is equal to 1 for the bitstream, and the value of each 

constraint flag listed in Table A.5 is greater than or equal to the value(s) specified in the row of Table A.5 for 

the screen content coding extensions profile for which the decoder conformance is evaluated, and 

general_max_422chroma_constraint_flag is equal to general_max_420chroma_constraint_flag. 

ï sub_layer_profile_idc[ i ] is equal to 4 or sub_layer_profile_compatibility_flag[ i ][  4 ] is equal to 1 or 

sub_layer_profile_idc[ i ] is equal to 9 or sub_layer_profile_compatibility_flag[ i ][  9 ] is equal to 1 for the sub-

layer representation, and the value of each constraint flag listed in Table A.5 is greater than or equal to the 

value(s) specified in the row of Table A.5 for the screen content coding extensions profile for which the decoder 

conformance is evaluated, and general_max_422chroma_constraint_flag is equal to general_max_420chroma_

constraint_flag, with each of the syntax elements in Table A.5 being replaced by its i-th corresponding sub-layer 

syntax element. 



 

260 Rec. ITU-T H.265 v8 (08/2021) 

ï The bitstream or sub-layer representation is indicated to conform to a level that is not level 8.5 and is lower than or 

equal to the specified level. 

ï The bitstream or sub-layer representation is indicated to conform to a tier that is lower than or equal to the specified 

tier. 

A.3.8 High throughput screen content coding extensions profiles 

The following profiles, collectively referred to as the high throughput screen content coding extensions profiles, are 

specified in this clause: 

ï The Screen-Extended High Throughput 4:4:4, Screen-Extended High Throughput 4:4:4 10, and Screen-Extended High 

Throughput 14 profiles 

Bitstreams conforming to the screen content coding extensions profiles shall obey the following constraints: 

ï The constraints specified in Table A.6 shall apply, in which entries marked with "ï" indicate that the table entry does 

not impose a profile-specific constraint on the corresponding syntax element. 

ï Active VPSs shall have vps_base_layer_internal_flag and vps_base_layer_available_flag both equal to 1 only. 

ï Active SPSs for the base layer shall have separate_colour_plane_flag, when present, equal to 0 only. 

ï CtbLog2SizeY derived according to active SPSs for the base layer shall be in the range of 4 to 6, inclusive. 

ï When an active SPS for the base layer has palette_mode_enabled_flag equal to 1, palette_max_size shall be less than 

or equal to 64 and PaletteMaxPredictorSize shall be less than or equal to 128. 

ï Active SPSs for the base layer shall have extended_precision_processing_flag, and 

cabac_bypass_alignment_enabled_flag, when present, equal to 0 only. 

ï Active PPSs for the base layer shall have entropy_coding_sync_enabled_flag equal to 1 only. 

NOTE ï Unlike for some other profiles specified in this annex, an active PPS for the base layer for Screen-Extended High 

Throughput 4:4:4, Screen-Extended High Throughput 4:4:4 10, or Screen-Extended High Throughput 4:4:4 14 profiles may 

have tiles_enabled_flag equal to 1 with entropy_coding_sync_enabled_flag equal to 1. 

ï When an active PPS for the base layer has tiles_enabled_flag equal to 1, ColumnWidthInLumaSamples[ i ] shall be 

greater than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 

RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 

num_tile_rows_minus1, inclusive. 

ï The number of times read_bits( 1 ) is called in clauses 9.3.4.3.3 and 9.3.4.3.4 when parsing coding_tree_unit( ) data 

for any CTU shall be less than or equal to 5 * RawCtuBits / 3. 

ï general_level_idc and sub_layer_level_idc[ i ] for all values of i in active SPSs for the base layer shall not be equal to 

255 (which indicates level 8.5). 

ï The tier and level constraints specified for the Screen-Extended High Throughput 4:4:4, Screen-Extended High 

Throughput 4:4:4 10, and Screen-Extended High Throughput 14 profiles in clause A.4, as applicable, shall be fulfilled. 



 

  Rec. ITU-T H.265 v8 (08/2021) 261 

Table A.6 ï Allowed values for syntax elements in the high throughput screen content coding extensions profiles 

P
ro

file
 fo

r w
h
ic

h
 c

o
n
s
tra

in
t is

 s
p

e
c
ifie

d 

c
h

ro
m

a
_

fo
rm

a
t_

id
c 

b
it_

d
e

p
th

_
lu

m
a
_

m
in

u
s
8

 a
n

d 

b
it_

d
e

p
th

_
c
h

ro
m

a
_

m
in

u
s
8 

Screen-Extended High Throughput 4:4:4 ï 0 

Screen-Extended High Throughput 4:4:4 10 ï 0..2 

Screen-Extended High Throughput 4:4:4 14 ï 0..6 

 

Conformance of a bitstream to the high throughput screen content coding extensions profiles is indicated by 

general_profile_idc being equal to 11 or general_profile_compatibility_flag[ 11 ] being equal to 1 with the additional 

indications specified in Table A.7. Conformance of a sub-layer representation with TemporalId equal to i to the screen 

content coding extensions profiles is indicated by sub_layer_profile_idc[ i ] being equal to 11 or 

sub_layer_profile_compatibility_flag[ i ][  11 ] being equal to 1 with the additional indications specified in Table A.7, with 

each of the syntax elements in Table A.7 being replaced by its i-th corresponding sub-layer syntax element. 

All other combinations of the syntax elements in Table A.7 with general_profile_idc equal to 11 or 

general_profile_compatibility_flag[ 11 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. All other combinations 

of the i-th corresponding sub-layer syntax elements of the syntax elements in Table A.7 with sub_layer_profile_idc[ i ] 

equal to 11 or sub_layer_profile_compatibility_flag[ i ][  11 ] equal to 1 are reserved for future use by ITU-T | ISO/IEC. 

Such combinations shall not be present in bitstreams conforming to this Specification. However, decoders conforming to 

the screen content coding extensions profiles shall allow other combinations as specified below in this clause to occur in 

the bitstream. 



 

262 Rec. ITU-T H.265 v8 (08/2021) 

Table A.7 ï Bitstream indications for conformance to high throughput screen content coding extensions profiles 

P
ro

file
 
fo

r 
w

h
ic

h
 
th

e
 
b

its
tre

a
m

 
in

d
ic

a
te

s
 

c
o

n
fo

rm
a

n
c
e 

g
e

n
e

ra
l_

m
a

x
_

1
4

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

1
2

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

1
0

b
it_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

8
b

it_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

2
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

4
2

0
c
h

ro
m

a
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

m
a

x
_

m
o

n
o

c
h

ro
m

e
_

c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

in
tra

_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

o
n

e
_

p
ic

tu
re

_
o

n
ly

_
c
o

n
s
tra

in
t_

fla
g 

g
e

n
e

ra
l_

lo
w

e
r_

b
it_

ra
te

_
c
o

n
s
tra

in
t_

fla
g 

Screen-Extended 

High Throughput 4:4:4 
1 1 1 1 0 0 0 0 0 1 

Screen-Extended 

High Throughput 4:4:4 10 
1 1 1 0 0 0 0 0 0 1 

Screen-Extended 

High Throughput 4:4:4 14 
1 0 0 0 0 0 0 0 0 1 

 

Decoders conforming to a high throughput screen content coding extensions profile at a specific level (identified by a 

specific value of general_level_idc) of a specific tier (identified by a specific value of general_tier_flag) shall be capable 

of decoding all bitstreams and sub-layer representations for which all of the following conditions apply: 

ï Any of the following conditions apply: 

ï The bitstream or sub-layer representation is indicated to conform to the Main, Main Still Picture, or Monochrome 

profile. 

ï The bitstream or sub-layer representation is indicated to conform to the High Throughput 4:4:4 profile. 

ï The decoder conforms to the Screen-Extended High Throughput 4:4:4 10 or Screen-Extended High Throughput 

4:4:4 14 profile, and the bitstream or sub-layer representation is indicated to conform to the High Throughput 

4:4:4 10 profile. 

ï The decoder conforms to the Screen-Extended High Throughput 4:4:4 14 profile, and the bitstream or sub-layer 

representation is indicated to conform to the High Throughput 4:4:4 14 profile. 

ï general_profile_idc is equal to 4 or general_profile_compatibility_flag[ 4 ] is equal to 1 or general_profile_idc 

is equal to 11 or general_profile_compatibility_flag[ 11 ] is equal to 1 for the bitstream, and the value of each 

constraint flag listed in Table A.7 is greater than or equal to the value(s) specified in the row of Table A.7 for 

the screen content coding extensions profile for which the decoder conformance is evaluated, and 

general_max_422chroma_constraint_flag is equal to general_max_420chroma_constraint_flag. 

ï sub_layer_profile_idc[ i ] is equal to 4 or sub_layer_profile_compatibility_flag[ i ][  4 ] is equal to 1 or 

sub_layer_profile_idc[ i ] is equal to 11 or sub_layer_profile_compatibility_flag[ i ][  11 ] is equal to 1 for the 

sub-layer representation, and the value of each constraint flag listed in Table A.7 is greater than or equal to the 

value(s) specified in the row of  Table A.7 for the screen content coding extensions profile for which the decoder 

conformance is evaluated, and general_max_422chroma_constraint_flag is equal to 

general_max_420chroma_constraint_flag, with each of the syntax elements in Table A.7 being replaced by its 

i-th corresponding sub-layer syntax element, respectively. 

ï The bitstream or sub-layer representation is indicated to conform to a level that is not level 8.5 and is lower than or 

equal to the specified level. 

ï The bitstream or sub-layer representation is indicated to conform to a tier that is lower than or equal to the specified 

tier. 



 

  Rec. ITU-T H.265 v8 (08/2021) 263 

A.4 Tiers and levels 

A.4.1 General tier and level limits 

For purposes of comparison of tier capabilities, the tier with general_tier_flag or sub_layer_tier_flag[ i ] equal to 0 is 

considered to be a lower tier than the tier with general_tier_flag or sub_layer_tier_flag[ i ] equal to 1. 

For purposes of comparison of level capabilities, a particular level of a specific tier is considered to be a lower level than 

some other level of the same tier when the value of the general_level_idc or sub_layer_level_idc[ i ] of the particular level 

is less than that of the other level. 

The following is specified for expressing the constraints in this annex: 

ï Let access unit n be the n-th access unit in decoding order, with the first access unit being access unit 0 (i.e., the 0-th 

access unit). 

ï Let picture n be the coded picture or the corresponding decoded picture of access unit n. 

When the specified level is not level 8.5, bitstreams conforming to a profile at a specified tier and level shall obey the 

following constraints for each bitstream conformance test as specified in Annex C: 

a) PicSizeInSamplesY shall be less than or equal to MaxLumaPs, where MaxLumaPs is specified in Table A.8. 

b) The value of pic_width_in_luma_samples shall be less than or equal to Sqrt( MaxLumaPs *  8 ). 

c) The value of pic_height_in_luma_samples shall be less than or equal to Sqrt( MaxLumaPs *  8 ). 

d) For level 5 and higher levels, the value of CtbSizeY shall be equal to 32 or 64. 

e) The value of NumPicTotalCurr shall be less than or equal to 8. 

f) The value of num_tile_columns_minus1 shall be less than MaxTileCols and num_tile_rows_minus1 shall be 

less than MaxTileRows, where MaxTileCols and MaxTileRows are specified in Table A.8. 

g) For the VCL HRD parameters, CpbSize[ i ] shall be less than or equal to CpbVclFactor *  MaxCPB for at least 

one value of i in the range of 0 to cpb_cnt_minus1[ HighestTid ], inclusive, where CpbSize[ i ] is specified in 

clause E.3.3 based on parameters selected as specified in clause C.1, CpbVclFactor is specified in Table A.10, 

and MaxCPB is specified in Table A.8 in units of CpbVclFactor bits. 

h) For the NAL HRD parameters, CpbSize[ i ] shall be less than or equal to CpbNalFactor *  MaxCPB for at least 

one value of i in the range of 0 to cpb_cnt_minus1[ HighestTid ], inclusive, where CpbSize[ i ] is specified in 

clause E.3.3 based on parameters selected as specified in clause C.1, CpbNalFactor is specified in Table A.10, 

and MaxCPB is specified in Table A.8 in units of CpbNalFactor bits. 

Table A.8 specifies the limits for each level of each tier for levels other than level 8.5. 

A tier and level to which a bitstream conforms are indicated by the syntax elements general_tier_flag and 

general_level_idc, and a tier and level to which a sub-layer representation conforms are indicated by the syntax elements 

sub_layer_tier_flag[ i ] and sub_layer_level_idc[ i ], as follows: 

ï If the specified level is not level 8.5, general_tier_flag or sub_layer_tier_flag[ i ] equal to 0 indicates conformance to 

the Main tier, general_tier_flag or sub_layer_tier_flag[ i ] equal to 1 indicates conformance to the High tier, according 

to the tier constraints specified in Table A.8 and general_tier_flag and sub_layer_tier_flag[ i ] shall be equal to 0 for 

levels below level 4 (corresponding to the entries in Table A.8 marked with "-"). Otherwise (the specified level is 

level 8.5), it is a requirement of bitstream conformance that general_tier_flag and sub_layer_tier_flag[ i ] shall be 

equal to 1 and the value 0 for general_tier_flag and sub_layer_tier_flag[ i ] is reserved for future use by ITU-T | 

ISO/IEC and decoders shall ignore the value of general_tier_flag and sub_layer_tier_flag[ i ]. 

ï general_level_idc and sub_layer_level_idc[ i ] shall be set equal to a value of 30 times the level number specified in 

Table A.8. 



 

264 Rec. ITU-T H.265 v8 (08/2021) 

Table A.8 ï General tier and level limits 

L
e

v
e

l 

M
a

x
 lu

m
a

 p
ic

tu
re

 s
iz

e
 

M
a

x
L

u
m

a
P

s
 (s

a
m

p
le

s
) 

M
a

x
 C

P
B

 s
iz

e
 

M
a

x
C

P
B

 

(C
p
b

V
c
lF

a
c
to

r 

o
r C

p
b

N
a

lF
a

c
to

r 

b
its

) 

M
a

x
 s

lic
e

 s
e

g
m

e
n

ts
 p

e
r p

ic
tu

re
 

M
a

x
S

lic
e

S
e

g
m

e
n

ts
P

e
rP

ic
tu

re 

M
a

x
 #

 o
f tile

 ro
w

s
 M

a
x
T

ile
R

o
w

s 

M
a

x
 #

 o
f tile

 c
o
lu

m
n
s
 

M
a

x
T

ile
C

o
ls 

M
a

in
 tie

r
 

H
ig

h
 tie

r
 

1 36 864  350 - 16 1 1 

2 122 880  1 500 - 16 1 1 

2.1 245 760 3 000 - 20 1 1 

3 552 960 6 000 - 30 2 2 

3.1 983 040 10 000 - 40 3 3 

4 2 228 224 12 000 30 000 75 5 5 

4.1 2 228 224 20 000 50 000 75 5 5 

5 8 912 896 25 000 100 000 200 11 10 

5.1 8 912 896 40 000 160 000 200 11 10 

5.2 8 912 896 60 000 240 000 200 11 10 

6 35 651 584 60 000 240 000 600 22 20 

6.1 35 651 584 120 000 480 000 600 22 20 

6.2 35 651 584 240 000 800 000 600 22 20 

 

A.4.2 Profile-specific level limits for the video profiles 

NOTE ï The term "video profiles", as used in this clause, refers to those profiles that are not still picture profiles. The still picture 

profiles include the Main Still Picture, Main 10 Still Picture, Main 4:4:4 Still Picture, and Main 4:4:4 16 Still Picture profiles. 

The following is specified for expressing the constraints in this annex: 

ï Let the variable fR be set equal to 1 · 300. 

The variable HbrFactor is defined as follows: 

ï If the bitstream or sub-layer representation is indicated to conform to the Main profile or the Main 10 profile, 

HbrFactor is set equal to 1. 

ï Otherwise, if the bitstream or sub-layer representation is indicated to conform to the High Throughput 4:4:4, High 

Throughput 4:4:4 10, High Throughput 4:4:4 14, Screen-Extended High Throughput 4:4:4, Screen-Extended High 

Throughput 4:4:4 10, or Screen-Extended High Throughput 4:4:4 14  profile, HbrFactor is set equal to 6. 

ï Otherwise, if the bitstream or sub-layer representation is indicated to conform to the High Throughput 4:4:4 16 Intra 

profile, HbrFactor is set equal to 24 ī ( 12 *  general_lower_bit_rate_constraint_flag ) or 

24 ī ( 12 *  sub_layer_lower_bit_rate_constraint_flag[ i ] ). 

ï Otherwise, HbrFactor is set equal to 2 ī general_lower_bit_rate_constraint_flag or 

2 ī sub_layer_lower_bit_rate_constraint_flag[ i ]. 

The variable BrVclFactor, which represents the VCL bit rate scale factor, is set equal to CpbVclFactor * HbrFactor. 

The variable BrNalFactor, which represents the NAL bit rate scale factor, is set equal to CpbNalFactor * HbrFactor. 

The variable MinCr is set equal to MinCrBase * MinCrScaleFactor ÷ HbrFactor. 

When the specified level is not level 8.5, the value of sps_max_dec_pic_buffering_minus1[ HighestTid ] + 1 shall be less 

than or equal to MaxDpbSize, which is derived as follows: 

if( PicSizeInSamplesY  <=  ( MaxLumaPs  >>  2 ) ) 

 MaxDpbSize = Min( 4 * maxDpbPicBuf, 16 ) 



 

  Rec. ITU-T H.265 v8 (08/2021) 265 

else if( PicSizeInSamplesY  <=  ( MaxLumaPs  >>  1 ) ) 

 MaxDpbSize = Min( 2 * maxDpbPicBuf, 16 ) (A-2) 

else if( PicSizeInSamplesY  <=  ( ( 3 * MaxLumaPs )  >>  2 ) ) 

 MaxDpbSize = Min( ( 4 * maxDpbPicBuf ) / 3, 16 ) 

else 

 MaxDpbSize = maxDpbPicBuf 

where MaxLumaPs is specified in Table A.8, and maxDpbPicBuf is equal to 6 for all profiles where the value of 

sps_curr_pic_ref_enabled_flag is required to be equal to 0 and 7 for all profiles where the value of 

sps_curr_pic_ref_enabled_flag is not required to be equal to 0. 

Bitstreams and sub-layer representations conforming to the Monochrome, Monochrome 10, Monochrome 12, 

Monochrome 16, Main, Main 10, Main 12, Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4 10, Main 4:4:4 12, Main Intra, 

Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, Main 4:4:4 10 Intra, Main 4:4:4 12 Intra, Main 

4:4:4 16 Intra High Throughput 4:4:4, High Throughput 4:4:4 10, High Throughput 4:4:4 14, High Throughput 4:4:4 16 

Intra , Screen-Extended Main, Screen-Extended Main 10, Screen-Extended Main 4:4:4, Screen-Extended Main 4:4:4 10, 

Screen-Extended High Throughput 4:4:4, Screen-Extended High Throughput 4:4:4 10, or Screen-Extended High 

Throughput 4:4:4 14 profile at a specified tier and level shall obey the following constraints for each bitstream conformance 

test as specified in Annex C: 

a) The nominal removal time of access unit n (with n greater than 0) from the CPB, as specified in clause C.2.3, 

shall satisfy the constraint that AuNominalRemovalTime[ n ] ī AuCpbRemovalTime[ n ī 1 ] is greater than or 

equal to Max( PicSizeInSamplesY · MaxLumaSr, fR ) for the value of PicSizeInSamplesY of picture n ī 1, 

where MaxLumaSr is the value specified in Table A.9 that applies to picture n ī 1. 

b) The difference between consecutive output times of pictures from the DPB, as specified in clause C.3.3, shall 

satisfy the constraint that DpbOutputInterval[ n ] is greater than or equal to 

Max( PicSizeInSamplesY · MaxLumaSr, fR ) for the value of PicSizeInSamplesY of picture n, where 

MaxLumaSr is the value specified in Table A.9 for picture n, provided that picture n is a picture that is output 

and is not the last picture of the bitstream that is output. 

c) The removal time of access unit 0 shall satisfy the constraint that the number of slice segments in picture 0 is less 

than or equal to Min( Max( 1, MaxSliceSegmentsPerPicture *  MaxLumaSr / MaxLumaPs * 

( AuCpbRemovalTime[ 0 ] ī AuNominalRemovalTime[ 0 ] ) + MaxSliceSegmentsPerPicture * 

PicSizeInSamplesY / MaxLumaPs ), MaxSliceSegmentsPerPicture ), for the value of PicSizeInSamplesY of 

picture 0, where MaxSliceSegmentsPerPicture, MaxLumaPs and MaxLumaSr are the values specified in 

Table A.8 and Table A.9, respectively, that apply to picture 0. 

d) The difference between consecutive CPB removal times of access units n and n ī 1 (with n greater than 0) shall 

satisfy the constraint that the number of slice segments in picture n is less than or equal to 

Min( (Max( 1, MaxSliceSegmentsPerPicture * MaxLumaSr / MaxLumaPs * ( AuCpbRemovalTime[ n ] ī 

AuCpbRemovalTime[ n ī 1 ] ) ), MaxSliceSegmentsPerPicture ), where MaxSliceSegmentsPerPicture, 

MaxLumaPs and MaxLumaSr are the values specified in Table A.8 and Table A.9 that apply to picture n. 

e) For the VCL HRD parameters, BitRate[ i ] shall be less than or equal to BrVclFactor *  MaxBR for at least one 

value of i in the range of 0 to cpb_cnt_minus1[ HighestTid ], inclusive, where BitRate[ i ] is specified in 

clause E.3.3 based on parameters selected as specified in clause C.1 and MaxBR is specified in Table A.9 in units 

of BrVclFactor bits/s. 

f) For the NAL HRD parameters, BitRate[ i ] shall be less than or equal to BrNalFactor *  MaxBR for at least one 

value of i in the range of 0 to cpb_cnt_minus1[ HighestTid ], inclusive, where BitRate[ i ] is specified in 

clause E.3.3 based on parameters selected as specified in clause C.1 and MaxBR is specified in Table A.9 in units 

of BrNalFactor bits/s. 

g) The sum of the NumBytesInNalUnit variables for access unit 0 shall be less than or equal to 

FormatCapabilityFactor * ( Max( PicSizeInSamplesY, fR *  MaxLumaSr ) + MaxLumaSr * 

( AuCpbRemovalTime[ 0 ] ī AuNominalRemovalTime[ 0 ] ) ) ÷ MinCr for the value of PicSizeInSamplesY of 

picture 0, where MaxLumaSr and FormatCapabilityFactor are the values specified in Table A.9 and Table A.10, 

respectively, that apply to picture 0. 

h) The sum of the NumBytesInNalUnit variables for access unit n (with n greater than 0) shall be less than or equal 

to FormatCapabilityFactor * MaxLumaSr * ( AuCpbRemovalTime[ n ] ī AuCpbRemovalTime[ n ī 1 ] ) ÷ 

MinCr, where MaxLumaSr and FormatCapabilityFactor are the values specified in Table A.9 and Table A.10, 

respectively, that apply to picture n. 

i) The removal time of access unit 0 shall satisfy the constraint that the number of tiles in picture 0 is less than or 

equal to Min( Max( 1, MaxTileCols * MaxTileRows * 120 * ( AuCpbRemovalTime[ 0 ] ī 



 

266 Rec. ITU-T H.265 v8 (08/2021) 

AuNominalRemovalTime[ 0 ] ) + MaxTileCols * MaxTileRows * PicSizeInSamplesY / MaxLumaPs ), 

MaxTileCols * MaxTileRows ), for the value of PicSizeInSamplesY of picture 0, where MaxTileCols and 

MaxTileRows are the values specified in Table A.8 that apply to picture 0. 

j) The difference between consecutive CPB removal times of access units n and n ī 1 (with n greater than 0) shall 

satisfy the constraint that the number of tiles in picture n is less than or equal to Min( Max( 1, MaxTileCols * 

MaxTileRows * 120 * ( AuCpbRemovalTime[ n ] ī AuCpbRemovalTime[ n ī 1 ] ) ), MaxTileCols * 

MaxTileRows ), where MaxTileCols and MaxTileRows are the values specified in Table A.8 that apply to 

picture n. 
k)  

Table A.9 ï Tier and level limits for the video profiles 

L
e

v
e

l 

M
a

x
 lu

m
a

 s
a

m
p

le
 ra

te
 

M
a

x
L

u
m

a
S

r 

(s
a

m
p
le

s
/s

e
c
) 

M
a

x
 b

it ra
te

 

M
a

x
B

R
 

(B
rV

c
lF

a
c
to

r o
r 

B
rN

a
lF

a
c
to

r b
its

/s
) 

M
in

 c
o

m
p

re
s
s
io

n
 

ra
tio

 M
in

C
rB

a
s
e

 

M
a

in
 tie

r
 

H
ig

h
 tie

r
 

M
a

in
 tie

r
 

H
ig

h
 tie

r
 

1 552 960  128 - 2 2 

2 3 686 400  1 500 - 2 2 

2.1 7 372 800 3 000 - 2 2 

3 16 588 800 6 000 - 2 2 

3.1 33 177 600 10 000 - 2 2 

4 66 846 720 12 000 30 000 4 4 

4.1 133 693 440 20 000 50 000 4 4 

5 267 386 880 25 000 100 000 6 4 

5.1 534 773 760 40 000 160 000 8 4 

5.2 1 069 547 520 60 000 240 000 8 4 

6 1 069 547 520 60 000 240 000 8 4 

6.1 2 139 095 040 120 000 480 000 8 4 

6.2 4 278 190 080 240 000 800 000 6 4 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 267 

Table A.10 ï Specification of CpbVclFactor, CpbNalFactor, FormatCapabilityFactor and MinCrScaleFactor 

Profile CpbVclFactor CpbNalFactor FormatCapabilityFactor  MinCrScaleFactor 

Monochrome 667 733 1.000 1.0 

Monochrome 10 833 917 1.250 1.0 

Monochrome 12 1 000 1 100 1.500 1.0 

Monochrome 16 1 333 1 467 2.000 1.0 

Main 1 000 1 100 1.500 1.0 

Screen-Extended 

Main 

1 000 1 100 1.500 1.0 

Main 10 1 000 1 100 1.875 1.0 

Screen-Extended 

Main 10 

1 000 1 100 1.875 1.0 

Main 12 1 500 1 650 2.250 1.0 

Main Still Picture 1 000 1 100 1.500 1.0 

Main 10 Still Picture 1 000 1 100 1.875 1.0 

Main 4:2:2 10 1 667 1 833 2.500 0.5 

Main 4:2:2 12 2 000 2 200 3.000 0.5 

Main 4:4:4 2 000 2 200 3.000 0.5 

High Throughput 

4:4:4 

2 000 2 200 3.000 0.5 

Screen-Extended 

Main 4:4:4 

2 000 2 200 3.000 0.5 

Screen-Extended 

High Throughput 

4:4:4 

2 000 2 200 3.000 0.5 

Main 4:4:4 10 2 500 2 750 3.750 0.5 

High Throughput 

4:4:4 10 

2 500 2 750 3.750 0.5 

Screen-Extended 

Main 4:4:4 10 

2 500 2 750 3.750 0.5 

Screen-Extended 

High Throughput 

4:4:4 10 

2 500 2 750 3.750 0.5 

Main 4:4:4 12 3 000 3 300 4.500 0.5 

High Throughput 

4:4:4 14 

3 500 3 850 5.250 0.5 

Screen-Extended 

High Throughput 

4:4:4 14 

3 500 3 850 5.250 0.5 

Main Intra 1 000 1 100 1.500 1.0 

Main 10 Intra 1 000 1 100 1.875 1.0 

Main 12 Intra 1 500 1 650 2.250 1.0 

Main 4:2:2 10 Intra 1 667 1 833 2.500 0.5 

Main 4:2:2 12 Intra 2 000 2 200 3.000 0.5 

Main 4:4:4 Intra 2 000 2 200 3.000 0.5 

Main 4:4:4 10 Intra 2 500 2 750 3.750 0.5 

Main 4:4:4 12 Intra 3 000 3 300 4.500 0.5 

Main 4:4:4 16 Intra 4 000 4 400 6.000 0.5 

Main 4:4:4 Still Picture 2 000 2 200 3.000 0.5 

Main 4:4:4 16 Still Picture 4 000 4 400 6.000 0.5 

High Throughput 4:4:4 16 Intra 4 000 4 400 6.000 0.5 



 

268 Rec. ITU-T H.265 v8 (08/2021) 

 

Informative clause A.4.3 shows the effect of these limits on picture rates for several example picture formats. 

A.4.3 Effect of level limits on picture rate for the video profiles (informative) 

This clause does not form an integral part of this Specification. 

Informative Tables A.11 and A.12 provide examples of maximum picture rates for the Monochrome, Monochrome 10, 

Monochrome 12, Monochrome 16, Main, Main 10, Main 12, Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4, Main 4:4:4 10, 

Main 4:4:4 12, Main Intra, Main 10 Intra, Main 12 Intra, Main 4:2:2 10 Intra, Main 4:2:2 12 Intra, Main 4:4:4 Intra, Main 

4:4:4 10 Intra, Main 4:4:4 12 Intra, Main 4:4:4 16 Intra and High Throughput 4:4:4 16 Intra profiles for various picture 

formats when MinCbSizeY is equal to 64. 



 

  Rec. ITU-T H.265 v8 (08/2021) 269 

Table A.11 ï Maximum picture rates (pictures per second) at level 1 to 4.1 for some example picture sizes 

when MinCbSizeY is equal to 64 

Level:       1 2 2.1 3 3.1 4 4.1 

Max luma picture 

size (samples):       36 864 122 880 245 760 

            

552 960  983 040 2 228 224 2 228 224 

Max luma sample 

rate (samples/sec)       552 960 3 686 400 7 372 800 16 588 800 33 177 600 66 846 720 133 693 440 

Format nickname 

Luma 

width 

Luma 

height 

Luma 

picture size              

SQCIF 128 96 16 384  33.7 225.0 300.0 300.0 300.0 300.0 300.0 

QCIF 176 144 36 864  15.0 100.0 200.0 300.0 300.0 300.0 300.0 

QVGA 320 240 81 920  - 45.0 90.0 202.5 300.0 300.0 300.0 

525 SIF 352 240 98 304  - 37.5 75.0 168.7 300.0 300.0 300.0 

CIF 352 288 122 880  - 30.0 60.0 135.0 270.0 300.0 300.0 

525 HHR 352 480 196 608  - - 37.5 84.3 168.7 300.0 300.0 

625 HHR 352 576 221 184  - - 33.3 75.0 150.0 300.0 300.0 

Q720p 640 360 245 760 - - 30.0 67.5 135.0 272.0 300.0 

VGA 640 480 327 680  - - - 50.6 101.2 204.0 300.0 

525 4SIF 704 480 360 448  - - - 46.0 92.0 185.4 300.0 

525 SD 720 480 393 216  - - - 42.1 84.3 170.0 300.0 

4CIF 704 576 405 504  - - - 40.9 81.8 164.8 300.0 

625 SD 720 576 442 368  - - - 37.5 75.0 151.1 300.0 

480p (16:9) 864 480 458 752  - - - 36.1 72.3 145.7 291.4 

SVGA 800 600 532 480  - - - 31.1 62.3 125.5 251.0 

QHD 960 540 552 960  - - - 30.0 60.0 120.8 241.7 

XGA 1 024 768 786 432  - - - - 42.1 85.0 170.0 

720p HD 1 280 720 983 040  - - - - 33.7 68.0 136.0 

4VGA 1 280 960 1 228 800  - - - - - 54.4 108.8 

SXGA 1 280 1 024 1 310 720  - - - - - 51.0 102.0 

525 16SIF 1 408 960 1 351 680  - - - - - 49.4 98.9 

16CIF 1 408 1 152 1 622 016  - - - - - 41.2 82.4 

4SVGA 1 600 1 200 1 945 600  - - - - - 34.3 68.7 

1080 HD 1 920 1 080 2 088 960  - - - - - 32.0 64.0 

2Kx1K 2 048 1 024 2 097 152  - - - - - 31.8 63.7 

2Kx1080 2 048 1 080 2 228 224  - - - - - 30.0 60.0 

4XGA 2 048 1 536 3 145 728  - - - - - - - 

16VGA 2 560 1 920 4 915 200  - - - - - - - 

3616x1536 (2.35:1) 3 616 1 536 5 603 328  - - - - - - - 

3672x1536 (2.39:1) 3 680 1 536 5 701 632  - - - - - - - 

3840x2160 (4*HD) 3 840 2 160 8 355 840 - - - - - - - 

4Kx2K 4 096 2 048 8 388 608  - - - - - - - 

4096x2160 4 096 2 160 8 912 896  - - - - - - - 

4096x2304 (16:9) 4 096 2 304 9 437 184  - - - - - - - 

7680x4320 7 680 4 320 33 423 360  - - - - - - - 

8192x4096 8 192 4 096 33 554 432 - - - - - - - 

8192x4320 8 192 4 320 35 651 584 - - - - - - - 

 



 

270 Rec. ITU-T H.265 v8 (08/2021) 

Table A.12 ï Maximum picture rates (pictures per second) at level 5 to 6.2 for some example picture sizes 

when MinCbSizeY is equal to 64 

Level:       5 5.1 5.2 6 6.1 6.2 

Max luma picture 

size (samples):       8 912 896 8 912 896 8 912 896 35 651 584 35 651 584 35 651 584 

Max luma sample 

rate (samples/sec)       267 386 880 534 773 760 1 069 547 520 1 069 547 520 2 139 095 040 4 278 190 080 

Format nickname 

Luma 

width 

Luma 

height 

Luma 

picture size             

SQCIF 128 96 16 384 300.0 300.0 300.0 300.0 300.0 300.0 

QCIF 176 144 36 864 300.0 300.0 300.0 300.0 300.0 300.0 

QVGA 320 240 81 920 300.0 300.0 300.0 300.0 300.0 300.0 

525 SIF 352 240 98 304 300.0 300.0 300.0 300.0 300.0 300.0 

CIF 352 288 122 880 300.0 300.0 300.0 300.0 300.0 300.0 

525 HHR 352 480 196 608 300.0 300.0 300.0 300.0 300.0 300.0 

625 HHR 352 576 221 184 300.0 300.0 300.0 300.0 300.0 300.0 

Q720p 640 360 245 760 300.0 300.0 300.0 300.0 300.0 300.0 

VGA 640 480 327 680 300.0 300.0 300.0 300.0 300.0 300.0 

525 4SIF 704 480 360 448 300.0 300.0 300.0 300.0 300.0 300.0 

525 SD 720 480 393 216 300.0 300.0 300.0 300.0 300.0 300.0 

4CIF 704 576 405 504 300.0 300.0 300.0 300.0 300.0 300.0 

625 SD 720 576 442 368 300.0 300.0 300.0 300.0 300.0 300.0 

480p (16:9) 864 480 458 752 300.0 300.0 300.0 300.0 300.0 300.0 

SVGA 800 600 532 480 300.0 300.0 300.0 300.0 300.0 300.0 

QHD 960 540 552 960 300.0 300.0 300.0 300.0 300.0 300.0 

XGA 1 024 768 786 432 300.0 300.0 300.0 300.0 300.0 300.0 

720p HD 1 280 720 983 040 272.0 300.0 300.0 300.0 300.0 300.0 

4VGA 1 280 960 1 228 800 217.6 300.0 300.0 300.0 300.0 300.0 

SXGA 1 280 1 024 1 310 720 204.0 300.0 300.0 300.0 300.0 300.0 

525 16SIF 1 408 960 1 351 680 197.8 300.0 300.0 300.0 300.0 300.0 

16CIF 1 408 1 152 1 622 016 164.8 300.0 300.0 300.0 300.0 300.0 

4SVGA 1 600 1 200 1 945 600 137.4 274.8 300.0 300.0 300.0 300.0 

1080 HD 1 920 1 080 2 088 960 128.0 256.0 300.0 300.0 300.0 300.0 

2Kx1K 2 048 1 024 2 097 152 127.5 255.0 300.0 300.0 300.0 300.0 

2Kx1080 2 048 1 080 2 228 224 120.0 240.0 300.0 300.0 300.0 300.0 

4XGA 2 048 1 536 3 145 728 85.0 170.0 300.0 300.0 300.0 300.0 

16VGA 2 560 1 920 4 915 200 54.4 108.8 217.6 217.6 300.0 300.0 

3616x1536 (2.35:1) 3 616 1 536 5 603 328 47.7 95.4 190.8 190.8 300.0 300.0 

3672x1536 (2.39:1) 3 680 1 536 5 701 632 46.8 93.7 187.5 187.5 300.0 300.0 

3840x2160 (4*HD) 3 840 2 160 8 355 840 32.0 64.0 128.0 128.0 256.0 300.0 

4Kx2K 4 096 2 048 8 388 608 31.8 63.7 127.5 127.5 255.0 300.0 

4096x2160 4 096 2 160 8 912 896 30.0 60.0 120.0 120.0 240.0 300.0 

4096x2304 (16:9) 4 096 2 304 9 437 184 - - - 113.3 226.6 300.0 

4096x3072 4 096 3 072 12 582 912 - - - 85.0 170.0 300.0 

7680x4320 7 680 4 320 33 423 360 - - - 32.0 64.0 128.0 

8192x4096 8 192 4 096 33 554 432 - - - 31.8 63.7 127.5 

8192x4320 8 192 4 320 35 651 584 - - - 30.0 60.0 120.0 

 

The following should be noted in regard to the examples shown in Tables A.11 and A.12: 

ï This is a variable-picture-size Specification. The specific listed picture sizes are illustrative examples only. 

ï The example luma picture sizes were computed by rounding up the luma width and luma height to multiples of 64 

before computing the product of these quantities, to reflect the potential use of MinCbSizeY equal to 64 for these 

picture sizes, as pic_width_in_luma_samples and pic_height_in_luma_samples are each required to be a multiple of 

MinCbSizeY. For some illustrated values of luma width and luma height, a somewhat higher number of pictures per 

second can be supported when MinCbSizeY is less than 64. 



 

  Rec. ITU-T H.265 v8 (08/2021) 271 

ï In cases where the maximum picture rate value is not an integer multiple of 0.1 pictures per second, the given 

maximum picture rate values have been rounded down to the largest integer multiple of 0.1 frames per second that 

does not exceed the exact value. For example, for level 3.1, the maximum picture rate for 720p HD has been rounded 

down to 33.7 from an exact value of 33.75. 

ï As used in the examples, "525" refers to typical use for environments using 525 analogue scan lines (of which 

approximately 480 lines contain the visible picture region) and "625" refers to environments using 625 analogue scan 

lines (of which approximately 576 lines contain the visible picture region). 

ï XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 2CIF 

aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 D-1 aka 

625 ITU-R BT.601. 



 

272 Rec. ITU-T H.265 v8 (08/2021) 

Annex B 

 

Byte stream format 

 
(This annex forms an integral part of this Recommendation | International Standard.) 

B.1 General 

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or 

all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need 

to be identifiable from patterns in the data, such as Rec. ITU-T H.222.0 | ISO/IEC 13818-1 systems or 

Recommendation ITU-T H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to 

start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc. 

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit 

syntax structure contains one start code prefix followed by one nal_unit( NumBytesInNalUnit ) syntax structure. It may 

(and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain one or 

more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may also 

contain one or more additional leading_zero_8bits syntax elements. 

B.2 Byte stream NAL unit syntax and semantics 

B.2.1 Byte stream NAL unit syntax 

 

byte_stream_nal_unit( NumBytesInNalUnit ) {  Descriptor 

 while( next_bits( 24 )  !=  0x000001  &&  next_bits( 32 )  !=  0x00000001 )  

  leading_zero_8bits  /* equal to 0x00 */ f(8) 

 if( next_bits( 24 )  !=  0x000001 )  

  zero_byte  /* equal to 0x00 */ f(8) 

 start_code_prefix_one_3bytes  /* equal to 0x000001 */ f(24) 

 nal_unit( NumBytesInNalUnit )  

 while( more_data_in_byte_stream( )  &&  next_bits( 24 )  !=  0x000001  && 

    next_bits( 32 )  !=  0x00000001 ) 

 

  trailing_zero_8bits  /* equal to 0x00 */ f(8) 

}   

 

B.2.2 Byte stream NAL unit semantics 

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the 

byte stream NAL units (see clause 7.4.2.4). The content of each byte stream NAL unit is associated with the same access 

unit as the NAL unit contained in the byte stream NAL unit (see clause 7.4.2.4.4). 

leading_zero_8bits is a byte equal to 0x00. 

NOTE ï The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because (as 

shown in the syntax diagram of clause B.2.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the four-

byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_one_3bytes) will be 

considered to be trailing_zero_8bits syntax elements that are part of the preceding byte stream NAL unit. 

zero_byte is a single byte equal to 0x00. 

When one or more of the following conditions are true, the zero_byte syntax element shall be present: 

ï The nal_unit_type within the nal_unit( ) syntax structure is equal to VPS_NUT, SPS_NUT or PPS_NUT. 

ï The byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as specified 

in clause 7.4.2.4.4. 

start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a 

start code prefix. 

trailing_zero_8bits is a byte equal to 0x00. 



 

  Rec. ITU-T H.265 v8 (08/2021) 273 

B.3 Byte stream NAL unit decoding process 

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax 

structures. 

Output of this process consists of a sequence of NAL unit syntax structures. 

At the beginning of the decoding process, the decoder initializes its current position in the byte stream to the beginning of 

the byte stream. It then extracts and discards each leading_zero_8bits syntax element (when present), moving the current 

position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next four 

bytes in the bitstream form the four-byte sequence 0x00000001. 

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax structure 

in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means) and the last 

NAL unit in the byte stream has been decoded: 

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte 

stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte stream 

is set equal to the position of the byte following this discarded byte. 

2. The next three-byte sequence in the byte stream (which is a start_code_prefix_one_3bytes) is extracted and 

discarded and the current position in the byte stream is set equal to the position of the byte following this three-byte 

sequence. 

3. NumBytesInNalUnit is set equal to the number of bytes starting with the byte at the current position in the byte 

stream up to and including the last byte that precedes the location of one or more of the following conditions: 

ï A subsequent byte-aligned three-byte sequence equal to 0x000000, 

ï A subsequent byte-aligned three-byte sequence equal to 0x000001, 

ï The end of the byte stream, as determined by unspecified means. 

4. NumBytesInNalUnit bytes are removed from the bitstream and the current position in the byte stream is advanced 

by NumBytesInNalUnit bytes. This sequence of bytes is nal_unit( NumBytesInNalUnit ) and is decoded using 

the NAL unit decoding process. 

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified 

means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the 

next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts and 

discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward one byte 

at a time, until the current position in the byte stream is such that the next bytes in the byte stream form the four-

byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by unspecified 

means). 

B.4 Decoder byte-alignment recovery (informative) 

This clause does not form an integral part of this Specification. 

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the bit-

oriented byte alignment detection procedure described in this clause. 

A decoder is said to have byte alignment with a bitstream when the decoder has determined whether or not the positions 

of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the bitstream, the decoder 

may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000 00000001' (31 consecutive bits 

equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the first bit of an aligned byte 

following a start code prefix. Upon detecting this pattern, the decoder will be byte-aligned with the bitstream and positioned 

at the start of a NAL unit in the bitstream. 

Once byte aligned with the bitstream, the decoder can examine the incoming bitstream data for subsequent three-byte 

sequences 0x000001 and 0x000003. 

When the three-byte sequence 0x000001 is detected, this is a start code prefix. 

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be 

discarded as specified in clause 7.4.2. 

When an error in the bitstream syntax is detected (e.g., a non-zero value of the forbidden_zero_bit or one of the three-byte 

or four-byte sequences that are prohibited in clause 7.4.2), the decoder may consider the detected condition as an indication 

that byte alignment may have been lost and may discard all bitstream data until the detection of byte alignment at a later 

position in the bitstream as described above in this clause. 



 

274 Rec. ITU-T H.265 v8 (08/2021) 

Annex C 

 

Hypothetical reference decoder 

 
(This annex forms an integral part of this Recommendation | International Standard.) 

C.1 General 

This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance. 

Two types of bitstreams or bitstream subsets are subject to HRD conformance checking for this Specification. The first 

type, called a Type I bitstream, is a NAL unit stream containing only the VCL NAL units and NAL units with nal_unit_type 

equal to FD_NUT (filler data NAL units) for all access units in the bitstream. The second type, called a Type II bitstream, 

contains, in addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of 

the following: 

ï additional non-VCL NAL units other than filler data NAL units, 

ï all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes and trailing_zero_8bits syntax elements that form a 

byte stream from the NAL unit stream (as specified in Annex B). 

NOTE 1 ï Decoders conforming to profiles specified in Annex A do not use NAL units with nuh_layer_id greater than 0 (e.g., 

access unit delimiter NAL units with nuh_layer_id greater than 0) for access unit boundary detection, except for identification of 

whether a NAL unit is a VCL or non-VCL NAL unit. Consequently, hypothetical reference decoder (HRD) parameters carried in 

non-scalable-nested buffering period, picture timing and decoding unit information SEI messages apply to access units that are 

identified based on such access unit boundary detection. 

Figure C.1 shows the types of bitstream conformance points checked by the HRD. 

 

Figure C.1 ï Structure of byte streams and NAL unit streams for HRD conformance checks 

 

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the 

HRD, are specified in the semantic clauses of clause 7, Annexes D and E. 

Two types of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameter sets 

are signalled through the hrd_parameters( ) syntax structure, which may be part of the SPS syntax structure or the VPS 

syntax structure. 

Two sets of bitstream conformance tests are needed for checking the conformance of a bitstream, which is referred to as 

the entire bitstream, denoted as entireBitstream. The first set of bitstream conformance tests are for testing the conformance 

of the entire bitstream and its temporal subsets, regardless of whether there is a layer set specified by the active VPS that 

contains all the nuh_layer_id values of VCL NAL units present in the entire bitstream. The second set of bitstream 

conformance tests are for testing the conformance of the layer sets specified by the active VPS and their temporal subsets. 

For all these tests, only the base layer pictures (i.e., pictures with nuh_layer_id equal to 0) are decoded and other pictures 

are ignored by the decoder when the decoding process is invoked. 

For each test, the following ordered steps apply in the order listed, followed by the processes described after these steps in 

this clause: 



 

  Rec. ITU-T H.265 v8 (08/2021) 275 

1. An operation point under test, denoted as TargetOp, is selected by selecting a layer identifier list OpLayerIdList 

and a target highest TemporalId value OpTid. The layer identifier list OpLayerIdList of TargetOp either consists 

of all the nuh_layer_id values of the VCL NAL units present in entireBitstream or consists of all the nuh_layer_id 

values of a layer set specified by the active VPS. The value of OpTid is in the range of 0 to 

sps_max_sub_layers_minus1, inclusive. The values of OpLayerIdList and OpTid are such that the sub-bitstream 

BitstreamToDecode that is the output by invoking the sub-bitstream extraction process as specified in clause 10 

with entireBitstream, OpTid and OpLayerIdList as inputs satisfy both of the following conditions: 

ï There is at least one VCL NAL unit in BitstreamToDecode with nuh_layer_id equal to each of the 

nuh_layer_id values in OpLayerIdList. 

ï There is at least one VCL NAL unit with TemporalId equal to OpTid in BitstreamToDecode. 

2. TargetDecLayerIdList is set equal to OpLayerIdList of TargetOp and HighestTid is set equal to OpTid of 

TargetOp. 

3. The hrd_parameters( ) syntax structure and the sub_layer_hrd_parameters( ) syntax structure applicable to 

TargetOp are selected. If TargetDecLayerIdList contains all nuh_layer_id values present in entireBitstream, the 

hrd_parameters( ) syntax structure in the active SPS (or provided through an external means not specified in this 

Specification) is selected. Otherwise, the hrd_parameters( ) syntax structure in the active VPS (or provided 

through some external means not specified in this Specification) that applies to TargetOp is selected. Within the 

selected hrd_parameters( ) syntax structure, if BitstreamToDecode is a Type I bitstream, the 

sub_layer_hrd_parameters( HighestTid ) syntax structure that immediately follows the condition 

"if(  vcl_hrd_parameters_present_flag )" is selected and the variable NalHrdModeFlag is set equal to 0; otherwise 

(BitstreamToDecode is a Type II bitstream), the sub_layer_hrd_parameters( HighestTid ) syntax structure that 

immediately follows either the condition "if( vcl_hrd_parameters_present_flag )" (in this case the variable 

NalHrdModeFlag is set equal to 0) or the condition "if( nal_hrd_parameters_present_flag )" (in this case the 

variable NalHrdModeFlag is set equal to 1) is selected. When BitstreamToDecode is a Type II bitstream and 

NalHrdModeFlag is equal to 0, all non-VCL NAL units except filler data NAL units, and all  leading_zero_8bits, 

zero_byte, start_code_prefix_one_3bytes and trailing_zero_8bits syntax elements that form a byte stream from 

the NAL unit stream (as specified in Annex B), when present, are discarded from BitstreamToDecode and the 

remaining bitstream is assigned to BitstreamToDecode. 

4. An access unit associated with a buffering period SEI message (present in BitstreamToDecode or available 

through external means not specified in this Specification) applicable to TargetOp is selected as the HRD 

initialization point and referred to as access unit 0. If TargetDecLayerIdList contains all nuh_layer_id values 

present in entireBitstream, the assocciated buffering period SEI message shall be either a non-scalable-nested SEI 

message or provided by external means. Otherwise, the assocciated buffering period SEI message shall be either 

a scalable-nested SEI message or provided by external means. 

5. When sub_pic_hrd_params_present_flag in the selected hrd_parameters( ) syntax structure is equal to 1, the CPB 

is scheduled to operate either at the access unit level (in which case the variable SubPicHrdFlag is set equal to 0) 

or at the sub-picture level (in which case the variable SubPicHrdFlag is set equal to 1). Otherwise, SubPicHrdFlag 

is set equal to 0 and the CPB is scheduled to operate at the partition unit level. 

6. For each access unit in BitstreamToDecode starting from access unit 0, the buffering period SEI message (present 

in BitstreamToDecode or available through external means not specified in this Specification) that is associated 

with the access unit and applies to TargetOp is selected, the picture timing SEI message (present in 

BitstreamToDecode or available through external means not specified in this Specification) that is associated with 

the access unit and applies to TargetOp is selected, and when SubPicHrdFlag is equal to 1 and 

sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 0, the decoding unit information SEI messages (present 

in BitstreamToDecode or available through external means not specified in this Specification) that are associated 

with decoding units in the access unit and apply to TargetOp are selected. If TargetDecLayerIdList contains all 

nuh_layer_id values present in entireBitstream, the selected buffering period, picture timing and decoding unit 

information SEI messages shall be either non-scalable-nested SEI messages or provided by external means. 

Otherwise, the selected buffering period, picture timing and decoding unit information SEI messages shall be 

either scalable-nested SEI messages or provided by external means. 

7. A value of SchedSelIdx is selected. The selected SchedSelIdx shall be in the range of 0 to 

cpb_cnt_minus1[ HighestTid ], inclusive, where cpb_cnt_minus1[ HighestTid ] is found in the hrd_parameters( ) 

syntax structure as selected above. 

8. When the coded picture in access unit 0 has nal_unit_type equal to CRA_NUT or BLA_W_LP and 

irap_cpb_params_present_flag in the selected buffering period SEI message is equal to 1, either of the following 

applies for selection of the initial CPB removal delay and delay offset: 

ï If NalHrdModeFlag is equal to 1, the default initial CPB removal delay and delay offset represented by 

nal_initial_cpb_removal_delay[ SchedSelIdx ] and nal_initial_cpb_removal_offset[ SchedSelIdx ], 

respectively, in the selected buffering period SEI message are selected. Otherwise, the default initial CPB 



 

276 Rec. ITU-T H.265 v8 (08/2021) 

removal delay and delay offset represented by vcl_initial_cpb_removal_delay[ SchedSelIdx ] and 

vcl_initial_cpb_removal_offset[ SchedSelIdx ], respectively, in the selected buffering period SEI message 

are selected. The variable DefaultInitCpbParamsFlag is set equal to 1. 

ï If NalHrdModeFlag is equal to 1, the alternative initial CPB removal delay and delay offset represented by 

nal_initial_alt_cpb_removal_delay[ SchedSelIdx ] and nal_initial_alt_cpb_removal_offset[ SchedSelIdx ], 

respectively, in the selected buffering period SEI message are selected. Otherwise, the alternative initial CPB 

removal delay and delay offset represented by vcl_initial_alt_cpb_removal_delay[ SchedSelIdx ] and 

vcl_initial_alt_cpb_removal_offset[ SchedSelIdx ], respectively, in the selected buffering period SEI 

message are selected. The variable DefaultInitCpbParamsFlag is set equal to 0, and the RASL access units 

associated with access unit 0 are discarded from BitstreamToDecode and the remaining bitstream is assigned 

to BitstreamToDecode. 

Each conformance test consists of a combination of one option in each of the above steps. When there is more than one 

option for a step, for any particular conformance test only one option is chosen. All possible combinations of all the steps 

form the entire set of conformance tests. For each operation point under test, the number of bitstream conformance tests to 

be performed is equal to n0 *  n1 *  ( n2 *  2 + n3 ) *  n4, where the values of n0, n1, n2, n3 and n4 are specified as follows: 

ï n0 is derived as follows: 

ï If BitstreamToDecode is a Type I bitstream, n0 is equal to 1. 

ï Otherwise (BitstreamToDecode is a Type II bitstream), n0 is equal to 2. 

ï n1 is equal to cpb_cnt_minus1[ HighestTid ] + 1. 

ï n2 is the number of access units in BitstreamToDecode that each is associated with a buffering period SEI message 

applicable to TargetOp and for each of which both of the following conditions are true: 

ï nal_unit_type is equal to CRA_NUT or BLA_W_LP for the VCL NAL units. 

ï The associated buffering period SEI message applicable to TargetOp has irap_cpb_params_present_flag 

equal to 1. 

ï n3 is the number of access units in BitstreamToDecode that each is associated with a buffering period SEI message 

applicable to TargetOp and for each of which one or both of the following conditions are true: 

ï nal_unit_type is equal to neither CRA_NUT nor BLA_W_LP for the VCL NAL units. 

ï The associated buffering period SEI message applicable to TargetOp has irap_cpb_params_present_flag 

equal to 0. 

ï n4 is derived as follows: 

ï If sub_pic_hrd_params_present_flag in the selected hrd_parameters( ) syntax structure is equal to 0, n4 is 

equal to 1. 

ï Otherwise, n4 is equal to 2. 

When BitstreamToDecode is a Type II bitstream, the following applies: 

ï If the sub_layer_hrd_parameters( HighestTid ) syntax structure that immediately follows the condition 

"if(  vcl_hrd_parameters_present_flag )" is selected, the test is conducted at the Type I conformance point shown in 

Figure C.1, and only VCL and filler data NAL units are counted for the input bit rate and CPB storage. 

ï Otherwise (the sub_layer_hrd_parameters( HighestTid ) syntax structure that immediately follows the condition 

"if(  nal_hrd_parameters_present_flag )" is selected), the test is conducted at the Type II conformance point shown in 

Figure C.1, and all bytes of the Type II bitstream, which may be a NAL unit stream or a byte stream, are counted for 

the input bit rate and CPB storage. 

NOTE 2 ï NAL HRD parameters established by a value of SchedSelIdx for the Type II conformance point shown in Figure C.1 are 

sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C.1 for the same values of 

InitCpbRemovalDelay[ SchedSelIdx ], BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] for the variable bit rate (VBR) case 

(cbr_flag[ SchedSelIdx ] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow 

into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the 

time a next picture is scheduled to begin to arrive. For example, when decoding a CVS conforming to one or more of the profiles 

specified in Annex A using the decoding process specified in clauses 2 through 10, when NAL HRD parameters are provided for 

the Type II conformance point that not only fall within the bounds set for NAL HRD parameters for profile conformance in item f) 

of clause A.4.2 but also fall within the bounds set for VCL HRD parameters for profile conformance in item e) of clause A.4.2, 

conformance of the VCL HRD for the Type I conformance point is also assured to fall within the bounds of item e) of clause A.4.2. 

All VPSs, SPSs and PPSs referred to in the VCL NAL units and the corresponding buffering period, picture timing and 

decoding unit information SEI messages shall be conveyed to the HRD, in a timely manner, either in the bitstream (by 

non-VCL NAL units), or by other means not specified in this Specification. 

In Annexes C, D and E, the specification for "presence" of non-VCL NAL units that contain VPSs, SPSs, PPSs, buffering 

period SEI messages, picture timing SEI messages or decoding unit information SEI messages is also satisfied when those 



 

  Rec. ITU-T H.265 v8 (08/2021) 277 

NAL units (or just some of them) are conveyed to decoders (or to the HRD) by other means not specified in this 

Specification. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream are 

counted. 

NOTE 3 ï As an example, synchronization of such a non-VCL NAL unit, conveyed by means other than presence in the bitstream, 

with the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the 

non-VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream. 

When the content of such a non-VCL NAL unit is conveyed for the application by some means other than presence within 

the bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax as specified 

in this Specification. 

NOTE 4 ï When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the 

requirements of this clause based solely on information contained in the bitstream. When the HRD information is not present in the 

bitstream, as is the case for all "stand-alone" Type I bitstreams, conformance can only be verified when the HRD data are supplied 

by some other means not specified in this Specification. 

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB), and 

output cropping as shown in Figure C.2. 

 

Figure C.2 ï HRD buffer model 

 

For each bitstream conformance test, the CPB size (number of bits) is CpbSize[ SchedSelIdx ] as specified in clause E.3.3, 

where SchedSelIdx and the HRD parameters are specified above in this clause. The DPB size (number of picture storage 

buffers) is sps_max_dec_pic_buffering_minus1[ HighestTid ] + 1. 

If SubPicHrdFlag is equal to 0, the HRD operates at access unit level and each decoding unit is an access unit. Otherwise 

the HRD operates at sub-picture level and each decoding unit is a subset of an access unit. 

NOTE 5 ï If the HRD operates at access unit level, each time when some bits are removed from the CPB, a decoding unit 

that is an entire access unit is removed from the CPB. Otherwise (the HRD operates at sub-picture level), each time when 

some bits are removed from the CPB, a decoding unit that is a subset of an access unit is removed from the CPB. Regardless 

of whether the HRD operates at access unt level or sub-picture level, each time when some picture is output from the DPB, 

an entire decoded picture is output from the DPB, though the picture output time is derived based on the differently derived 

CPB removal times and the differently signalled DPB output delays. 

The following is specified for expressing the constraints in this annex: 

ï Each access unit is referred to as access unit n, where the number n identifies the particular access unit. Access unit 0 

is selected per step 4 above. The value of n is incremented by 1 for each subsequent access unit in decoding order. 

ï Each decoding unit is referred to as decoding unit m, where the number m identifies the particular decoding unit. The 

first decoding unit in decoding order in access unit 0 is referred to as decoding unit 0. The value of m is incremented 

by 1 for each subsequent decoding unit in decoding order. 



 

278 Rec. ITU-T H.265 v8 (08/2021) 

NOTE 6 ï The numbering of decoding units is relative to the first decoding unit in access unit 0. 

ï Picture n refers to the coded picture or the decoded picture of access unit n. 

The HRD operates as follows: 

ï The HRD is initialized at decoding unit 0, with both the CPB and the DPB being set to be empty (the DPB fullness is 

set equal to 0). 

NOTE 7 ï After initialization, the HRD is not initialized again by subsequent buffering period SEI messages. 

ï Data associated with decoding units that flow into the CPB according to a specified arrival schedule are delivered by 

the hypothetical stream scheduler (HSS). 

ï The data associated with each decoding unit are removed and decoded instantaneously by the instantaneous decoding 

process at the CPB removal time of the decoding unit. 

ï Each decoded picture is placed in the DPB. 

ï A decoded picture is removed from the DPB when it becomes no longer needed for inter prediction reference and no 

longer needed for output. 

For each bitstream conformance test, the operation of the CPB is specified in clause C.2, the instantaneous decoder 

operation is specified in clauses 2 through 10, the operation of the DPB is specified in clause C.3 and the output cropping 

is specified in clauses C.3.3 and C.5.2.2. 

HSS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and 

buffer sizes is specified in clauses E.2.2 and E.3.2. The HRD is initialized as specified by the buffering period SEI message 

specified in clauses D.2.2 and D.3.2. The removal timing of decoding units from the CPB and output timing of decoded 

pictures from the DPB is specified using information in picture timing SEI messages (specified in clauses D.2.3 and 0) or 

in decoding unit information SEI messages (specified in clauses D.2.22 and D.3.22). All timing information relating to a 

specific decoding unit shall arrive prior to the CPB removal time of the decoding unit. 

The requirements for bitstream conformance are specified in clause C.4 and the HRD is used to check conformance of 

bitstreams as specified above in this clause and to check conformance of decoders as specified in clause C.5. 

NOTE 8 ï While conformance is guaranteed under the assumption that all picture-rates and clocks used to generate the bitstream 

match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or specified value. 

All the arithmetic in this annex is performed with real values, so that no rounding errors can propagate. For example, the 

number of bits in a CPB just prior to or after removal of a decoding unit is not necessarily an integer. 

The variable ClockTick is derived as follows and is called a clock tick: 

ClockTick = vui_num_units_in_tick ÷ vui_time_scale (C-1) 

The variable ClockSubTick is derived as follows and is called a clock sub-tick: 

ClockSubTick = ClockTick ÷ ( tick_divisor_minus2 + 2 ) (C-2) 

C.2 Operation of coded picture buffer  

C.2.1 General 

The specifications in this clause apply independently to each set of coded picture buffer (CPB) parameters that is present 

and to both the Type I and Type II conformance points shown in Figure C.1 and the set of CPB parameters is selected as 

specified in clause C.1. 

C.2.2 Timing of decoding unit arrival  

If SubPicHrdFlag is equal to 0, the variable subPicParamsFlag is set equal to 0 and the process specified in the remainder 

of this clause is invoked with a decoding unit being considered as an access unit, for derivation of the initial and final CPB 

arrival times for access unit n. 

Otherwise (SubPicHrdFlag is equal to 1), the process specified in the remainder of this clause is first invoked with the 

variable subPicParamsFlag set equal to 0 and a decoding unit being considered as an access unit, for derivation of the 

initial and final CPB arrival times for access unit n, and then invoked with subPicParamsFlag set equal to 1 and a decoding 

unit being considered as a subset of an access unit, for derivation of the initial and final CPB arrival times for the decoding 

units in access unit n. 

The variables InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are derived as 

follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 279 

ï If one or more of the following conditions are true, InitCpbRemovalDelay[ SchedSelIdx ] and 

InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to the values of the buffering period SEI message syntax 

elements nal_initial_alt_cpb_removal_delay[ SchedSelIdx ] and nal_initial_alt_cpb_removal_offset[ SchedSelIdx ], 

respectively, when NalHrdModeFlag is equal to 1 or vcl_initial_alt_cpb_removal_delay[ SchedSelIdx ] and 

vcl_initial_alt_cpb_removal_offset[ SchedSelIdx ], respectively, when NalHrdModeFlag is equal to 0, where the 

buffering period SEI message syntax elements are selected as specified in clause C.1: 

ï Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_RADL or 

BLA_N_LP, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1. 

ï Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_LP or is a 

CRA access unit, and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal 

to 1 and one or more of the following conditions are true: 

ï UseAltCpbParamsFlag for access unit 0 is equal to 1. 

ï DefaultInitCpbParamsFlag is equal to 0. 

ï The value of subPicParamsFlag is equal to 1. 

ï Otherwise, InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to 

the values of the buffering period SEI message syntax elements nal_initial_cpb_removal_delay[ SchedSelIdx ] and 

nal_initial_cpb_removal_offset[ SchedSelIdx ], respectively, when NalHrdModeFlag is equal to 1, or 

vcl_initial_cpb_removal_delay[ SchedSelIdx ] and vcl_initial_cpb_removal_offset[ SchedSelIdx ], respectively, 

when NalHrdModeFlag is equal to 0, where the buffering period SEI message syntax elements are selected as 

specified in clause C.1. 

The time at which the first bit of decoding unit m begins to enter the CPB is referred to as the initial arrival time 

initArrivalTime[ m ]. 

The initial arrival time of decoding unit m is derived as follows: 

ï If the decoding unit is decoding unit 0 (i.e., when m is equal to 0), initArrivalTime[ 0 ] is set equal to 0. 

ï Otherwise (the decoding unit is decoding unit m with m > 0), the following applies: 

ï If cbr_flag[ SchedSelIdx ] is equal to 1, the initial arrival time for decoding unit m is equal to the final arrival 

time (which is derived below) of decoding unit m ī 1, i.e., 

if( !subPicParamsFlag ) 

 initArrivalTime[ m ] = AuFinalArrivalTime[ m ī 1 ] (C-3) 

else 

 initArrivalTime[ m ] = DuFinalArrivalTime[ m ī 1 ] 

ï Otherwise (cbr_flag[ SchedSelIdx ] is equal to 0), the initial arrival time for decoding unit m is derived as 

follows: 

if( !subPicParamsFlag ) 

 initArrivalTime[ m ] = Max( AuFinalArrivalTime[ m ī 1 ], initArrivalEarliestTime[ m ] )

 (C-4) 

else 

 initArrivalTime[ m ] = Max( DuFinalArrivalTime[ m ī 1 ], initArrivalEarliestTime[ m ] ) 

where initArrivalEarliestTime[ m ] is derived as follows: 

ï The variable tmpNominalRemovalTime is derived as follows: 

if( !subPicParamsFlag ) 

 tmpNominalRemovalTime = AuNominalRemovalTime[ m ] (C-5) 

else 

 tmpNominalRemovalTime = DuNominalRemovalTime[ m ] 

where AuNominalRemovalTime[ m ] and DuNominalRemovalTime[ m ] are the nominal CPB removal 

time of access unit m and decoding unit m, respectively, as specified in clause C.2.3. 

ï If decoding unit m is not the first decoding unit of a subsequent buffering period, 

initArrivalEarliestTime[ m ] is derived as follows: 



 

280 Rec. ITU-T H.265 v8 (08/2021) 

initArrivalEarliestTime[ m ] = tmpNominalRemovalTime ī 

( InitCpbRemovalDelay[ SchedSelIdx ] 

  + InitCpbRemovalDelayOffset[ SchedSelIdx ] ) ÷ 90 000 (C-6) 

ï Otherwise (decoding unit m is the first decoding unit of a subsequent buffering period), 

initArrivalEarliestTime[ m ] is derived as follows: 

initArrivalEarliestTime[ m ] = tmpNominalRemovalTime ī 

  ( InitCpbRemovalDelay[ SchedSelIdx ] ÷ 90 000 ) (C-7) 

The final arrival time for decoding unit m is derived as follows: 

if( !subPicParamsFlag ) 

  AuFinalArrivalTime[ m ] = initArrivalTime[ m ] + sizeInbits[ m ] ÷ BitRate[ SchedSelIdx ] (C-8) 

else 

  DuFinalArrivalTime[ m ] = initArrivalTime[ m ] + sizeInbits[ m ] ÷ BitRate[ SchedSelIdx ] 

where sizeInbits[ m ] is the size in bits of decoding unit m, counting the bits of the VCL NAL units and the filler data NAL 

units for the Type I conformance point or all bits of the Type II bitstream for the Type II conformance point, where the 

Type I and Type II conformance points are as shown in Figure C.1. 

The values of SchedSelIdx, BitRate[ SchedSelIdx ] and CpbSize[ SchedSelIdx ] are constrained as follows: 

ï If the content of the selected hrd_parameters( ) syntax structures for the access unit containing decoding unit m and 

the previous access unit differ, the HSS selects a value SchedSelIdx1 of SchedSelIdx from among the values of 

SchedSelIdx provided in the selected hrd_parameters( ) syntax structures for the access unit containing decoding unit 

m that results in a BitRate[ SchedSelIdx1 ] or CpbSize[ SchedSelIdx1 ] for the access unit containing decoding unit 

m. The value of BitRate[ SchedSelIdx1 ] or CpbSize[ SchedSelIdx1 ] may differ from the value of 

BitRate[ SchedSelIdx0 ] or CpbSize[ SchedSelIdx0 ] for the value SchedSelIdx0 of SchedSelIdx that was in use for 

the previous access unit. 

ï Otherwise, the HSS continues to operate with the previous values of SchedSelIdx, BitRate[ SchedSelIdx ] and 

CpbSize[ SchedSelIdx ]. 

When the HSS selects values of BitRate[ SchedSelIdx ] or CpbSize[ SchedSelIdx ] that differ from those of the previous 

access unit, the following applies: 

ï The variable BitRate[ SchedSelIdx ] comes into effect at the initial CPB arrival time of the current access unit. 

ï The variable CpbSize[ SchedSelIdx ] comes into effect as follows: 

ï If the new value of CpbSize[ SchedSelIdx ] is greater than the old CPB size, it comes into effect at the initial 

CPB arrival time of the current access unit. 

ï Otherwise, the new value of CpbSize[ SchedSelIdx ] comes into effect at the CPB removal time of the current 

access unit. 

C.2.3 Timing of decoding unit removal and decoding of decoding unit 

The variables InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are updated, and the 

variables CpbDelayOffset and DpbDelayOffset are derived, as follows: 

ï If one or more of the following conditions are true, CpbDelayOffset is set equal to the value of the buffering period 

SEI message syntax element cpb_delay_offset, DpbDelayOffset is set equal to the value of the buffering period SEI 

message syntax element dpb_delay_offset, and InitCpbRemovalDelay[ SchedSelIdx ] and 

InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to the values of the buffering period SEI message syntax 

elements nal_initial_alt_cpb_removal_delay[ SchedSelIdx ] and nal_initial_alt_cpb_removal_offset[ SchedSelIdx ], 

respectively, when NalHrdModeFlag is equal to 1, or vcl_initial_alt_cpb_removal_delay[ SchedSelIdx ] and 

vcl_initial_alt_cpb_removal_offset[ SchedSelIdx ], respectively, when NalHrdModeFlag is equal to 0, where the 

buffering period SEI message containing the syntax elements is selected as specified in clause C.1: 

ï Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_RADL or 

BLA_N_LP and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 1. 

ï Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_LP or is a 

CRA access unit and the value of irap_cpb_params_present_flag of the buffering period SEI message is equal to 

1 and one or more of the following conditions are true: 



 

  Rec. ITU-T H.265 v8 (08/2021) 281 

ï UseAltCpbParamsFlag for access unit 0 is equal to 1. 

ï DefaultInitCpbParamsFlag is equal to 0. 

ï Otherwise, InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to 

the values of the buffering period SEI message syntax elements nal_initial_cpb_removal_delay[ SchedSelIdx ] and 

nal_initial_cpb_removal_offset[ SchedSelIdx ], respectively, when NalHrdModeFlag is equal to 1, or 

vcl_initial_cpb_removal_delay[ SchedSelIdx ] and vcl_initial_cpb_removal_offset[ SchedSelIdx ], respectively, 

when NalHrdModeFlag is equal to 0, where the buffering period SEI message containing the syntax elements is 

selected as specified in clause C.1, CpbDelayOffset and DpbDelayOffset are both set equal to 0. 

The nominal removal time of the access unit n from the CPB is specified as follows: 

ï If access unit n is the access unit with n equal to 0 (the access unit that initializes the HRD), the nominal removal time 

of the access unit from the CPB is specified by: 

AuNominalRemovalTime[ 0 ] = InitCpbRemovalDelay[ SchedSelIdx ] ÷ 90 000 (C-9) 

ï Otherwise, the following applies: 

ï When access unit n is the first access unit of a buffering period that does not initialize the HRD, the following 

applies: 

The nominal removal time of the access unit n from the CPB is specified by: 

if( ! concatenationFlag ) {  

 baseTime = AuNominalRemovalTime[ firstPicInPrevBuffPeriod ] 

 tmpCpbRemovalDelay = AuCpbRemovalDelayVal 

 tmpCpbDelayOffset = CpbDelayOffset 

} else { 

 baseTime1 = AuNominalRemovalTime[ prevNonDiscardablePic ] 

 tmpCpbRemovalDelay1 = ( auCpbRemovalDelayDeltaMinus1 + 1 ) 

 baseTime2 = AuNominalRemovalTime[ n ī 1 ] (C-10) 

 tmpCpbRemovalDelay2 = Ceil( ( InitCpbRemovalDelay[ SchedSelIdx ] ÷ 90 000 + 

   

 AuFinalArrivalTime[ n ī 1 ] ī AuNominalRemovalTime[ n ī 1 ] ) ÷ ClockTick ) ) 

 if( baseTime1 + ClockTick * tmpCpbRemovalDelay1 <  

   baseTime2 + ClockTick * tmpCpbRemovalDelay2 ) { 

  baseTime = baseTime2 

  tmpCpbRemovalDelay = tmpCpbRemovalDelay2 

 }  else { 

  baseTime = baseTime1 

  tmpCpbRemovalDelay = tmpCpbRemovalDelay1 

 }  

 tmpCpbDelayOffset = 0 

}  

AuNominalRemovalTime[ n ] = baseTime + 

        ClockTick *  ( tmpCpbRemovalDelay ī tmpCpbDelayOffset ) 

where AuNominalRemovalTime[ firstPicInPrevBuffPeriod ] is the nominal removal time of the first access unit 

of the previous buffering period, AuNominalRemovalTime[ prevNonDiscardablePic ] is the nominal removal 

time of the preceding picture in decoding order with TemporalId equal to 0 that is not a RASL, RADL or SLNR 

picture, AuCpbRemovalDelayVal is the value of AuCpbRemovalDelayVal derived according to 

au_cpb_removal_delay_minus1 in the picture timing SEI message, selected as specified in clause C.1, associated 

with access unit n and concatenationFlag and auCpbRemovalDelayDeltaMinus1 are the values of the syntax 

elements concatenation_flag and au_cpb_removal_delay_delta_minus1, respectively, in the buffering period 

SEI message, selected as specified in clause C.1, associated with access unit n. 

After the derivation of the nominal CPB removal time and before the derivation of the DPB output time of access 

unit n, the values of CpbDelayOffset and DpbDelayOffset are updated as follows: 

ï If one or more of the following conditions are true, CpbDelayOffset is set equal to the value of the buffering 

period SEI message syntax element cpb_delay_offset, and DpbDelayOffset is set equal to the value of the 

buffering period SEI message syntax element dpb_delay_offset, where the buffering period SEI message 

containing the syntax elements is selected as specified in clause C.1: 



 

282 Rec. ITU-T H.265 v8 (08/2021) 

ï Access unit n is a BLA access unit for which the coded picture has nal_unit_type equal to 

BLA_W_RADL or BLA_N_LP and the value of irap_cpb_params_present_flag of the buffering 

period SEI message is equal to 1. 

ï Access unit n is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_LP 

or is a CRA access unit and the value of irap_cpb_params_present_flag of the buffering period SEI 

message is equal to 1 and UseAltCpbParamsFlag for access unit n is equal to 1. 

ï Otherwise, CpbDelayOffset and DpbDelayOffset are both set equal to 0. 

ï When access unit n is not the first access unit of a buffering period, the nominal removal time of the access unit n 

from the CPB is specified by: 

AuNominalRemovalTime[ n ] = AuNominalRemovalTime[ firstPicInCurrBuffPeriod ] + 

  ClockTick *  ( AuCpbRemovalDelayVal ī CpbDelayOffset ) (C-11) 

where AuNominalRemovalTime[ firstPicInCurrBuffPeriod ] is the nominal removal time of the first access unit 

of the current buffering period and AuCpbRemovalDelayVal is the value of AuCpbRemovalDelayVal derived 

according to au_cpb_removal_delay_minus1 in the picture timing SEI message, selected as specified in 

clause C.1, associated with access unit n. 

When SubPicHrdFlag is equal to 1, the following applies: 

ï The variable duCpbRemovalDelayInc is derived as follows: 

ï If sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 0, duCpbRemovalDelayInc is set equal to the value 

of du_spt_cpb_removal_delay_increment in the decoding unit information SEI message, selected as specified in 

clause C.1, associated with decoding unit m. 

ï Otherwise, if du_common_cpb_removal_delay_flag is equal to 0, duCpbRemovalDelayInc is set equal to the 

value of du_cpb_removal_delay_increment_minus1[ i ] + 1 for decoding unit m in the picture timing SEI 

message, selected as specified in clause C.1, associated with access unit n, where the value of i is 0 for the first 

num_nalus_in_du_minus1[ 0 ] + 1 consecutive NAL units in the access unit that contains decoding unit m, 1 for 

the subsequent num_nalus_in_du_minus1[ 1 ] + 1 NAL units in the same access unit, 2 for the subsequent 

num_nalus_in_du_minus1[ 2 ] + 1 NAL units in the same access unit, etc. 

ï Otherwise, duCpbRemovalDelayInc is set equal to the value of 

du_common_cpb_removal_delay_increment_minus1 + 1 in the picture timing SEI message, selected as 

specified in clause C.1, associated with access unit n. 

ï The nominal removal time of decoding unit m from the CPB is specified as follows, where 

AuNominalRemovalTime[ n ] is the nominal removal time of access unit n: 

ï If decoding unit m is the last decoding unit in access unit n, the nominal removal time of decoding unit m 

DuNominalRemovalTime[ m ] is set equal to AuNominalRemovalTime[ n ]. 

ï Otherwise (decoding unit m is not the last decoding unit in access unit n), the nominal removal time of decoding 

unit m DuNominalRemovalTime[ m ] is derived as follows: 

if( sub_pic_cpb_params_in_pic_timing_sei_flag ) 

 DuNominalRemovalTime[ m ] = DuNominalRemovalTime[ m + 1 ] ī 

  ClockSubTick *  duCpbRemovalDelayInc (C-12) 

else 

 DuNominalRemovalTime[ m ] = AuNominalRemovalTime[ n ] ī 

  ClockSubTick *  duCpbRemovalDelayInc 

If SubPicHrdFlag is equal to 0, the removal time of access unit n from the CPB is specified as follows, where 

AuFinalArrivalTime[ n ] and AuNominalRemovalTime[ n ] are the final CPB arrival time and nominal CPB removal time, 

respectively, of access unit n: 

if( !low_delay_hrd_flag[ HighestTid ]  | |  AuNominalRemovalTime[ n ]  >=  AuFinalArrivalTime[ n ] ) 

 AuCpbRemovalTime[ n ] = AuNominalRemovalTime[ n ] 

else    (C-13) 

 AuCpbRemovalTime[ n ] = AuNominalRemovalTime[ n ] + ClockTick *  

  Ceil( ( AuFinalArrivalTime[ n ] ī AuNominalRemovalTime[ n ] ) ÷ ClockTick ) 



 

  Rec. ITU-T H.265 v8 (08/2021) 283 

NOTE 1 ï When low_delay_hrd_flag[ HighestTid ] is equal to 1 and AuNominalRemovalTime[ n ] is less than 

AuFinalArrivalTime[ n ], the size of access unit n is so large that it prevents removal at the nominal removal time. 

Otherwise (SubPicHrdFlag is equal to 1), the removal time of decoding unit m from the CPB is specified as follows: 

if( !low_delay_hrd_flag[ HighestTid ]  | |  DuNominalRemovalTime[ m ]  >=  DuFinalArrivalTime[ m ] 

) 

 DuCpbRemovalTime[ m ] = DuNominalRemovalTime[ m ] 

else    (C-14) 

 DuCpbRemovalTime[ m ] = DuFinalArrivalTime[ m ] 

NOTE 2 ï When low_delay_hrd_flag[ HighestTid ] is equal to 1 and DuNominalRemovalTime[ m ] is less than 

DuFinalArrivalTime[ m ], the size of decoding unit m is so large that it prevents removal at the nominal removal time. 

If SubPicHrdFlag is equal to 0, at the CPB removal time of access unit n, the access unit is instantaneously decoded. 

Otherwise (SubPicHrdFlag is equal to 1), at the CPB removal time of decoding unit m, the decoding unit is instantaneously 

decoded, and when decoding unit m is the last decoding unit of access unit n, the following applies: 

ï Picture n is considered as decoded. 

ï The final CPB arrival time of access unit n, i.e., AuFinalArrivalTime[ n ], is set equal to the final CPB arrival time of 

the last decoding unit in access unit n, i.e., DuFinalArrivalTime[ m ]. 

ï The nominal CPB removal time of access unit n, i.e., AuNominalRemovalTime[ n ], is set equal to the nominal CPB 

removal time of the last decoding unit in access unit n, i.e., DuNominalRemovalTime[ m ]. 

ï The CPB removal time of access unit n, i.e., AuCpbRemovalTime[ m ], is set equal to the CPB removal time of the 

last decoding unit in access unit n, i.e., DuCpbRemovalTime[ m ]. 

C.3 Operation of the decoded picture buffer 

C.3.1 General 

The specifications in this clause apply independently to each set of decoded picture buffer (DPB) parameters selected as 

specified in clause C.1. 

The decoded picture buffer contains picture storage buffers. Each of the picture storage buffers may contain a decoded 

picture that is marked as "used for reference" or is held for future output. The processes specified in clauses C.3.2, C.3.3, 

C.3.4 and C.3.5 are sequentially applied as specified below. 

C.3.2 Removal of pictures from the DPB before decoding of the current picture 

The removal of pictures from the DPB before decoding of the current picture (but after parsing the slice header of the first 

slice of the current picture) happens instantaneously at the CPB removal time of the first decoding unit of access unit n 

(containing the current picture) and proceeds as follows: 

ï The decoding process for RPS as specified in clause 8.3.2 is invoked. 

ï When the current picture is an IRAP picture with NoRaslOutputFlag equal to 1 that is not picture 0, the following 

ordered steps are applied: 

1. The variable NoOutputOfPriorPicsFlag is derived for the decoder under test as follows: 

ï If the current picture is a CRA picture, NoOutputOfPriorPicsFlag is set equal to 1 (regardless of the value 

of no_output_of_prior_pics_flag). 

ï Otherwise, if the value of pic_width_in_luma_samples, pic_height_in_luma_samples, chroma_format_idc, 

separate_colour_plane_flag, bit_depth_luma_minus8, bit_depth_chroma_minus8 or sps_max_dec_pic_

buffering_minus1[ HighestTid ] derived from the active SPS is different from the value of 

pic_width_in_luma_samples, pic_height_in_luma_samples, chroma_format_idc, separate_colour_plane_

flag, bit_depth_luma_minus8, bit_depth_chroma_minus8 or sps_max_dec_pic_buffering_

minus1[ HighestTid ], respectively, derived from the SPS active for the preceding picture, 

NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test, regardless of the value 

of no_output_of_prior_pics_flag. 

NOTE ï Although setting NoOutputOfPriorPicsFlag equal to no_output_of_prior_pics_flag is preferred under 

these conditions, the decoder under test is allowed to set NoOutputOfPriorPicsFlag to 1 in this case. 

ï Otherwise, NoOutputOfPriorPicsFlag is set equal to no_output_of_prior_pics_flag. 



 

284 Rec. ITU-T H.265 v8 (08/2021) 

2. The value of NoOutputOfPriorPicsFlag derived for the decoder under test is applied for the HRD, such that when 

the value of NoOutputOfPriorPicsFlag is equal to 1, all picture storage buffers in the DPB are emptied without 

output of the pictures they contain, and the DPB fullness is set equal to 0. 

ï When both of the following conditions are true for any pictures k in the DPB, all such pictures k in the DPB are 

removed from the DPB: 

ï picture k is marked as "unused for reference". 

ï picture k has PicOutputFlag equal to 0 or its DPB output time is less than or equal to the CPB removal time of 

the first decoding unit (denoted as decoding unit m) of the current picture n; i.e., DpbOutputTime[ k ] is less than 

or equal to DuCpbRemovalTime[ m ]. 

ï For each picture that is removed from the DPB, the DPB fullness is decremented by one. 

C.3.3 Picture output 

The processes specified in this clause happen instantaneously at the CPB removal time of access unit n, 

AuCpbRemovalTime[ n ]. 

When picture n has PicOutputFlag equal to 1, its DPB output time DpbOutputTime[ n ] is derived as follows, where the 

variable firstPicInBufferingPeriodFlag is equal to 1 if access unit n is the first access unit of a buffering period and 0 

otherwise: 

if( !SubPicHrdFlag ) { 

 DpbOutputTime[ n ] = AuCpbRemovalTime[ n ] + ClockTick * picDpbOutputDelay (C-15) 

 if( firstPicInBufferingPeriodFlag ) 

  DpbOutputTime[ n ]  ī=  ClockTick *  DpbDelayOffset 

} else 

 DpbOutputTime[ n ] = AuCpbRemovalTime[ n ] + ClockSubTick *  picSptDpbOutputDuDelay 

where picDpbOutputDelay is the value of pic_dpb_output_delay in the picture timing SEI message associated with access 

unit n, and picSptDpbOutputDuDelay is the value of pic_spt_dpb_output_du_delay, when present, in the decoding unit 

information SEI messages associated with access unit n, or the value of pic_dpb_output_du_delay in the picture timing 

SEI message associated with access unit n when there is no decoding unit information SEI message associated with access 

unit n or no decoding unit information SEI message associated with access unit n has pic_spt_dpb_output_du_delay 

present. 

NOTE ï When the syntax element pic_spt_dpb_output_du_delay is not present in any decoding unit information SEI message 

associated with access unit n, the value is inferred to be equal to pic_dpb_output_du_delay in the picture timing SEI message 

associated with access unit n. 

The output of the current picture is specified as follows: 

ï If PicOutputFlag is equal to 1 and DpbOutputTime[ n ] is equal to AuCpbRemovalTime[ n ], the current picture is 

output. 

ï Otherwise, if PicOutputFlag is equal to 0, the current picture is not output, but will be stored in the DPB as specified 

in clause C.3.4. 

ï Otherwise (PicOutputFlag is equal to 1 and DpbOutputTime[ n ] is greater than AuCpbRemovalTime[ n ] ), the 

current picture is output later and will be stored in the DPB (as specified in clause C.3.4) and is output at time 

DpbOutputTime[ n ] unless indicated not to be output by NoOutputOfPriorPicsFlag equal to 1. 

When output, the picture is cropped, using the conformance cropping window specified in the active SPS for the picture. 

When picture n is a picture that is output and is not the last picture of the bitstream that is output, the value of the variable 

DpbOutputInterval[ n ] is derived as follows: 

DpbOutputInterval[ n ] = DpbOutputTime[ nextPicInOutputOrder ] ī DpbOutputTime[ n ] (C-16) 

where nextPicInOutputOrder is the picture that follows picture n in output order and has PicOutputFlag equal to 1. 

C.3.4 Current decoded picture marking and storage 

The current decoded picture after the invocation of the in-loop filter process as specified in clause 8.7 is stored in the DPB 

in an empty picture storage buffer, the DPB fullness is incremented by one. When TwoVersionsOfCurrDecPicFlag is equal 

to 0 and pps_curr_pic_ref_enabled_flag is equal to 1, this picture is marked as "used for long-term reference". After all the 

slices of the current picture have been decoded, this picture is marked as "used for short-term reference". 



 

  Rec. ITU-T H.265 v8 (08/2021) 285 

When TwoVersionsOfCurrDecPicFlag is equal to 1, the current decoded picture before the invocation of the in-loop filter 

process as specified in clause 8.7 is stored in the DPB in an empty picture storage buffer, the DPB fullness is incremented 

by one, and this picture is marked as "used for long-term reference". 

NOTE ï Unless more memory than required by the level limit is available for storage of decoded pictures, decoders should start 

storing decoded parts of the current picture into the DPB when the first slice segment is decoded and continue storing more decoded 

samples as the decoding process proceeds. 

C.3.5 Removal of pictures from the DPB after decoding of the current picture 

When TwoVersionsOfCurrDecPicFlag is equal to 1, immediately after decoding of the current picture, at the CPB removal 

time of the last decoding unit of access unit n (containing the current picture), the current decoded picture before the 

invocation of the in-loop filter process as specified in clause 8.7 is removed from the DPB, and the DPB fullness is 

decremented by one. 

C.4 Bitstream conformance 

A bitstream of coded data conforming to this Specification shall fulfil all requirements specified in this clause. 

The bitstream shall be constructed according to the syntax, semantics and constraints specified in this Specification outside 

of this annex. 

The first coded picture in a bitstream shall be an IRAP picture, i.e., an IDR picture, a CRA picture or a BLA picture. 

The bitstream is tested by the HRD for conformance as specified in clause C.1. 

For each current picture, let the variables maxPicOrderCnt and minPicOrderCnt be set equal to the maximum and the 

minimum, respectively, of the PicOrderCntVal values of the following pictures: 

ï The current picture. 

ï The previous picture in decoding order that has TemporalId equal to 0 and that is not a RASL, RADL, or SLNR 

picture. 

ï The short-term reference pictures in the RPS of the current picture. 

ï All pictures n that have PicOutputFlag equal to 1, AuCpbRemovalTime[ n ] less than AuCpbRemovalTime[ currPic ] 

and DpbOutputTime[ n ] greater than or equal to AuCpbRemovalTime[ currPic ], where currPic is the current picture. 

All of the following conditions shall be fulfilled for each of the bitstream conformance tests: 

1. For each access unit n, with n greater than 0, associated with a buffering period SEI message, let the variable 

deltaTime90k[ n ] be specified as follows: 

deltaTime90k[ n ] = 90 000 * ( AuNominalRemovalTime[ n ] ī AuFinalArrivalTime[ n ī 1 ] )

 (C-17) 

The value of InitCpbRemovalDelay[ SchedSelIdx ] is constrained as follows: 

ï If cbr_flag[ SchedSelIdx ] is equal to 0, the following condition shall be true: 

InitCpbRemovalDelay[ SchedSelIdx ]  <=  Ceil( deltaTime90k[ n ] ) (C-18) 

ï Otherwise (cbr_flag[ SchedSelIdx ] is equal to 1), the following condition shall be true: 

Floor( deltaTime90k[ n ] ) <= InitCpbRemovalDelay[ SchedSelIdx ] <= Ceil( deltaTime90k[ n ] 

) (C-19) 

NOTE 1 ï The exact number of bits in the CPB at the removal time of each picture may depend on which buffering 

period SEI message is selected to initialize the HRD. Encoders must take this into account to ensure that all specified 

constraints must be obeyed regardless of which buffering period SEI message is selected to initialize the HRD, as the 

HRD may be initialized at any one of the buffering period SEI messages. 

2. A CPB overflow is specified as the condition in which the total number of bits in the CPB is greater than the CPB 

size. The CPB shall never overflow. 

3. When low_delay_hrd_flag[ HighestTid ] is equal to 0, the CPB shall never underflow. A CPB underflow is 

specified as follows: 



 

286 Rec. ITU-T H.265 v8 (08/2021) 

ï If SubHrdFlag is equal to 0, a CPB underflow is specified as the condition in which the nominal CPB removal 

time of access unit n AuNominalRemovalTime[ n ] is less than the final CPB arrival time of access unit n 

AuFinalArrivalTime[ n ] for at least one value of n. 

ï Otherwise (SubPicHrdFlag is equal to 1), a CPB underflow is specified as the condition in which the nominal 

CPB removal time of decoding unit m DuNominalRemovalTime[ m ] is less than the final CPB arrival time 

of decoding unit m DuFinalArrivalTime[ m ] for at least one value of m. 

4. When SubPicHrdFlag is equal to 1, low_delay_hrd_flag[ HighestTid ] is equal to 1 and the nominal removal time 

of a decoding unit m of access unit n is less than the final CPB arrival time of decoding unit m (i.e., 

DuNominalRemovalTime[ m ] < DuFinalArrivalTime[ m ]), the nominal removal time of access unit n shall be 

less than the final CPB arrival time of access unit n (i.e., 

AuNominalRemovalTime[ n ] < AuFinalArrivalTime[ n ]). 

5. The nominal removal times of pictures from the CPB (starting from the second picture in decoding order) shall 

satisfy the constraints on AuNominalRemovalTime[ n ] and AuCpbRemovalTime[ n ] expressed in clauses A.4.1 

through A.4.2. 

6. For each current picture, after invocation of the process for removal of pictures from the DPB as specified in 

clause C.3.2, the number of decoded pictures in the DPB, including all pictures n that are marked as "used for 

reference", or that have PicOutputFlag equal to 1 and AuCpbRemovalTime[ n ] less than 

AuCpbRemovalTime[ currPic ], where currPic is the current picture, shall be less than or equal to 

sps_max_dec_pic_buffering_minus1[ HighestTid ]. 

7. All reference pictures shall be present in the DPB when needed for prediction. Each picture that has PicOutputFlag 

equal to 1 shall be present in the DPB at its DPB output time unless it is removed from the DPB before its output 

time by one of the processes specified in clause C.3. 

8. For each current picture that is not an IRAP picture with NoRaslOutputFlag equal to 1, the value of 

maxPicOrderCnt ī minPicOrderCnt shall be less than MaxPicOrderCntLsb / 2. 

9. The value of DpbOutputInterval[ n ] as given by Equation C-16, which is the difference between the output time 

of a picture and that of the first picture following it in output order and having PicOutputFlag equal to 1, shall 

satisfy the constraint expressed in clause A.4.1 for the profile, tier and level specified in the bitstream using the 

decoding process specified in clauses 2 through 10. 

10. For each current picture, when sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 1, let 

tmpCpbRemovalDelaySum be derived as follows: 

tmpCpbRemovalDelaySum = 0 

for( i = 0; i < num_decoding_units_minus1; i++ ) (C-20) 

 tmpCpbRemovalDelaySum  +=  du_cpb_removal_delay_increment_minus1[ i ] + 1 

The value of ClockSubTick *  tmpCpbRemovalDelaySum shall be equal to the difference between the 

nominal CPB removal time of the current access unit and the nominal CPB removal time of the first 

decoding unit in the current access unit in decoding order. 

11. For any two pictures m and n in the same CVS, when DpbOutputTime[ m ] is greater than DpbOutputTime[ n ], 

the PicOrderCntVal of picture m shall be greater than the PicOrderCntVal of picture n. 

NOTE 2 ï All pictures of an earlier CVS in decoding order that are output are output before any pictures of a later CVS 

in decoding order. Within any particular CVS, the pictures that are output are output in increasing PicOrderCntVal 

order. 

C.5 Decoder conformance 

C.5.1 General 

A decoder conforming to this Specification shall fulfil all requirements specified in this clause. 

A decoder claiming conformance to a specific profile, tier and level shall be able to successfully decode all bitstreams that 

conform to the bitstream conformance requirements specified in clause C.4, in the manner specified in Annex A, provided 

that all VPSs, SPSs and PPSs referred to in the VCL NAL units and appropriate buffering period, picture timing and 

decoding unit information SEI messages are conveyed to the decoder, in a timely manner, either in the bitstream (by non-

VCL NAL units), or by external means not specified in this Specification. 

When a bitstream contains syntax elements that have values that are specified as reserved and it is specified that decoders 

shall ignore values of the syntax elements or NAL units containing the syntax elements having the reserved values, and 



 

  Rec. ITU-T H.265 v8 (08/2021) 287 

the bitstream is otherwise conforming to this Specification, a conforming decoder shall decode the bitstream in the same 

manner as it would decode a conforming bitstream and shall ignore the syntax elements or the NAL units containing the 

syntax elements having the reserved values as specified. 

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order 

conformance. 

To check conformance of a decoder, test bitstreams conforming to the claimed profile, tier and level, as specified in 

clause C.4 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test (DUT). 

All cropped decoded pictures output by the HRD shall also be output by the DUT, each cropped decoded picture output 

by the DUT shall be a picture with PicOutputFlag equal to 1, and, for each such cropped decoded picture output by the 

DUT, the values of all samples that are output shall be equal to the values of the samples produced by the specified decoding 

process. 

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only from 

the subset of values of SchedSelIdx for which the bit rate and CPB size are restricted as specified in Annex A for the 

specified profile, tier and level or with "interpolated" delivery schedules as specified below for which the bit rate and CPB 

size are restricted as specified in Annex A. The same delivery schedule is used for both the HRD and the DUT. 

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt_minus1[ HighestTid ] greater 

than 0, the decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an "interpolated" 

delivery schedule specified as having peak bit rate r, CPB size c( r ) and initial CPB removal delay ( f( r ) ÷ r ) as follows: 

Ŭ = ( r ī BitRate[ SchedSelIdx ī 1 ] ) ÷ ( BitRate[ SchedSelIdx ] ī BitRate[ SchedSelIdx ī 1 ] ),

 (C-21) 

c( r ) = Ŭ * CpbSize[ SchedSelIdx ] + ( 1 ī Ŭ ) * CpbSize[ SchedSelIdx ī 1 ], (C-22) 

f( r ) = Ŭ * InitCpbRemovalDelay[ SchedSelIdx ] * BitRate[ SchedSelIdx ] +  

  ( 1 ī Ŭ ) * InitCpbRemovalDelay[ SchedSelIdx ī 1 ] * BitRate[ SchedSelIdx ī 1 ] (C-23) 

for any SchedSelIdx > 0 and r such that BitRate[ SchedSelIdx ī 1 ]  <=  r  <=  BitRate[ SchedSelIdx ] such that r and c( r ) 

are within the limits as specified in Annex A for the maximum bit rate and buffer size for the specified profile, tier and 

level. 

NOTE 1 ï InitCpbRemovalDelay[ SchedSelIdx ] can be different from one buffering period to another and have to be re-calculated. 

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time 

of the first bit) of picture output is the same for both the HRD and the DUT up to a fixed delay. 

For output order decoder conformance, the following applies: 

ï The HSS delivers the bitstream BitstreamToDecode to the DUT "by demand" from the DUT, meaning that the HSS 

delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing. 

NOTE 2 ï This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest 

decoding unit. 

ï A modified HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the schedules 

specified in the bitstream BitstreamToDecode such that the bit rate and CPB size are restricted as specified in 

Annex A. The order of pictures output shall be the same for both the HRD and the DUT. 

ï The HRD CPB size is given by CpbSize[ SchedSelIdx ] as specified in clause E.3.3, where SchedSelIdx and the HRD 

parameters are selected as specified in clause C.1. The DPB size is given by 

sps_max_dec_pic_buffering_minus1[ HighestTid ] + 1. Removal time from the CPB for the HRD is the final bit 

arrival time and decoding is immediate. The operation of the DPB of this HRD is as described in clauses C.5.2 through 

C.5.2.3. 

C.5.2 Operation of the output order DPB 

C.5.2.1 General 

The decoded picture buffer contains picture storage buffers. Each of the picture storage buffers contains a decoded picture 

that is marked as "used for reference" or is held for future output. The process for output and removal of pictures from the 

DPB before decoding of the current picture as specified in clause C.5.2.2 is invoked, the invocation of the process for 

current decoded picture marking and storage as specified in clause C.3.4, further followed by the invocation of the process 

for removal of pictures from the DPB after decoding of the current picture as specified in clause C.3.5, and finally followed 

by the invocation of the process for additional bumping as specified in clause C.5.2.3. The "bumping" process is specified 

in clause C.5.2.4 and is invoked as specified in clauses C.5.2.2 and C.5.2.3. 



 

288 Rec. ITU-T H.265 v8 (08/2021) 

C.5.2.2 Output and removal of pictures from the DPB 

The output and removal of pictures from the DPB before the decoding of the current picture (but after parsing the slice 

header of the first slice of the current picture) happens instantaneously when the first decoding unit of the access unit 

containing the current picture is removed from the CPB and proceeds as follows: 

ï The decoding process for RPS as specified in clause 8.3.2 is invoked. 

ï If the current picture is an IRAP picture with NoRaslOutputFlag equal to 1 that is not picture 0, the following ordered 

steps are applied: 

1. The variable NoOutputOfPriorPicsFlag is derived for the decoder under test as follows: 

ï If the current picture is a CRA picture, NoOutputOfPriorPicsFlag is set equal to 1 (regardless of the value 

of no_output_of_prior_pics_flag). 

ï Otherwise, if the value of pic_width_in_luma_samples, pic_height_in_luma_samples, chroma_format_idc, 

separate_colour_plane_flag, bit_depth_luma_minus8, bit_depth_chroma_minus8 or sps_max_dec_pic_

buffering_minus1[ HighestTid ] derived from the active SPS is different from the value of 

pic_width_in_luma_samples, pic_height_in_luma_samples, chroma_format_idc, separate_colour_plane_

flag, bit_depth_luma_minus8, bit_depth_chroma_minus8 or sps_max_dec_pic_buffering_

minus1[ HighestTid ], respectively, derived from the SPS active for the preceding picture, 

NoOutputOfPriorPicsFlag may (but should not) be set to 1 by the decoder under test, regardless of the value 

of no_output_of_prior_pics_flag. 

NOTE ï Although setting NoOutputOfPriorPicsFlag equal to no_output_of_prior_pics_flag is preferred under 

these conditions, the decoder under test is allowed to set NoOutputOfPriorPicsFlag to 1 in this case. 

ï Otherwise, NoOutputOfPriorPicsFlag is set equal to no_output_of_prior_pics_flag. 

2. The value of NoOutputOfPriorPicsFlag derived for the decoder under test is applied for the HRD as follows: 

ï If NoOutputOfPriorPicsFlag is equal to 1, all picture storage buffers in the DPB are emptied without output 

of the pictures they contain and the DPB fullness is set equal to 0. 

ï Otherwise (NoOutputOfPriorPicsFlag is equal to 0), all picture storage buffers containing a picture that is 

marked as "not needed for output" and "unused for reference" are emptied (without output) and all non-

empty picture storage buffers in the DPB are emptied by repeatedly invoking the "bumping" process 

specified in clause C.5.2.4 and the DPB fullness is set equal to 0. 

ï Otherwise (the current picture is not an IRAP picture with NoRaslOutputFlag equal to 1), all picture storage buffers 

containing a picture which are marked as "not needed for output" and "unused for reference" are emptied (without 

output). For each picture storage buffer that is emptied, the DPB fullness is decremented by one. When one or more 

of the following conditions are true, the "bumping" process specified in clause C.5.2.4 is invoked repeatedly while 

further decrementing the DPB fullness by one for each additional picture storage buffer that is emptied, until none of 

the following conditions are true: 

ï The number of pictures in the DPB that are marked as "needed for output" is greater than 

sps_max_num_reorder_pics[ HighestTid ]. 

ï sps_max_latency_increase_plus1[ HighestTid ] is not equal to 0 and there is at least one picture in the DPB that 

is marked as "needed for output" for which the associated variable PicLatencyCount is greater than or equal to 

SpsMaxLatencyPictures[ HighestTid ]. 

ï The number of pictures in the DPB is greater than or equal to 

sps_max_dec_pic_buffering_minus1[ HighestTid ] + 1 ī TwoVersionsOfCurrDecPicFlag. 

C.5.2.3 Additional bumping 

The processes specified in this clause happen instantaneously when the last decoding unit of access unit n containing the 

current picture is removed from the CPB. 

When the current picture has PicOutputFlag equal to 1, for each picture in the DPB that is marked as "needed for output" 

and follows the current picture in output order, the associated variable PicLatencyCount is set equal to 

PicLatencyCount + 1. 

The following applies: 

ï If the current decoded picture has PicOutputFlag equal to 1, it is marked as "needed for output" and its associated 

variable PicLatencyCount is set equal to 0. 

ï Otherwise (the current decoded picture has PicOutputFlag equal to 0), it is marked as "not needed for output". 



 

  Rec. ITU-T H.265 v8 (08/2021) 289 

When one or more of the following conditions are true, the "bumping" process specified in clause C.5.2.4 is invoked 

repeatedly until none of the following conditions are true: 

ï The number of pictures in the DPB that are marked as "needed for output" is greater than 

sps_max_num_reorder_pics[ HighestTid ]. 

ï sps_max_latency_increase_plus1[ HighestTid ] is not equal to 0 and there is at least one picture in the DPB that is 

marked as "needed for output" for which the associated variable PicLatencyCount that is greater than or equal to 

SpsMaxLatencyPictures[ HighestTid ]. 

C.5.2.4 "Bumping" process 

The "bumping" process consists of the following ordered steps: 

1. The picture that is first for output is selected as the one having the smallest value of PicOrderCntVal of all pictures 

in the DPB marked as "needed for output". 

2. The picture is cropped, using the conformance cropping window specified in the active SPS for the picture, the 

cropped picture is output, and the picture is marked as "not needed for output". 

3. When the picture storage buffer that included the picture that was cropped and output contains a picture marked as 

"unused for reference", the picture storage buffer is emptied. 

NOTE ï For any two pictures picA and picB that belong to the same CVS and are output by the "bumping process", when picA is 

output earlier than picB, the value of PicOrderCntVal of picA is less than the value of PicOrderCntVal of picB. 



 

290 Rec. ITU-T H.265 v8 (08/2021) 

Annex D 

 

Supplemental enhancement information 

 
(This annex forms an integral part of this Recommendation | International Standard.) 

D.1 General 

This annex specifies syntax and semantics for SEI message payloads. 

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not required 

for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process 

this information for output order conformance to this Specification (see Annex C and clause F.13 for the specification of 

conformance). Some SEI message information is required to check bitstream conformance and for output timing decoder 

conformance. 

In clause C.5.2 and in clause F.13 including its subclauses, specification for presence of SEI messages are also satisfied 

when those messages (or some subset of them) are conveyed to decoders (or to the HRD) by other means not specified in 

this Specification. When present in the bitstream, SEI messages shall obey the syntax and semantics specified in 

clause 7.3.5 and this annex. When the content of an SEI message is conveyed for the application by some means other than 

presence within the bitstream, the representation of the content of the SEI message is not required to use the same syntax 

specified in this annex. For the purpose of counting bits, only the appropriate bits that are actually present in the bitstream 

are counted. 

D.2 SEI payload syntax 

D.2.1 General SEI message syntax 
 

sei_payload( payloadType, payloadSize ) { Descriptor 

 if( nal_unit_type  = =  PREFIX_SEI_NUT )  

  if( payloadType  = =  0 )  

   buffering_period( payloadSize )  

  else if( payloadType  = =  1 )  

   pic_timing( payloadSize )  

  else if( payloadType  = =  2 )  

   pan_scan_rect( payloadSize )  

  else if( payloadType  = =  3 )  

   filler_payload( payloadSize )  

  else if( payloadType  = =  4 )  

   user_data_registered_itu_t_t35( payloadSize )  

  else if( payloadType  = =  5 )  

   user_data_unregistered( payloadSize )  

  else if( payloadType  = =  6 )  

   recovery_point( payloadSize )  

  else if( payloadType  = =  9 )  

   scene_info( payloadSize )  

  else if( payloadType  = =  15 )  

   picture_snapshot( payloadSize )  

  else if( payloadType  = =  16 )  

   progressive_refinement_segment_start( payloadSize )  

  else if( payloadType  = =  17 )  

   progressive_refinement_segment_end( payloadSize )  

  else if( payloadType  = =  19 )  

   film_grain_characteristics( payloadSize )  

  else if( payloadType  = =  22 )  

   post_filter_hint( payloadSize )  

  else if( payloadType  = =  23 )  

   tone_mapping_info( payloadSize )  

  else if( payloadType  = =  45 )  



 

  Rec. ITU-T H.265 v8 (08/2021) 291 

   frame_packing_arrangement( payloadSize )  

  else if( payloadType  = =  47 )  

   display_orientation( payloadSize )  

  else if( payloadType  = =  56 )  

   green_metadata( payloadsize ) /* specified in ISO/IEC 23001-11 */  

  else if( payloadType  = =  128 )  

   structure_of_pictures_info( payloadSize )  

  else if( payloadType  = =  129 )  

   active_parameter_sets( payloadSize )  

  else if( payloadType  = =  130 )  

   decoding_unit_info( payloadSize )  

  else if( payloadType  = =  131 )  

   temporal_sub_layer_zero_idx( payloadSize )  

  else if( payloadType  = =  133 )  

   scalable_nesting( payloadSize )  

  else if( payloadType  = =  134 )  

   region_refresh_info( payloadSize )  

  else if( payloadType  = =  135 )  

   no_display( payloadSize )  

  else if( payloadType  = =  136 )  

   time_code( payloadSize )  

  else if( payloadType  = =  137 )  

   mastering_display_colour_volume( payloadSize )  

  else if( payloadType  = =  138 )  

   segmented_rect_frame_packing_arrangement( payloadSize )  

  else if( payloadType  = =  139 )  

   temporal_motion_constrained_tile_sets( payloadSize )  

  else if( payloadType  = =  140 )  

   chroma_resampling_filter_hint( payloadSize )  

  else if( payloadType  = =  141 )  

   knee_function_info( payloadSize )  

  else if( payloadType  = =  142 )  

   colour_remapping_info( payloadSize )  

  else if( payloadType  = =  143 )  

   deinterlaced_field_identification( payloadSize )  

  else if( payloadType  = =  144 )  

   content_light_level_info( payloadSize )  

  else if( payloadType  = =  145 )  

   dependent_rap_indication( payloadSize )  

  else if( payloadType  = =  146 )  

   coded_region_completion( payloadSize )  

  else if( payloadType  = =  147 )  

   alternative_transfer_characteristics( payloadSize )  

  else if( payloadType  = =  148 )  

   ambient_viewing_environment( payloadSize )  

  else if( payloadType  = =  149 )  

   content_colour_volume( payloadSize )  

  else if( payloadType  = =  150 )  

   equirectangular_projection( payloadSize )  

  else if(  payloadType  = =  151 )  

   cubemap_projection( payloadSize )  

  else if( payloadType  = =  152 )  

   fisheye_video_info( payloadSize )  



 

292 Rec. ITU-T H.265 v8 (08/2021) 

  else if( payloadType  = =  154 )  

   sphere_rotation( payloadSize )  

  else if(  payloadType  = =  155 )  

   regionwise_packing( payloadSize )  

  else if( payloadType  = =  156 )  

   omni_viewport( payloadSize )  

  else if( payloadType  = =  157 )  

   regional_nesting( payloadSize )  

  else if(  payloadType  = =  158 )  

   mcts_extraction_info_sets( payloadSize )  

  else if( payloadType  = =  159 )  

   mcts_extraction_info_nesting( payloadSize )  

  else if( payloadType  = =  160 )  

   layers_not_present( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  161 )  

   inter_layer_constrained_tile_sets( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  162 )  

   bsp_nesting( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  163 )  

   bsp_initial_arrival_time( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  164 )  

   sub_bitstream_property( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  165 )  

   alpha_channel_info( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  166 )  

   overlay_info( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  167 )  

   temporal_mv_prediction_constraints( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  168 )  

   frame_field_info( payloadSize )  /* specified in Annex F */   

  else if( payloadType  = =  176 )  

   three_dimensional_reference_displays_info( payloadSize )  /* specified in Annex G */   

  else if( payloadType  = =  177 )  

   depth_representation_info( payloadSize )  /* specified in Annex G */   

  else if( payloadType  = =  178 )  

   multiview_scene_info( payloadSize )  /* specified in Annex G */   

  else if( payloadType  = =  179 )  

   multiview_acquisition_info( payloadSize )  /* specified in Annex G */   

  else if( payloadType  = =  180 )  

   multiview_view_position( payloadSize )  /* specified in Annex G */   

  else if( payloadType  = =  181 )  

   alternative_depth_info( payloadSize )  /* specified in Annex I */   

  else if( payloadType  = =  200 )  

   sei_manifest( payloadSize )  

  else if( payloadType  = =  201 )  

   sei_prefix_indication( payloadSize )  

  else if( payloadType  = =  202 )  

   annotated_regions( payloadSize )  

  else if( payloadType  = =  205 )  

   shutter_interval_info( payloadSize )  

  else  

   reserved_sei_message( payloadSize )  



 

  Rec. ITU-T H.265 v8 (08/2021) 293 

 else /* nal_unit_type  = =  SUFFIX_SEI_NUT */  

  if( payloadType  = =  3 )  

   filler_payload( payloadSize )  

  else if( payloadType  = =  4 )  

   user_data_registered_itu_t_t35( payloadSize )  

  else if( payloadType  = =  5 )  

   user_data_unregistered( payloadSize )  

  else if( payloadType  = =  17 )  

   progressive_refinement_segment_end( payloadSize )  

  else if( payloadType  = =  22 )  

   post_filter_hint( payloadSize )  

  else if( payloadType  = =  132 )  

   decoded_picture_hash( payloadSize )  

  else if( payloadType  = =  146 )  

   coded_region_completion( payloadSize )  

  else  

   reserved_sei_message( payloadSize )  

 if( more_data_in_payload( ) ) {  

  if( payload_extension_present( ) )  

   reserved_payload_extension_data u(v) 

  payload_bit_equal_to_one /* equal to 1 */ f(1) 

  while( !byte_aligned( ) )  

   payload_bit_equal_to_zero /* equal to 0 */ f(1) 

 }   

}   

 



 

294 Rec. ITU-T H.265 v8 (08/2021) 

D.2.2 Buffering period SEI message syntax 

 

buffering_period( payloadSize ) { Descriptor 

 bp_seq_parameter_set_id ue(v) 

 if( !sub_pic_hrd_params_present_flag )  

  irap_cpb_params_present_flag u(1) 

 if( irap_cpb_params_present_flag ) {  

  cpb_delay_offset u(v) 

  dpb_delay_offset u(v) 

 }   

 concatenation_flag u(1) 

 au_cpb_removal_delay_delta_minus1 u(v) 

 if( NalHrdBpPresentFlag ) {  

  for( i = 0; i < CpbCnt; i++ ) {  

   nal_initial_cpb_removal_delay[ i ] u(v) 

   nal_initial_cpb_removal_offset[ i ] u(v) 

   if(  sub_pic_hrd_params_present_flag  | |  irap_cpb_params_present_flag ) {   

    nal_initial_alt_cpb_removal_delay[ i ] u(v) 

    nal_initial_alt_cpb_removal_offset[ i ] u(v) 

   }   

  }   

 }   

 if( VclHrdBpPresentFlag ) {   

  for( i = 0; i < CpbCnt; i++ ) {  

   vcl_initial_cpb_removal_delay[ i ] u(v) 

   vcl_initial_cpb_removal_offset[ i ] u(v) 

   if(  sub_pic_hrd_params_present_flag  | |  irap_cpb_params_present_flag ) {   

    vcl_initial_alt_cpb_removal_delay[ i ] u(v) 

    vcl_initial_alt_cpb_removal_offset[ i ] u(v) 

   }   

  }   

 }   

 if( more_data_in_payload( ) )  

  if( payload_extension_present( ) )  

   use_alt_cpb_params_flag u(1) 

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 295 

D.2.3 Picture timing SEI message syntax 

 

pic_timing( payloadSize ) { Descriptor 

 if( frame_field_info_present_flag ) {  

  pic_struct u(4) 

  source_scan_type u(2) 

  duplicate_flag u(1) 

 }   

 if( CpbDpbDelaysPresentFlag ) {   

  au_cpb_removal_delay_minus1 u(v) 

  pic_dpb_output_delay u(v) 

  if(  sub_pic_hrd_params_present_flag )  

   pic_dpb_output_du_delay u(v) 

  if(  sub_pic_hrd_params_present_flag  &&  

    sub_pic_cpb_params_in_pic_timing_sei_flag ) {  

 

   num_decoding_units_minus1 ue(v) 

   du_common_cpb_removal_delay_flag u(1) 

   if(  du_common_cpb_removal_delay_flag )  

    du_common_cpb_removal_delay_increment_minus1 u(v) 

   for( i = 0; i  <=  num_decoding_units_minus1; i++ ) {  

    num_nalus_in_du_minus1[ i ] ue(v) 

    if( !du_common_cpb_removal_delay_flag  &&  i < num_decoding_units_minus1 )  

     du_cpb_removal_delay_increment_minus1[ i ] u(v) 

   }   

  }   

 }   

}   

 

D.2.4 Pan-scan rectangle SEI message syntax 

 

pan_scan_rect( payloadSize ) { Descriptor 

 pan_scan_rect_id ue(v) 

 pan_scan_rect_cancel_flag u(1) 

 if( !pan_scan_rect_cancel_flag ) {  

  pan_scan_cnt_minus1 ue(v) 

  for( i = 0; i  <=  pan_scan_cnt_minus1; i++ ) {  

   pan_scan_rect_left_offset[ i ] se(v) 

   pan_scan_rect_right_offset[ i ] se(v) 

   pan_scan_rect_top_offset[ i ] se(v) 

   pan_scan_rect_bottom_offset[ i ] se(v) 

  }   

  pan_scan_rect_persistence_flag u(1) 

 }   

}   

 



 

296 Rec. ITU-T H.265 v8 (08/2021) 

D.2.5 Filler payload SEI message syntax 

 

filler_payload( payloadSize ) {  Descriptor 

 for( k = 0; k < payloadSize; k++)  

  ff_byte  /* equal to 0xFF */ f(8) 

}   

 

D.2.6 User data registered by Recommendation ITU -T T.35 SEI message syntax 

 

user_data_registered_itu_t_t35( payloadSize ) {  Descriptor 

 itu_t_t35_country_code b(8) 

 if( itu_t_t35_country_code  !=  0xFF )  

  i = 1  

 else {   

  itu_t_t35_country_code_extension_byte b(8) 

  i = 2  

 }   

 do {   

  itu_t_t35_payload_byte b(8) 

  i++  

 }  while( i < payloadSize )  

}   

 

D.2.7 User data unregistered SEI message syntax 

 

user_data_unregistered( payloadSize ) {  Descriptor 

 uuid_iso_iec_11578 u(128) 

 for( i = 16; i < payloadSize; i++ )  

  user_data_payload_byte b(8) 

}   

 

D.2.8 Recovery point SEI message syntax 

 

recovery_point( payloadSize ) { Descriptor 

 recovery_poc_cnt se(v) 

 exact_match_flag u(1) 

 broken_link_flag u(1) 

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 297 

D.2.9 Scene information SEI message syntax 

 

scene_info( payloadSize ) {  Descriptor 

 scene_info_present_flag u(1) 

 if( scene_info_present_flag ) {   

  prev_scene_id_valid_flag u(1) 

  scene_id ue(v) 

  scene_transition_type ue(v) 

  if( scene_transition_type > 3 )  

   second_scene_id ue(v) 

 }   

}   

 

D.2.10 Picture snapshot SEI message syntax 

 

picture_snapshot( payloadSize ) {  Descriptor 

 snapshot_id ue(v) 

}   

 

D.2.11 Progressive refinement segment start SEI message syntax 

 

progressive_refinement_segment_start( payloadSize ) { Descriptor 

 progressive_refinement_id ue(v) 

 pic_order_cnt_delta ue(v) 

}   

 

D.2.12 Progressive refinement segment end SEI message syntax 

 

progressive_refinement_segment_end( payloadSize ) {  Descriptor 

 progressive_refinement_id ue(v) 

}   

 



 

298 Rec. ITU-T H.265 v8 (08/2021) 

D.2.13 Film grain characteristics SEI message syntax 

 

film_grain_characteristics( payloadSize ) { Descriptor 

 film_grain_characteristics_cancel_flag u(1) 

 if( !film_grain_characteristics_cancel_flag ) {  

  film_grain_model_id u(2) 

  separate_colour_description_present_flag u(1) 

  if( separate_colour_description_present_flag ) {  

   film_grain_bit_depth_luma_minus8 u(3) 

   film_grain_bit_depth_chroma_minus8 u(3) 

   film_grain_full_range_flag u(1) 

   film_grain_colour_primaries u(8) 

   film_grain_transfer_characteristics u(8) 

   film_grain_matrix_coeffs u(8) 

  }   

  blending_mode_id u(2) 

  log2_scale_factor u(4) 

  for( c = 0; c < 3; c++ )  

   comp_model_present_flag[ c ] u(1) 

  for( c = 0; c < 3; c++ )  

   if( comp_model_present_flag[ c ] ) {   

    num_intensity_intervals_minus1[ c ] u(8) 

    num_model_values_minus1[ c ] u(3) 

    for( i = 0; i  <=  num_intensity_intervals_minus1[ c ]; i++ ) {   

     intensity_interval_lower_bound[ c ][  i ] u(8) 

     intensity_interval_upper_bound[ c ][  i ] u(8) 

     for( j = 0; j  <=  num_model_values_minus1[ c ]; j++ )  

      comp_model_value[ c ][  i ][  j ] se(v) 

    }   

   }   

 film_grain_characteristics_persistence_flag u(1) 

 }   

}   

 

D.2.14 Post-filter hint SEI message syntax 

 

post_filter_hint( payloadSize ) {  Descriptor 

 filter_hint_size_y ue(v) 

 filter_hint_size_x ue(v) 

 filter_hint_type  u(2) 

 for( cIdx = 0; cIdx < ( chroma_format_idc  = =  0 ? 1 : 3 ); cIdx++ )  

  for( cy = 0; cy < filter_hint_size_y; cy++ )  

   for( cx = 0; cx < filter_hint_size_x; cx++ )  

    filter_hint_value [ cIdx ][  cy ][  cx ] se(v) 

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 299 

D.2.15 Tone mapping information SEI message syntax 

 

tone_mapping_info( payloadSize ) { Descriptor 

 tone_map_id ue(v) 

 tone_map_cancel_flag u(1) 

 if( !tone_map_cancel_flag ) {  

  tone_map_persistence_flag u(1) 

  coded_data_bit_depth u(8) 

  target_bit_depth u(8) 

  tone_map_model_id ue(v) 

  if( tone_map_model_id  = =  0 ) {  

   min_value u(32) 

   max_value u(32) 

  } else if( tone_map_model_id  = =  1 ) {  

   sigmoid_midpoint u(32) 

   sigmoid_width u(32) 

  } else if( tone_map_model_id  = =  2 )  

   for( i = 0; i < ( 1  <<  target_bit_depth ); i++ )  

    start_of_coded_interval[ i ] u(v) 

  else if( tone_map_model_id  = =  3 ) {  

   num_pivots u(16) 

   for( i = 0; i < num_pivots; i++ ) {  

    coded_pivot_value[ i ] u(v) 

    target_pivot_value[ i ] u(v) 

   }   

  } else if( tone_map_model_id  = =  4 ) {   

   camera_iso_speed_idc u(8) 

   if( camera_iso_speed_idc  = =  EXTENDED_ISO )  

    camera_iso_speed_value u(32) 

   exposure_idx_idc u(8) 

   if( exposure_idx_idc  = =  EXTENDED_ISO )  

    exposure_idx_value u(32) 

   exposure_compensation_value_sign_flag u(1) 

   exposure_compensation_value_numerator u(16) 

   exposure_compensation_value_denom_idc u(16) 

   ref_screen_luminance_white u(32) 

   extended_range_white_level u(32) 

   nominal_black_level_code_value u(16) 

   nominal_white_level_code_value u(16) 

   extended_white_level_code_value u(16) 

  }   

 }   

}   

 



 

300 Rec. ITU-T H.265 v8 (08/2021) 

D.2.16 Frame packing arrangement SEI message syntax 

 

frame_packing_arrangement( payloadSize ) { Descriptor 

 frame_packing_arrangement_id ue(v) 

 frame_packing_arrangement_cancel_flag u(1) 

 if( !frame_packing_arrangement_cancel_flag ) {  

  frame_packing_arrangement_type u(7) 

  quincunx_sampling_flag u(1) 

  content_interpretation_type u(6) 

  spatial_flipping_flag u(1) 

  frame0_flipped_flag u(1) 

  field_views_flag u(1) 

  current_frame_is_frame0_flag u(1) 

  frame0_self_contained_flag u(1) 

  frame1_self_contained_flag u(1) 

  if( ! quincunx_sampling_flag  &&  frame_packing_arrangement_type  !=  5 ) {  

   frame0_grid_position_x u(4) 

   frame0_grid_position_y u(4) 

   frame1_grid_position_x u(4) 

   frame1_grid_position_y u(4) 

  }   

  frame_packing_arrangement_reserved_byte u(8) 

  frame_packing_arrangement_persistence_flag u(1) 

 }   

 upsampled_aspect_ratio_flag u(1) 

}   

 

D.2.17 Display orientation SEI message syntax 

 

display_orientation( payloadSize ) { Descriptor 

 display_orientation_cancel_flag u(1) 

 if( !display_orientation_cancel_flag ) {  

  hor_flip  u(1) 

  ver_flip  u(1) 

  anticlockwise_rotation u(16) 

  display_orientation_persistence_flag u(1) 

 }   

}   

 

D.2.18 Green metadata SEI message syntax 

The syntax for green metadata SEI message is specified in ISO/IEC 23001-11 (Green metadata). Green metadata facilitates 

reduced power consumption in decoders, encoders, displays and in media selection. 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 301 

D.2.19 Structure of pictures information SEI message syntax 

 

structure_of_pictures_info( payloadSize ) { Descriptor 

 sop_seq_parameter_set_id ue(v) 

 num_entries_in_sop_minus1 ue(v) 

 for( i = 0; i  <=  num_entries_in_sop_minus1; i++ ) {  

  sop_vcl_nut[ i ] u(6) 

  sop_temporal_id[ i ] u(3) 

  if( sop_vcl_nut[ i ]  !=  IDR_W_RADL  &&  sop_vcl_nut[ i ]  !=  IDR_N_LP )  

   sop_short_term_rps_idx[ i ] ue(v) 

  if( i > 0 )  

   sop_poc_delta[ i ] se(v) 

 }   

}   

 

D.2.20 Decoded picture hash SEI message syntax 

 

decoded_picture_hash( payloadSize ) { Descriptor 

 hash_type u(8) 

 for( cIdx = 0; cIdx < ( chroma_format_idc  = =  0 ? 1 : 3 ); cIdx++ )  

  if( hash_type  = =  0 )  

   for( i = 0; i < 16; i++)  

    picture_md5[ cIdx ][  i ] b(8) 

  else if( hash_type  = =  1 )  

   picture_crc[ cIdx ] u(16) 

  else if( hash_type  = =  2 )  

   picture_checksum[ cIdx ] u(32) 

}   

 

D.2.21 Active parameter sets SEI message syntax 

 

active_parameter_sets( payloadSize ) { Descriptor 

 active_video_parameter_set_id u(4) 

 self_contained_cvs_flag u(1) 

 no_parameter_set_update_flag u(1) 

 num_sps_ids_minus1 ue(v) 

 for( i = 0; i  <=  num_sps_ids_minus1; i++ )  

  active_seq_parameter_set_id[ i ] ue(v) 

 for( i = vps_base_layer_internal_flag; i  <=  MaxLayersMinus1; i++ )  

  layer_sps_idx[ i ] ue(v) 

}   

 



 

302 Rec. ITU-T H.265 v8 (08/2021) 

D.2.22 Decoding unit information SEI message syntax 

 

decoding_unit_info( payloadSize ) { Descriptor 

 decoding_unit_idx ue(v) 

 if( ! sub_pic_cpb_params_in_pic_timing_sei_flag )  

  du_spt_cpb_removal_delay_increment u(v) 

 dpb_output_du_delay_present_flag u(1) 

 if( dpb_output_du_delay_present_flag )  

  pic_spt_dpb_output_du_delay u(v) 

}   

 

D.2.23 Temporal sub-layer zero index SEI message syntax 

 

temporal_sub_layer_zero_idx( payloadSize ) { Descriptor 

 temporal_sub_layer_zero_idx u(8) 

 irap_pic_id u(8) 

}   

 

D.2.24 Scalable nesting SEI message syntax 

 

scalable_nesting( payloadSize ) { Descriptor 

 bitstream_subset_flag u(1) 

 nesting_op_flag u(1) 

 if( nesting_op_flag ) {   

  default_op_flag u(1) 

  nesting_num_ops_minus1 ue(v) 

  for( i = default_op_flag; i  <=  nesting_num_ops_minus1; i++ ) {  

   nesting_max_temporal_id_plus1[ i ] u(3) 

   nesting_op_idx[ i ] ue(v) 

  }   

 } else {  

  all_layers_flag u(1) 

  if( !all_layers_flag ) {  

   nesting_no_op_max_temporal_id_plus1 u(3) 

   nesting_num_layers_minus1 ue(v) 

   for( i = 0; i  <=  nesting_num_layers_minus1; i++ )  

    nesting_layer_id[ i ] u(6) 

  }   

 }   

 while( !byte_aligned( ) )  

  nesting_zero_bit /* equal to 0 */ u(1) 

 do  

  sei_message( )  

 while( more_rbsp_data( ) )  

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 303 

D.2.25 Region refresh information SEI message syntax 

 

region_refresh_info( payloadSize ) { Descriptor 

 refreshed_region_flag u(1) 

}   

 

D.2.26 No display SEI message syntax 

 

no_display( payloadSize ) { Descriptor 

}   

 

D.2.27 Time code SEI message syntax 

 

time_code( payloadSize ) { Descriptor 

 num_clock_ts u(2) 

 for( i = 0; i < num_clock_ts; i++ ) {  

  clock_timestamp_flag[ i ] u(1) 

  if( clock_timestamp_flag[ i ] ) {   

   units_field_based_flag[ i ] u(1) 

   counting_type[ i ] u(5) 

   full_timestamp_flag[ i ] u(1) 

   discontinuity_flag[ i ] u(1) 

   cnt_dropped_flag[ i ] u(1) 

   n_frames[ i ] u(9) 

   if( full_timestamp_flag[ i ] ) {   

    seconds_value[ i ] /* 0..59 */ u(6) 

    minutes_value[ i ] /* 0..59 */ u(6) 

    hours_value[ i ] /* 0..23 */ u(5) 

   } else {  

    seconds_flag[ i ] u(1) 

    if( seconds_flag[ i ] ) {   

     seconds_value[ i ] /* 0..59 */ u(6) 

     minutes_flag[ i ] u(1) 

     if( minutes_flag[ i ] ) {   

      minutes_value[ i ] /* 0..59 */ u(6) 

      hours_flag[ i ] u(1) 

      if( hours_flag[ i ] )  

       hours_value[ i ] /* 0..23 */ u(5) 

     }   

    }   

   }   

   time_offset_length[ i ] u(5) 

   if( time_offset_length[ i ] > 0 )  

    time_offset_value[ i ] i(v) 

  }   

 }   

}   



 

304 Rec. ITU-T H.265 v8 (08/2021) 

 

D.2.28 Mastering display colour volume SEI message syntax 

 

mastering_display_colour_volume( payloadSize ) { Descriptor 

 for( c = 0; c < 3; c++ ) {  

  display_primaries_x[ c ] u(16) 

  display_primaries_y[ c ] u(16) 

 }   

 white_point_x u(16) 

 white_point_y u(16) 

 max_display_mastering_luminance u(32) 

 min_display_mastering_luminance u(32) 

}   

 

D.2.29 Segmented rectangular frame packing arrangement SEI message syntax 

 

segmented_rect_frame_packing_arrangement( payloadSize ) { Descriptor 

 segmented_rect_frame_packing_arrangement_cancel_flag u(1) 

 if( !segmented_rect_frame_packing_arrangement_cancel_flag ) {  

  segmented_rect_content_interpretation_type u(2) 

  segmented_rect_frame_packing_arrangement_persistence_flag u(1) 

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 305 

D.2.30 Temporal motion-constrained tile sets SEI message syntax 

 

temporal_motion_constrained_tile_sets( payloadSize ) { Descriptor 

 mc_all_tiles_exact_sample_value_match_flag u(1) 

 each_tile_one_tile_set_flag u(1) 

 if( !each_tile_one_tile_set_flag ) {  

  limited_tile_set_display_flag u(1) 

  num_sets_in_message_minus1 ue(v) 

  for( i = 0; i  <=  num_sets_in_message_minus1; i++ ) {  

   mcts_id[ i ] ue(v) 

   if( limited_tile_set_display_flag )  

    display_tile_set_flag[ i ] u(1) 

   num_tile_rects_in_set_minus1[ i ] ue(v) 

   for( j = 0; j  <=  num_tile_rects_in_set_minus1[ i ]; j++ ) {   

    top_left_tile_idx[ i ][  j ] ue(v) 

    bottom_right_tile_idx[ i ][  j ] ue(v) 

   }   

   if( !mc_all_tiles_exact_sample_value_match_flag )  

    mc_exact_sample_value_match_flag[ i ] u(1) 

   mcts_tier_level_idc_present_flag[ i ] u(1) 

   if( mcts_tier_level_idc_present_flag[ i ] ) {   

    mcts_tier_flag[ i ] u(1) 

    mcts_level_idc[ i ] u(8) 

   }   

  }   

 } else {  

  max_mcs_tier_level_idc_present_flag u(1) 

  if( mcts_max_tier_level_idc_present_flag ) {  

   mcts_max_tier_flag u(1) 

   mcts_max_level_idc u(8) 

  }   

 }   

}   

 



 

306 Rec. ITU-T H.265 v8 (08/2021) 

D.2.31 Chroma resampling filter hint SEI message syntax 

 

chroma_resampling_filter_hint( payloadSize ) { Descriptor 

 ver_chroma_filter_idc u(8) 

 hor_chroma_filter_idc u(8) 

 ver_filtering_field_processing_flag u(1) 

 if( ver_chroma_filter_idc  = =  1  | |  hor_chroma_filter_idc  = =  1 ) {  

  target_format_idc ue(v) 

  if( ver_chroma_filter_idc  = =  1 ) {  

   num_vertical_filters ue(v) 

   for( i = 0; i < num_vertical_filters; i++ ) {  

    ver_tap_length_minus1[ i ] ue(v) 

    for( j = 0; j  <=  ver_tap_length_minus1[ i ]; j++ )  

     ver_filter_coeff[ i ][  j ] se(v) 

   }   

  }   

  if( hor_chroma_filter_idc  = =  1 ) {  

   num_horizontal_filters ue(v) 

   for( i = 0; i < num_horizontal_filters; i++ ) {  

    hor_tap_length_minus1[ i ] ue(v) 

    for( j = 0; j  <=  hor_tap_length_minus1[ i ]; j++ )  

     hor_filter_coeff[ i ][  j ] se(v) 

   }   

  }   

 }   

}   

 

D.2.32 Knee function information SEI message syntax 

 

knee_function_info( payloadSize ) { Descriptor 

 knee_function_id ue(v) 

 knee_function_cancel_flag u(1) 

 if( !knee_function_cancel_flag ) {  

  knee_function_persistence_flag u(1) 

  input_d_range u(32) 

  input_disp_luminance u(32) 

  output_d_range u(32) 

  output_disp_luminance u(32) 

  num_knee_points_minus1 ue(v) 

  for( i = 0; i  <=  num_knee_points_minus1; i++ ) {  

   input_knee_point[ i ] u(10) 

   output_knee_point[ i ] u(10) 

  }   

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 307 

D.2.33 Colour remapping information SEI message syntax 

 

colour_remapping_info( payloadSize ) { Descriptor 

 colour_remap_id ue(v) 

 colour_remap_cancel_flag u(1) 

 if( !colour_remap_cancel_flag ) {  

  colour_remap_persistence_flag u(1) 

  colour_remap_video_signal_info_present_flag u(1) 

  if( colour_remap_video_signal_info_present_flag ) {  

   colour_remap_full_range_flag u(1) 

   colour_remap_primaries u(8) 

   colour_remap_transfer_function u(8) 

   colour_remap_matrix_coefficients u(8) 

  }   

  colour_remap_input_bit_depth u(8) 

  colour_remap_output_bit_depth u(8) 

  for( c = 0; c < 3; c++ ) {  

   pre_lut_num_val_minus1[ c ] u(8) 

   if( pre_lut_num_val_minus1[ c ] > 0 )  

    for( i = 0; i  <=  pre_lut_num_val_minus1[ c ]; i++ ) {   

     pre_lut_coded_value[ c ][ i ] u(v) 

     pre_lut_target_value[ c ][  i ] u(v) 

    }   

  }   

  colour_remap_matrix_present_flag u(1) 

  if( colour_remap_matrix_present_flag ) {  

   log2_matrix_denom u(4) 

   for( c = 0; c < 3; c++ )  

    for( i = 0; i < 3; i++ )  

     colour_remap_coeffs[ c ][  i ] se(v) 

  }   

  for( c = 0; c < 3; c++ ) {  

   post_lut_num_val_minus1[ c ] u(8) 

   if( post_lut_num_val_minus1[ c ] > 0 )  

    for( i = 0; i  <=  post_lut_num_val_minus1[ c ]; i++ ) {   

     post_lut_coded_value[ c ][ i ] u(v) 

     post_lut_target_value[ c ][  i ] u(v) 

    }   

  }   

 }   

}   

 



 

308 Rec. ITU-T H.265 v8 (08/2021) 

D.2.34 Deinterlaced field identification SEI message syntax 

 

deinterlaced_field_indentification( payloadSize ) { Descriptor 

 deinterlaced_picture_source_parity_flag u(1) 

}   

 

D.2.35 Content light level information SEI message syntax 

 

content_light_level_info( payloadSize ) { Descriptor 

 max_content_light_level u(16) 

 max_pic_average_light_level u(16) 

}   

 

D.2.36 Dependent random access point indication SEI message syntax 

 

dependent_rap_indication( payloadSize ) { Descriptor 

}   

 

D.2.37 Coded region completion SEI message syntax 

 

coded_region_completion( payloadSize ) { Descriptor 

 next_segment_address ue(v) 

 if( next_segment_address > 0 )  

  independent_slice_segment_flag u(1) 

}   

 

D.2.38 Alternative transfer characteristics information SEI message syntax 

 

alternative_transfer_characteristics ( payloadSize ) { Descriptor 

 preferred_transfer_characteristics u(8) 

}   

 

D.2.39 Ambient viewing environment SEI message syntax 

 

ambient_viewing_environment( payloadSize ) { Descriptor 

 ambient_illuminance u(32) 

 ambient_light_x u(16) 

 ambient_light_y u(16) 

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 309 

D.2.40 Content colour volume SEI message syntax 

 

content_colour_volume( payloadSize ) {  Descriptor 

 ccv_cancel_flag u(1) 

 if(  !ccv_cancel_flag ) {   

  ccv_persistence_flag u(1) 

  ccv_primaries_present_flag u(1) 

  ccv_min_luminance_value_present_flag u(1) 

  ccv_max_luminance_value_present_flag u(1) 

  ccv_avg_luminance_value_present_flag u(1) 

  ccv_reserved_zero_2bits u(2) 

  if(  ccv_primaries_present_flag )  

   for( c = 0; c < 3; c++ ) {   

    ccv_primaries_x[ c ] i(32) 

    ccv_primaries_y[ c ] i(32) 

   }   

  if(  ccv_min_luminance_value_present_flag )  

   ccv_min_luminance_value u(32) 

  if(  ccv_max_luminance_value_present_flag )  

   ccv_max_luminance_value u(32) 

  if(  ccv_avg_luminance_value_present_flag )  

   ccv_avg_luminance_value u(32) 

 }   

}   

 

D.2.41 Syntax of omnidirectional video specific SEI messages 

D.2.41.1 Equirectangular projection SEI message syntax 

 

equirectangular_projection( payloadSize ) {  Descriptor 

 erp_cancel_flag u(1) 

 if(  !erp_cancel_flag ) {   

  erp_persistence_flag u(1) 

  erp_guard_band_flag u(1) 

  erp_reserved_zero_2bits u(2) 

  if(  erp_guard_band_flag  = =  1 ) {   

   erp_guard_band_type u(3) 

   erp_left_guard_band_width u(8) 

   erp_right_guard_band_width u(8) 

  }   

 }   

}   

 



 

310 Rec. ITU-T H.265 v8 (08/2021) 

D.2.41.2 Cubemap projection SEI message syntax 

 

cubemap_projection( payloadSize ) {  Descriptor 

 cmp_cancel_flag u(1) 

 if(  !cmp_cancel_flag )  

  cmp_persistence_flag u(1) 

}   

 

D.2.41.3 Fisheye video information SEI message syntax 

 

fisheye_video_info( payloadSize ) {  Descriptor 

 fisheye_cancel_flag u(1) 

 if(  !fisheye_cancel_flag ) {   

  fisheye_persistence_flag u(1) 

  fisheye_view_dimension_idc u(3) 

  fisheye_reserved_zero_3bits u(3) 

  fisheye_num_active_areas_minus1 u(8) 

  for( i = 0; i  <=  fisheye_num_active_areas_minus1; i++ ) {   

   fisheye_circular_region_centre_x[ i ] u(32) 

   fisheye_circular_region_centre_y[ i ] u(32) 

   fisheye_rect_region_top[ i ] u(32) 

   fisheye_rect_region_left[ i ] u(32) 

   fisheye_rect_region_width[ i ] u(32) 

   fisheye_rect_region_height[ i ] u(32) 

   fisheye_circular_region_radius[ i ] u(32) 

   fisheye_scene_radius[ i ] u(32) 

   fisheye_camera_centre_azimuth[ i ] i(32) 

   fisheye_camera_centre_elevation[ i ] i(32) 

   fisheye_camera_centre_tilt [ i ] i(32) 

   fisheye_camera_centre_offset_x[ i ] u(32) 

   fisheye_camera_centre_offset_y[ i ] u(32) 

   fisheye_camera_centre_offset_z[ i ] u(32) 

   fisheye_field_of_view[ i ] u(32) 

   fisheye_num_polynomial_coeffs[ i ] u(16) 

   for( j = 0; j < fisheye_num_polynomial_coeffs[ i ]; j++ )  

    fisheye_polynomial_coeff[ i ][  j ] i(32) 

  }   

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 311 

D.2.41.4 Sphere rotation SEI message syntax 

 

sphere_rotation( payloadSize ) {  Descriptor 

 sphere_rotation_cancel_flag u(1) 

 if(  !sphere_rotation_cancel_flag ) {   

  sphere_rotation_persistence_flag u(1) 

  sphere_rotation_reserved_zero_6bits u(6) 

  yaw_rotation i(32) 

  pitch_rotation i(32) 

  roll _rotation i(32) 

 }   

}   

 



 

312 Rec. ITU-T H.265 v8 (08/2021) 

D.2.41.5 Region-wise packing SEI message syntax 

 

regionwise_packing( payloadSize ) { Descriptor 

 rwp_cancel_flag u(1) 

 if( !rwp_cancel_flag ) {   

  rwp_persistence_flag u(1) 

  constituent_picture_matching_flag u(1) 

  rwp_reserved_zero_5bits u(5) 

  num_packed_regions u(8) 

  proj_picture_width  u(32) 

  proj_picture_height u(32) 

  packed_picture_width u(16) 

  packed_picture_height u(16) 

  for( i = 0; i < num_packed_regions; i++ ) {  

   rwp_reserved_zero_4bits[ i ] u(4) 

   rwp_transform_type[ i ] u(3) 

   rwp_guard_band_flag[ i ] u(1) 

   proj_region_width [ i ] u(32) 

   proj_region_height[ i ] u(32) 

   proj_region_top[ i ] u(32) 

   proj_region_left[ i ] u(32) 

   packed_region_width[ i ] u(16) 

   packed_region_height[ i ] u(16) 

   packed_region_top[ i ] u(16) 

   packed_region_left[ i ] u(16) 

   if(  rwp_guard_band_flag[ i ] ) {   

    rwp_left_guard_band_width[ i ] u(8) 

    rwp_right_guard_band_width [ i ] u(8) 

    rwp_top_guard_band_height[ i ] u(8) 

    rwp_bottom_guard_band_height[ i ] u(8) 

    rwp_guard_band_not_used_for_pred_flag[ i ] u(1) 

    for( j = 0; j < 4; j++ )  

     rwp_guard_band_type[ i ][  j ] u(3) 

    rwp_guard_band_reserved_zero_3bits[ i ] u(3) 

   }   

  }   

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 313 

D.2.41.6 Omnidirectional viewport SEI message syntax 

 

omni_viewport( payloadSize ) {  Descriptor 

 omni_viewport_id u(10) 

 omni_viewport_cancel_flag u(1) 

 if(  !omni_viewport_cancel_flag ) {   

  omni_viewport_persistence_flag u(1) 

  omni_viewport_cnt_minus1 u(4) 

  for( i = 0; i  <=  omni_viewport_cnt_minus1; i++ ) {   

   omni_viewport_azimuth_centre[ i ] i(32) 

   omni_viewport_elevation_centre[ i ] i(32) 

   omni_viewport_tilt _centre[ i ] i(32) 

   omni_viewport_hor_range[ i ] u(32) 

   omni_viewport_ver_range[ i ] u(32) 

  }   

 }   

}   

 

D.2.42 Regional nesting SEI message syntax 

 

regional_nesting( payloadSize ) {  Descriptor 

 regional_nesting_id u(16) 

 regional_nesting_num_rect_regions u(8) 

 for( i = 0; i < regional_nesting_num_rect_regions; i++ ) {   

  regional_nesting_rect_region_id[ i ] u(8) 

  regional_nesting_rect_left_offset[ i ] u(16) 

  regional_nesting_rect_right_offset[ i ] u(16) 

  regional_nesting_rect_top_offset[ i ] u(16) 

  regional_nesting_rect_bottom_offset[ i ] u(16) 

 }   

 num_sei_messages_in_regional_nesting_minus1 u(8) 

 for( i = 0; i  <=  num_sei_messages_in_regional_nesting_minus1; i++ ) {   

  num_regions_for_sei_message[ i ] u(8) 

  for(j = 0; j < num_regions_for_sei_message[ i ]; j++ )  

   regional_nesting_sei_region_idx[ i ][  j ] u(8) 

  sei_message( )  

 }   

}   

 



 

314 Rec. ITU-T H.265 v8 (08/2021) 

D.2.43 Motion-constrained tile sets extraction information sets SEI message syntax 

 

mcts_extraction_info_sets( payloadSize ) {  Descriptor 

 num_info_sets_minus1 ue(v) 

 for( i = 0; i  <=  num_info_sets_minus1; i++ ) {   

  num_mcts_sets_minus1[ i ] ue(v) 

  for( j = 0; j  <=  num_mcts_sets_minus1[ i ]; j++ ) {   

   num_mcts_in_set_minus1[ i ][  j ] ue(v) 

   for( k = 0; k  <=  num_mcts_in_set_minus1[ i ][  j ]; k++ )  

    idx_of_mcts_in_set[ i ][  j ][  k ] ue(v) 

  }   

  slice_reordering_enabled_flag[ i ] u(1) 

  if( slice_reordering_enabled_flag[ i ] ) {   

   num_slice_segments_minus1[ i ] ue(v) 

   for( j = 0; j  <=  num_slice_segments_minus1[ i ]; j++ )  

    output_slice_segment_address[ i ][  j ] u(v) 

  }   

  num_vps_in_info_set_minus1[ i ] ue(v) 

  for( j = 0; j  <=  num_vps_in_info_set_minus1[ i ]; j++ )  

   vps_rbsp_data_length[ i ][  j ] ue(v) 

  num_sps_in_info_set_minus1[ i ] ue(v) 

  for( j = 0; j  <=  num_sps_in_info_set_minus1[ i ]; j++ )  

   sps_rbsp_data_length[ i ][  j ] ue(v) 

  num_pps_in_info_set_minus1[ i ] ue(v) 

  for( j = 0; j  <=  num_pps_in_info_set_minus1[ i ]; j++ ) {   

   pps_nuh_temporal_id_plus1[ i ][  j ] u(3) 

   pps_rbsp_data_length[ i ][  j ] ue(v) 

  }   

  while( !byte_aligned( ) )  

   mcts_alignment_bit_equal_to_zero f(1) 

  for( j = 0; j  <=  num_vps_in_info_set_minus1[ i ]; j++ )  

   for( k = 0; k < vps_rbsp_data_length[ i ][  j ]; k++ )  

    vps_rbsp_data_byte[ i ][  j ][  k ] u(8) 

  for( j = 0; j  <=  num_sps_in_info_set_minus1[ i ]; j++ )  

   for( k = 0; k < sps_rbsp_data_length[ i ][  j ]; k++ )  

    sps_rbsp_data_byte[ i ][  j ][  k ] u(8) 

  for( j = 0; j  <=  num_pps_in_info_set_minus1[ i ]; j++ )  

   for( k = 0; k < pps_rbsp_data_length[ i ][  j ]; k++ )  

    pps_rbsp_data_byte[ i ][  j ][  k ] u(8) 

 }   

}   

 



 

  Rec. ITU-T H.265 v8 (08/2021) 315 

D.2.44 Motion-constrained tile sets extraction information nesting SEI message syntax 

 

mcts_extraction_info_nesting( payloadSize ) {  Descriptor 

 all_mcts_flag u(1) 

 if(  !all_mcts_flag ) {   

  num_associated_mcts_minus1 ue(v) 

  for( i = 0; i  <=  num_associated_mcts_minus1; i++ )  

   idx_of_associated_mcts[ i ] ue(v) 

 }   

 num_sei_messages_in_mcts_extraction_nesting_minus1 ue(v) 

 while( !byte_aligned( ) )  

  mcts_nesting_zero_bit /* equal to 0 */ u(1) 

 for( i = 0; i  <=  num_sei_messages_in_mcts_extraction_nesting_minus1; i++ )  

  sei_message( )  

}   

 

D.2.45 SEI manifest SEI message syntax 

 

sei_manifest( payloadSize ) { Descriptor 

 manifest_num_sei_msg_types u(16) 

 for( i = 0; i < manifest_num_sei_msg_types; i++ ) {  

  manifest_sei_payload_type[ i ] u(16) 

  manifest_sei_description[ i ] u(8) 

 }   

}   

 

D.2.46 SEI prefix indication SEI message syntax 

 

sei_prefix_indication( payloadSize ) { Descriptor 

 prefix_sei_payload_type u(16) 

 num_sei_prefix_indications_minus1 u(8) 

 for( i = 0; i  <=  num_sei_prefix_indications_minus1; i++ ) {  

  num_bits_in_prefix_indication_minus1[ i ] u(16) 

  for( j = 0; j  <=  num_bits_in_prefix_indication_minus1[ i ]; j++ )  

   sei_prefix_data_bit[ i ][  j ] u(1) 

  while( !byte_aligned( ) )  

   byte_alignment_bit_equal_to_one /* equal to 1 */ f(1) 

 }   

}   

 



 

316 Rec. ITU-T H.265 v8 (08/2021) 

D.2.47 Annotated regions SEI message syntax 

 

annotated_regions( payloadSize ) {  Descriptor 

 ar_cancel_flag u(1) 

 if(!ar_cancel_flag) {   

  ar_not_optimized_for_viewing_flag u(1) 

  ar_true_motion_flag u(1) 

  ar_occluded_object_flag u(1) 

  ar_partial_obj ect_flag_present_flag u(1) 

  ar_object_label_present_flag u(1) 

  ar_object_confidence_info_present_flag u(1) 

  if(  ar_object_confidence_info_present_flag )  

   ar_object_confidence_length_minus1 u(4) 

  if(  ar_object_label_present_flag ) {   

   ar_object_label_language_present_flag u(1) 

   if(  ar_object_label_language_present_flag ) {   

    while( !byte_aligned( ) )  

     ar_bit_equal_to_zero /* equal to 0 */ f(1) 

    ar_object_label_language st(v) 

   }   

   ar_num_label_updates ue(v) 

   for( i = 0; i < ar_num_label_updates; i++ ) {   

    ar_label_idx[ i ] ue(v) 

    ar_label_cancel_flag u(1) 

    LabelAssigned[ ar_label_idx[ i ] ] = !ar_label_cancel_flag  

    if( !ar_label_cancel_flag ) {   

     while( !byte_aligned( ) )  

      ar_bit_equal_to_zero /* equal to 0 */ f(1) 

     ar_label[ ar_label_idx[ i ] ] st(v) 

    }   

   }   

  }   

  ar_num_object_updates ue(v) 

  for( i = 0; i < ar_num_object_updates; i++ ) {   

   ar_object_idx[ i ] ue(v) 

   ar_object_cancel_flag u(1) 

   ObjectTracked[ ar_object_idx[ i ] ]  =  !ar_object_cancel_flag  

   if(  !ar_object_cancel_flag ) {   

    if( ar_object_label_present_flag ) {   

     ar_object_label_update_flag u(1) 

     if(  ar_object_label_update_flag )  

      ar_object_label_idx[ ar_object_idx[ i ] ] ue(v) 

    }   

    ar_bounding_box_update_flag u(1) 

    if(  ar_bounding_box_update_flag ) {   

     ar_bounding_box_cancel_flag u(1) 

     ObjectBoundingBoxAvail[ ar_object_idx[ i ] ] = !ar_bounding_box_cancel_flag  



 

  Rec. ITU-T H.265 v8 (08/2021) 317 

     if(  !ar_bounding_box_cancel_flag ) {   

      ar_bounding_box_top[ ar_object_idx[ i ] ] u(16) 

      ar_bounding_box_left[ ar_object_idx[ i ] ] u(16) 

      ar_bounding_box_width [ ar_object_idx[ i ] ] u(16) 

      ar_bounding_box_height[ ar_object_idx[ i ] ] u(16) 

      if(  ar_partial_object_flag_present_flag )  

       ar_partial_obj ect_flag[ ar_object_idx[ i ] ] u(1) 

      if(  ar_object_confidence_info_present_flag )  

       ar_object_confidence[ ar_object_idx[ i ] ] u(v) 

     }   

    }   

   }   

  }   

 }   

}   

 

D.2.48 Shutter interval information SEI message syntax 

 

shutter_interval_info( payloadSize ) { Descriptor 

 sii_time_scale u(32) 

 fixed_shutter_interval_within_clvs_flag u(1) 

 if( fixed_shutter_interval_within_clvs_flag )  

  sii_num_units_in_shutter_interval u(32) 

 else {  

  sii_max_sub_layers_minus1 u(3) 

  for( i = 0; i  <=  sii_max_sub_layers_minus1; i++ )  

   sub_layer_num_units_in_shutter_interval[ i ] u(32) 

 }   

}   

 

D.2.49 Reserved SEI message syntax 

 

reserved_sei_message( payloadSize ) { Descriptor 

 for( i = 0; i < payloadSize; i++ )  

  reserved_sei_message_payload_byte b(8) 

}   

 

D.3 SEI payload semantics 

D.3.1 General SEI payload semantics 

reserved_payload_extension_data shall not be present in bitstreams conforming to this version of this Specification. 

However, decoders conforming to this version of this Specification shall ignore the presence and value of 

reserved_payload_extension_data. When present, the length, in bits, of reserved_payload_extension_data is equal to 

8 *  payloadSize ī nEarlierBits ī nPayloadZeroBits ī 1, where nEarlierBits is the number of bits in the sei_payload( ) 

syntax structure that precede the reserved_payload_extension_data syntax element and nPayloadZeroBits is the number of 

payload_bit_equal_to_zero syntax elements at the end of the sei_payload( ) syntax structure. 

payload_bit_equal_to_one shall be equal to 1. 



 

318 Rec. ITU-T H.265 v8 (08/2021) 

payload_bit_equal_to_zero shall be equal to 0. 

NOTE 1 ï SEI messages with the same value of payloadType are conceptually the same SEI message regardless of whether they 

are contained in prefix or suffix SEI NAL units. 

NOTE 2 ï For SEI messages with payloadType in the range of 0 to 47, inclusive, that are specified in this Specification, the 

payloadType values are aligned with similar SEI messages specified in Rec. ITU-T H.264 | ISO/IEC 14496-10. 

The list SingleLayerSeiList is set to consist of the payloadType values 2, 3, 6, 9, 15, 16, 17, 19, 22, 23, 45, 47, 56, 128, 

129, 131, 132, 134 to 152, inclusive, 154 to 159, inclusive, 200 to 202, inclusive, and 205. 

The list VclAssociatedSeiList is set to consist of the payloadType values 2, 3, 6, 9, 15, 16, 17, 19, 22, 23, 45, 47, 56, 128, 

131, 132, 134 to 152, inclusive, 154 to 159, inclusive, 200 to 202, inclusive, and 205. 

The list PicUnitRepConSeiList is set to consist of the payloadType values 0, 1, 2, 6, 9, 15, 16, 17, 19, 22, 23, 45, 47, 56, 

128, 129, 131, 132, 133, 135 to 152, inclusive, 154 to 159, inclusive, 200 to 202, inclusive, and 205. 

NOTE 3 ï SingleLayerSeiList consists of the payloadType values of the SEI messages specified in Annex D excluding 0 (buffering 

period), 1 (picture timing), 4 (user data registered by Recommendation ITU-T T.35), 5 (user data unregistered), 130 (decoding unit 

information) and 133 (scalable nesting). VclAssociatedSeiList consists of the payloadType values of the SEI messages that, when 

non-scalable-nested and contained in an SEI NAL unit, infer constraints on the NAL unit header of the SEI NAL unit on the basis 

of the NAL unit header of the associated VCL NAL unit. PicUnitRepConSeiList consists of the payloadType values of the SEI 

messages that are subject to the restriction on 8 repetitions per picture unit. 

The semantics and persistence scope for each SEI message are specified in the semantics specification for each particular 

SEI message. 

NOTE 4 ï Persistence information for SEI messages is informatively summarized in Table D.1. 

Table D.1 ï Persistence scope of SEI messages (informative) 

SEI message Persistence scope 

Buffering period The remainder of the bitstream 

Picture timing The access unit containing the SEI message 

Pan-scan rectangle Specified by the syntax of the SEI message 

Filler payload The access unit containing the SEI message 

User data registered by Rec. ITU-T T.35 Unspecified 

User data unregistered Unspecified 

Recovery point Specified by the syntax of the SEI message 

Scene information 

The access unit containing the SEI message and up to but not 

including the next access unit, in decoding order, that contains a 

scene information SEI message or starts a new CLVS 

Picture snapshot The access unit containing the SEI message 

Progressive refinement segment start Specified by the syntax of the SEI message 

Progressive refinement segment end The access unit containing the SEI message 

Film grain characteristics Specified by the syntax of the SEI message 

Post-filter hint The access unit containing the SEI message 

Tone mapping information Specified by the syntax of the SEI message 

Frame packing arrangement Specified by the syntax of the SEI message 

Display orientation Specified by the syntax of the SEI message 

Green metadata Specified by the syntax of the SEI message 

Structure of pictures information 
The set of pictures in the coded layer-wise video sequence 

(CLVS) that correspond to entries listed in the SEI message 

Decoded picture hash The access unit containing the SEI message 

Active parameter sets The CVS containing the SEI message 

Decoding unit information The decoding unit containing the SEI message 

Temporal sub-layer zero index The access unit containing the SEI message 

Scalable nesting 

Depending on the scalable-nested SEI messages. Each scalable-

nested SEI message has the same persistence scope as if the SEI 

message was not scalable-nested 



 

  Rec. ITU-T H.265 v8 (08/2021) 319 

Table D.1 ï Persistence scope of SEI messages (informative) 

SEI message Persistence scope 

Region refresh information The set of VCL NAL units within the access unit starting from 

the VCL NAL unit following the SEI message up to but not 

including the VCL NAL unit following the next SEI NAL unit 

containing a region refresh information SEI message (if any) 

No display The access unit containing the SEI message 

Time code The access unit containing the SEI message 

Mastering display colour volume The CLVS containing the SEI message 

Segmented rectangular frame packing 

arrangement 

Specified by the syntax of the SEI message 

Temporal motion-constrained tile sets The access unit containing the SEI message and up to but not 

including the next access unit, in decoding order, that contains 

an SEI message of the same type or starts a new CLVS 

Chroma resampling filter hint The CLVS containing the SEI message 

Knee function information Specified by the syntax of the SEI message 

Colour remapping information Specified by the syntax of the SEI message 

Deinterlaced field identification 
One or more pictures associated with the access unit containing 

the SEI message 

Content light level information The CLVS containing the SEI message 

Dependent random access point 

indication 
The access unit containing the SEI message 

Coded region completion The current slice segment associated with the SEI message 

Alternative transfer characteristics The CLVS containing the SEI message 

Ambient viewing environment The CLVS containing the SEI message 

Content colour volume Specified by the syntax of the SEI message 

Equirectangular projection Specified by the syntax of the SEI message 

Cubemap projection Specified by the syntax of the SEI message 

Fisheye video information Specified by the syntax of the SEI message 

Sphere rotation Specified by the syntax of the SEI message 

Region-wise packing Specified by the syntax of the SEI message 

Omnidirectional viewport Specified by the syntax of the SEI message 

Regional nesting 

Depending on the region-nested SEI messages; each region-

nested SEI message has the same persistence scope as if the SEI 

message was non-region-nested 

Motion-constrained tile sets extraction 

information sets 

The access unit containing the SEI message and up to but not 

including the next access unit, in decoding order, that contains 

an SEI message of the same type or starts a new CLVS 

Motion-constrained tile sets extraction 

information nesting 
The access unit containing the SEI message 

SEI manifest The CVS containing the SEI message 

SEI prefix indication The CVS containing the SEI message 

Annotated regions Specified by the syntax of the SEI message 

Shutter interval information The CLVS containing the SEI message 

 

The values of some SEI message syntax elements, including pan_scan_rect_id, scene_id, second_scene_id, snapshot_id, 

progressive_refinement_id, tone_map_id, frame_packing_arrangement_id, mcts_id[ i ], knee_function_id, 

colour_remap_id, ilcts_id[ i ], and regional_nesting_id, are split into two sets of value ranges, where the first set is specified 

as "may be used as determined by the application", and the second set is specified as "reserved for future use by ITU-T | 



 

320 Rec. ITU-T H.265 v8 (08/2021) 

ISO/IEC". Applications should be cautious of potential ñcollisionsò of the interpretation for values of these syntax elements 

belonging to the first set of value ranges. Since different applications might use these IDs having values in the first set of 

value ranges for different purposes, particular care should be exercised in the design of encoders that generate SEI messages 

with these IDs having values in the first set of value ranges, and in the design of decoders that interpret SEI messages with 

these IDs. This Specification does not define any management for these values. These IDs having values in the first set of 

value ranges might only be suitable for use in contexts in which "collisions" of usage (i.e., different definitions of the 

syntax and semantics of an SEI message with one of these IDs having the same value in the first set of value ranges) are 

unimportant, or not possible, or are managed ï e.g., defined or managed in the controlling application or transport 

specification, or by controlling the environment in which bitstreams are distributed. 

It is a requirement of bitstream conformance that when a prefix SEI message with payloadType equal to 17 (progressive 

refinement segment end) or 22 (post-filter hint) is present in an access unit, a suffix SEI message with the same value of 

payloadType shall not be present in the same access unit. 

It is a requirement of bitstream conformance that the following restrictions apply on containing of SEI messages in SEI 

NAL units: 

ï An SEI NAL unit containing an active parameter sets SEI message shall contain only one active parameter sets SEI 

message and shall not contain any other SEI messages. 

ï When an SEI NAL unit contains a non-scalable-nested buffering period SEI message, a non-scalable-nested picture 

timing SEI message, or a non-scalable-nested decoding unit information SEI message, the SEI NAL unit shall not 

contain any other SEI message with payloadType not equal to 0 (buffering period), 1 (picture timing) or 130 (decoding 

unit information). 

ï When an SEI NAL unit contains a scalable-nested buffering period SEI message, a scalable-nested picture timing SEI 

message, or a scalable-nested decoding unit information SEI message, the SEI NAL unit shall not contain any other 

SEI message with payloadType not equal to 0 (buffering period), 1 (picture timing), 130 (decoding unit information) 

or 133 (scalable nesting). 

Let prevVclNalUnitInAu of an SEI NAL unit or an SEI message be the preceding VCL NAL unit in decoding order, if 

any, in the same access unit, and nextVclNalUnitInAu of an SEI NAL unit or an SEI message be the next VCL NAL unit 

in decoding order, if any, in the same access unit. 

It is a requirement of bitstream conformance that the following restrictions apply on decoding order of SEI messages: 

ï When an SEI NAL unit containing an active parameter sets SEI message is present in an access unit, it shall be the 

first SEI NAL unit that follows the prevVclNalUnitInAu of the SEI NAL unit and precedes the nextVclNalUnitInAu 

of the SEI NAL unit. 

ï When a non-scalable-nested buffering period SEI message is present in an access unit, it shall not follow any other 

SEI message that follows the prevVclNalUnitInAu of the buffering period SEI message and precedes the 

nextVclNalUnitInAu of the buffering period SEI message, other than an active parameter sets SEI message. 

ï When a non-scalable-nested picture timing SEI message is present in an access unit, it shall not follow any other SEI 

message that follows the prevVclNalUnitInAu of the picture timing SEI message and precedes the 

nextVclNalUnitInAu of the picture timing SEI message, other than an active parameter sets SEI message or a non-

scalable-nested buffering period SEI message. 

ï When a non-scalable-nested decoding unit information SEI message is present in an access unit, it shall not follow 

any other SEI message in the same access unit that follows the prevVclNalUnitInAu of the decoding unit information 

SEI message and precedes the nextVclNalUnitInAu of the decoding unit information SEI message, other than an 

active parameter sets SEI message, a non-scalable-nested buffering period SEI message, or a non-scalable-nested 

picture timing SEI message. 

ï When a scalable-nested buffering period SEI message, a scalable-nested picture timing SEI message, or a scalable-

nested decoding unit information SEI message is contained in a scalable nesting SEI message in an access unit, the 

scalable nesting SEI message shall not follow any other SEI message that follows the prevVclNalUnitInAu of the 

scalable nesting SEI message and precedes the nextVclNalUnitInAu of the scalable nesting SEI message, other than 

an active parameter sets SEI message, a non-scalable-nested buffering period SEI message, a non-scalable-nested 

picture timing SEI message, a non-scalable-nested decoding unit information SEI message, or another scalable nesting 

SEI message that contains a buffering period SEI message, a picture timing SEI message, or a decoding unit 

information SEI message. 

ï When payloadType is equal to 0 (buffering period), 1 (picture timing) or 130 (decoding unit information) for an SEI 

message, scalable-nested or non-scalable-nested, within the access unit, the SEI NAL unit containing the SEI message 

shall precede all NAL units of any picture unit that has nuh_layer_id greater than highestAppLayerId, where 

highestAppLayerId is the greatest value of nuh_layer_id of all the layers in all the operation points that the SEI 

message applies to. 



 

  Rec. ITU-T H.265 v8 (08/2021) 321 

ï When payloadType is equal to any value among VclAssociatedSeiList for an SEI message, scalable-nested or non-

scalable-nested, within the access unit, the SEI NAL unit containing the SEI message shall precede all NAL units of 

any picture unit that has nuh_layer_id greater than highestAppLayerId, where highestAppLayerId is the greatest value 

of nuh_layer_id of all the layers that the SEI message applies to. 

The following applies on the applicable operation points or layers of SEI messages: 

ï For a non-scalable-nested SEI message, when payloadType is equal to 0 (buffering period) or 130 (decoding unit 

information), the non-scalable-nested SEI message applies to the operation point that has OpTid equal to the greatest 

value of nuh_temporal_id_plus1 among all VCL NAL units in the bitstream, has OpLayerIdList containing all values 

of nuh_layer_id in all VCL units in the bitstream, and has only the base layer as the output layer. 

ï An SEI message that is directly contained in a scalable nesting SEI message within an SEI NAL unit with 

nuh_layer_id equal to 0 and has payloadType is equal to 0 (buffering period), 1 (picture timing), or 130 (decoding 

unit information) applies as specified in Annex C to the layer set as indicated by the scalable nesting SEI message. 

ï For a non-scalable-nested SEI message, when payloadType is equal to 1 (picture timing), the frame field information 

carried in the syntax elements pic_struct, source_scan_type and duplicate_flag, when present, in the non-scalable-

nested picture timing SEI message applies to the base layer only, while the picture timing information carried in other 

syntax elements, when present, in the non-scalable-nested picture timing SEI message applies to the operation point 

that has OpTid equal to the greatest value of nuh_temporal_id_plus1 among all VCL NAL units in the bitstream, has 

OpLayerIdList containing all values of nuh_layer_id in all VCL units in the bitstream, and has only the base layer as 

the output layer. 

ï For a non-scalable-nested SEI message, when payloadType is equal to any value among VclAssociatedSeiList, the 

non-scalable-nested SEI message applies to the layer for which the VCL NAL units have nuh_layer_id equal to the 

nuh_layer_id of the SEI NAL unit containing the SEI message. 

ï An active parameter sets SEI message, which cannot be scalable-nested, applies to all layers in the bitstream. 

It is a requirement of bitstream conformance that the following restrictions apply on the values of nuh_layer_id and 

TemporalId of SEI NAL units: 

ï When a non-scalable-nested SEI message has payloadType equal to any value among VclAssociatedSeiList, the SEI 

NAL unit containing the non-scalable-nested SEI message shall have TemporalId equal to the TemporalId of the 

access unit containing the SEI NAL unit. 

ï When a non-scalable-nested SEI message has payloadType equal to 0, 1, 129 or 130, the SEI NAL unit containing 

the non-scalable-nested SEI message shall have nuh_layer_id equal to 0. 

ï When a non-scalable-nested SEI message has payloadType equal to any value among VclAssociatedSeiList, the SEI 

NAL unit containing the non-scalable-nested SEI message shall have nuh_layer_id and nuh_temporal_id_plus1 equal 

to the values of nuh_layer_id and nuh_temporal_id_plus1, respectively, of the VCL NAL unit associated with the SEI 

NAL unit. 

NOTE 4 ï For an SEI NAL unit containing a scalable nesting SEI message, the values of TemporalId and nuh_layer_id should be 

set equal to the lowest value of TemporalId and nuh_layer_id, respectively, of all the sub-layers or operation points the scalable-

nested SEI messages apply to unless specified otherwise. 

It is a requirement of bitstream conformance that the following restrictions apply on the presence of SEI messages between 

two VCL NAL units of a picture: 

ï When there is a prefix SEI message that has payloadType equal to any value among SingleLayerSeiList not equal to 

134 (the region refresh information SEI message) or 146 (the coded region completion SEI message), and applies to 

a picture of a layer layerA present between two VCL NAL units of the picture in decoding order, there shall be a 

prefix SEI message that is of the same type and applies to the layer layerA in the same access unit preceding the first 

VCL NAL unit of the picture. 

ï When there is a suffix SEI message that has payloadType equal to 3 (filler payload), 17 (progressive refinement 

segment end), 22 (post filter hint) or 132 (decoded picture hash) and applies to a picture of a layer layerA present 

between two VCL NAL units of the picture in decoding order, there shall be a suffix SEI message that is of the same 

type and applies to the layer layerA present in the same access unit succeeding the last VCL NAL unit of the picture. 

It is a requirement of bitstream conformance that the following restrictions apply on repetition of SEI messages: 

ï For each of the payloadType values included in PicUnitRepConSeiList, there shall be less than or equal to 8 identical 

sei_payload( ) syntax structures within a picture unit. 

ï There shall be less than or equal to 8 identical sei_payload( ) syntax structures with payloadType equal to 130 within 

a decoding unit. 



 

322 Rec. ITU-T H.265 v8 (08/2021) 

ï The number of identical sei_payload( ) syntax structures with payloadType equal to 134 in a picture unit shall be less 

than or equal to the number of slice segments in the picture unit. 

In the following subclauses of this annex, the following applies: 

ï The current SEI message refers to the particular SEI message. 

ï The current access unit refers to the access unit containing the current SEI message. 

In the following subclauses of this annex, when a particular SEI message applies to a set of one or more layers (instead of 

a set of operation points), i.e., when the payloadType value is not equal to one of 0 (buffering period), 1 (picture timing) 

and 130 (decoding unit information), the following applies: 

ï The semantics apply independently to each particular layer with nuh_layer_id equal to targetLayerId of the layers to 

which the particular SEI message applies. 

ï The current layer refers to the layer with nuh_layer_id equal to targetLayerId. 

ï The current picture or the current decoded picture refers to the picture with nuh_layer_id equal to targetLayerId (i.e., 

in the current layer) in the current access unit. 

In the following subclauses of this annex, when a particular SEI message applies to a set of one or more operation points 

(instead of a set of one or more layers), i.e., when the payloadType value is equal to 0 (buffering period), 1 (picture timing) 

or 130 (decoding unit information), the following applies: 

ï When the particular SEI message applies to an operation point that does not include the base layer (i.e., when the SEI 

message is contained in an SEI NAL unit with nuh_layer_id greater than 0), decoders conforming to a profile specified 

in Annex A and not supporting the INBLD capability specified in Annex F shall ignore that particular SEI message. 

ï The semantics apply independently to each particular operation point of the set of operation points to which the 

particular SEI message applies. 

ï The current operation point refers to the particular operation point. 

ï The terms "access unit" and "CVS" apply to the bitstream BitstreamToDecode that is the sub-bitstream of the 

particular operation point. 

D.3.2 Buffering period SEI message semantics 

A buffering period SEI message provides initial CPB removal delay and initial CPB removal delay offset information for 

initialization of the HRD at the position of the associated access unit in decoding order. 

When the buffering period SEI message is non-scalable-nested or is directly contained in a scalable nesting SEI message 

within an SEI NAL unit with nuh_layer_id equal to 0 and the current access unit is a CRA or BLA acces unit, let 

skippedPictureList be the list of skipped leading pictures consisting of the RASL pictures associated with the CRA or BLA 

access unit with which the buffering period SEI message is associated. 

When the buffering period SEI message is non-scalable-nested or is directly contained in a scalable nesting SEI message 

within an SEI NAL unit with nuh_layer_id equal to 0, a picture is said to be a notDiscardablePic picture when the picture 

has TemporalId equal to 0 and is not a RASL, RADL or SLNR picture. 

When the buffering period SEI message is non-scalable-nested or is directly contained in a scalable nesting SEI message 

within an SEI NAL unit with nuh_layer_id equal to 0, the following applies for the buffering period SEI message syntax 

and semantics: 

ï The syntax elements initial_cpb_removal_delay_length_minus1, au_cpb_removal_delay_length_minus1, 

dpb_output_delay_length_minus1, and sub_pic_hrd_params_present_flag and the variables NalHrdBpPresentFlag 

and VclHrdBpPresentFlag are found in or derived from syntax elements found in the hrd_parameters( ) syntax 

structure that is applicable to at least one of the operation points to which the buffering period SEI message applies. 

ï The variables CpbSize[ i ], BitRate[ i ] and CpbCnt are derived from syntax elements found in the 

sub_layer_hrd_parameters( ) syntax structure that is applicable to at least one of the operation points to which the 

buffering period SEI message applies. 

ï Any two operation points that the buffering period SEI message applies to having different OpTid values tIdA and 

tIdB indicate that the values of cpb_cnt_minus1[ tIdA ] and cpb_cnt_minus1[ tIdB ] coded in the hrd_parameters( ) 

syntax structure(s) applicable to the two operation points are identical. 

ï Any two operation points that the buffering period SEI message applies to having different OpLayerIdList values 

layerIdListA and layerIdListB indicate that the values of nal_hrd_parameters_present_flag and 

vcl_hrd_parameters_present_flag, respectively, for the two hrd_parameters( ) syntax structures applicable to the two 

operation points are identical. 



 

  Rec. ITU-T H.265 v8 (08/2021) 323 

ï The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the operation 

points to which the buffering period SEI message applies. 

The presence of buffering period SEI messages for an operation point including the base layer is specified as follows: 

ï If NalHrdBpPresentFlag is equal to 1 or VclHrdBpPresentFlag is equal to 1, the following applies for each access 

unit in the CVS: 

ï If the access unit is an IRAP access unit, a buffering period SEI message applicable to the operation point shall 

be associated with the access unit. 

ï Otherwise, if the access unit contains a notDiscardablePic, a buffering period SEI message applicable to the 

operation point may or may not be associated with the access unit. 

ï Otherwise, the access unit shall not be associated with a buffering period SEI message applicable to the operation 

point. 

ï Otherwise (NalHrdBpPresentFlag and VclHrdBpPresentFlag are both equal to 0), no access unit in the CVS shall be 

associated with a buffering period SEI message applicable to the operation point. 

NOTE 1 ï For some applications, frequent presence of buffering period SEI messages may be desirable (e.g., for random access at 

an IRAP picture or a non-IRAP picture or for bitstream splicing). 

bp_seq_parameter_set_id indicates and shall be equal to the sps_seq_parameter_set_id for the SPS that is active for the 

coded picture associated with the buffering period SEI message. The value of bp_seq_parameter_set_id shall be equal to 

the value of pps_seq_parameter_set_id in the PPS referenced by the slice_pic_parameter_set_id of the slice segment 

headers of the coded picture associated with the buffering period SEI message. The value of bp_seq_parameter_set_id 

shall be in the range of 0 to 15, inclusive. 

irap_cpb_params_present_flag equal to 1 specifies the presence of the nal_initial_alt_cpb_removal_delay[ i ] and 

nal_initial_alt_cpb_removal_offset[ i ] or vcl_initial_alt_cpb_removal_delay[ i ] and 

vcl_initial_alt_cpb_removal_offset[ i ] syntax elements. When not present, the value of irap_cpb_params_present_flag is 

inferred to be equal to 0. When the associated picture is neither a CRA picture nor a BLA picture, the value of 

irap_cpb_params_present_flag shall be equal to 0. 

NOTE 2 ï The values of sub_pic_hrd_params_present_flag and irap_cpb_params_present_flag cannot be both equal to 1. 

cpb_delay_offset specifies an offset to be used in the derivation of the nominal CPB removal times of access units 

following, in decoding order, the CRA or BLA access unit associated with the buffering period SEI message when no 

picture in skippedPictureList is present. The syntax element has a length in bits given by 

au_cpb_removal_delay_length_minus1 + 1. When not present, the value of cpb_delay_offset is inferred to be equal to 0. 

dpb_delay_offset specifies an offset to be used in the derivation of the DPB output times of the CRA or BLA access unit 

associated with the buffering period SEI message when no picture in skippedPictureList is present. The syntax element 

has a length in bits given by dpb_output_delay_length_minus1 + 1. When not present, the value of dpb_delay_offset is 

inferred to be equal to 0. 

When the current picture is not the first picture in the bitstream in decoding order, let prevNonDiscardablePic be the 

preceding picture in decoding order with TemporalId equal to 0 that is not a RASL, RADL or SLNR picture. 

concatenation_flag indicates, when the current picture is not the first picture in the bitstream in decoding order, whether 

the nominal CPB removal time of the current picture is determined relative to the nominal CPB removal time of the 

preceding picture with a buffering period SEI message or relative to the nominal CPB removal time of the picture 

prevNonDiscardablePic. 

au_cpb_removal_delay_delta_minus1 plus 1, when the current picture is not the first picture in the bitstream in decoding 

order, specifies a CPB removal delay increment value relative to the nominal CPB removal time of the picture 

prevNonDiscardablePic. This syntax element has a length in bits given by au_cpb_removal_delay_length_minus1 + 1. 

When the current picture contains a buffering period SEI message and concatenation_flag is equal to 0 and the current 

picture is not the first picture in the bitstream in decoding order, it is a requirement of bitstream conformance that the 

following constraint applies: 

ï If the picture prevNonDiscardablePic is not associated with a buffering period SEI message, the 

au_cpb_removal_delay_minus1 of the current picture shall be equal to the au_cpb_removal_delay_minus1 of 

prevNonDiscardablePic plus au_cpb_removal_delay_delta_minus1 + 1. 

ï Otherwise, au_cpb_removal_delay_minus1 shall be equal to au_cpb_removal_delay_delta_minus1. 

NOTE 3 ï When the current picture contains a buffering period SEI message and concatenation_flag is equal to 1, the 

au_cpb_removal_delay_minus1 for the current picture is not used. The above-specified constraint can, under some circumstances, 

make it possible to splice bitstreams (that use suitably-designed referencing structures) by simply changing the value of 

concatenation_flag from 0 to 1 in the buffering period SEI message for an IRAP picture at the splicing point. When 



 

324 Rec. ITU-T H.265 v8 (08/2021) 

concatenation_flag is equal to 0, the above-specified constraint enables the decoder to check whether the constraint is satisfied as a 

way to detect the loss of the picture prevNonDiscardablePic. 

nal_initial_cpb_removal_delay[ i ] and nal_initial_alt_cpb_removal_delay[ i ] specify the default and the alternative 

initial CPB removal delays, respectively, for the i-th CPB when the NAL HRD parameters are in use. The syntax elements 

have a length in bits given by initial_cpb_removal_delay_length_minus1 + 1, and are in units of a 90 kHz clock. The values 

of the syntax elements shall not be equal to 0 and shall be less than or equal to 90 000 *  ( CpbSize[ i ] · BitRate[ i ] ), the 

time-equivalent of the CPB size in 90 kHz clock units. 

nal_initial_cpb_removal_offset[ i ] and nal_initial_alt_cpb_removal_offset[ i ] specify the default and the alternative 

initial CPB removal offsets, respectively, for the i-th CPB when the NAL HRD parameters are in use. The syntax elements 

have a length in bits given by initial_cpb_removal_delay_length_minus1 + 1 and are in units of a 90 kHz clock. 

Over the entire CVS, the sum of nal_initial_cpb_removal_delay[ i ] and nal_initial_cpb_removal_offset[ i ] shall be 

constant for each value of i, and the sum of nal_initial_alt_cpb_removal_delay[ i ] and 

nal_initial_alt_cpb_removal_offset[ i ] shall be constant for each value of i. 

vcl_initial_cpb_removal_delay[ i ] and vcl_initial_alt_cpb_removal_delay[ i ] specify the default and the alternative 

initial CPB removal delays, respectively, for the i-th CPB when the VCL HRD parameters are in use. The syntax elements 

have a length in bits given by initial_cpb_removal_delay_length_minus1 + 1, and are in units of a 90 kHz clock. The values 

of the syntax elements shall not be equal to 0 and shall be less than or equal to 90 000 *  ( CpbSize[ i ] · BitRate[ i ] ), the 

time-equivalent of the CPB size in 90 kHz clock units. 

vcl_initial_cpb_removal_offset[ i ] and vcl_initial_alt_cpb_removal_offset[ i ] specify the default and the alternative 

initial CPB removal offsets, respectively, for the i-th CPB when the VCL HRD parameters are in use. The syntax elements 

have a length in bits given by initial_cpb_removal_delay_length_minus1 + 1 and are in units of a 90 kHz clock. 

Over the entire CVS, the sum of vcl_initial_cpb_removal_delay[ i ] and vcl_initial_cpb_removal_offset[ i ] shall be 

constant for each value of i, and the sum of vcl_initial_alt_cpb_removal_delay[ i ] and 

vcl_initial_alt_cpb_removal_offset[ i ] shall be constant for each value of i. 

NOTE 4 ï Encoders are recommended not to include irap_cpb_params_present_flag equal to 1 in buffering period SEI messages 

associated with a CRA or BLA picture for which at least one of its associated RASL pictures follows one or more of its associated 

RADL pictures in decoding order. 

use_alt_cpb_params_flag may be used to derive the value of UseAltCpbParamsFlag. When 

irap_cpb_params_present_flag is equal to 0, use_alt_cpb_params_flag shall not be equal to 1. When 

use_alt_cpb_params_flag is not present, it is inferred to be equal to 0. 

NOTE 5 ï The syntax element use_alt_cpb_params_flag may be present in the payload extension of the buffering period SEI 

message. Decoders conforming to profiles specified in Annex A may ignore this syntax element. 

It is a requirement of bitstream conformance that when use_alt_cpb_params_flag is present in the buffering perid SEI 

message, the return value of the more_data_in_payload( ) function in the sei_payload( ) syntax structure containing the 

buffering period SEI message shall be equal to 1. 

D.3.3 Picture timing SEI message semantics 

The picture timing SEI message provides CPB removal delay and DPB output delay information for the access unit 

associated with the SEI message. 

When the buffering period SEI message is non-scalable-nested or is directly contained in a scalable nesting SEI message 

within an SEI NAL unit with nuh_layer_id equal to 0, the following applies for the picture timing SEI message syntax and 

semantics: 

ï The syntax elements sub_pic_hrd_params_present_flag, sub_pic_cpb_params_in_pic_timing_sei_flag, 

au_cpb_removal_delay_length_minus1, dpb_output_delay_length_minus1, dpb_output_delay_du_length_minus1, 

du_cpb_removal_delay_increment_length_minus1 and the variable CpbDpbDelaysPresentFlag are found in or 

derived from syntax elements found in the hrd_parameters( ) syntax structure that is applicable to at least one of the 

operation points to which the picture timing SEI message applies. 

ï The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the operation 

points to which the picture timing SEI message applies. 

NOTE 1 ï The syntax of the picture timing SEI message is dependent on the content of the hrd_parameters( ) syntax 

structures applicable to the operation points to which the picture timing SEI message applies. These hrd_parameters( ) syntax 

structures are in either or both of the VPS and the SPS that are active for the coded picture associated with the picture timing 

SEI message. When the picture timing SEI message is associated with an IRAP access unit with NoRaslOutputFlag equal to 

1, unless it is preceded by an active parameter sets SEI message within the same access unit, the activation of the VPS and 

the SPS (and, for IRAP pictures with NoRaslOutputFlag equal to 1 that are not the first picture in the bitstream in decoding 

order, the determination that the coded picture is an IRAP access unit with NoRaslOutputFlag equal to 1) does not occur 



 

  Rec. ITU-T H.265 v8 (08/2021) 325 

until the decoding of the first coded slice segment NAL unit of the coded picture. Since the coded slice segment NAL unit 

of the coded picture follows the picture timing SEI message in NAL unit order, there may be cases in which it is necessary 

for a decoder to store the RBSP containing the picture timing SEI message until determining the active VPS and the active 

SPS for the coded picture, and then perform the parsing of the picture timing SEI message. 

The presence of picture timing SEI messages for an operation point including the base layer is specified as follows: 

ï If frame_field_info_present_flag is equal to 1 or CpbDpbDelaysPresentFlag is equal to 1, a picture timing SEI 

message applicable to the operation point shall be associated with every access unit in the CVS. 

ï Otherwise, in the CVS there shall be no access unit that is associated with a picture timing SEI message applicable to 

the operation point. 

When the picture timing SEI message is not scalable-nested or is directly contained in a scalable nesting SEI message 

within an SEI NAL unit with nuh_layer_id equal to 0, the semantics of pic_struct, source_scan_type and duplicate_flag 

apply to the picture with nuh_layer_id equal to 0 and are specified in the following paragraphs. 

NOTE 2 ï When the picture timing SEI message is directly contained in a scalable nesting SEI message within an SEI NAL unit 

with nuh_layer_id greater than 0 or is contained in a bitstream partition nesting SEI message specified in Annex F, the semantics of 

pic_struct, source_scan_type and duplicate_flag are specified in Annex F. The frame-field information SEI message specified in 

Annex F can be used to indicate pic_struct, source_scan_type and duplicate_flag for non-base layers. 

pic_struct indicates whether a picture should be displayed as a frame or as one or more fields and, for the display of frames 

when fixed_pic_rate_within_cvs_flag is equal to 1, may indicate a frame doubling or tripling repetition period for displays 

that use a fixed frame refresh interval equal to DpbOutputElementalInterval[ n ] as given by Equation E-76. The 

interpretation of pic_struct is specified in Table D.2. Values of pic_struct that are not listed in Table D.2 are reserved for 

future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. 

Decoders shall ignore reserved values of pic_struct. 

When present, it is a requirement of bitstream conformance that the value of pic_struct shall be constrained such that 

exactly one of the following conditions is true: 

ï The value of pic_struct is equal to 0, 7 or 8 for all pictures in the CVS. 

ï The value of pic_struct is equal to 1, 2, 9, 10, 11 or 12 for all pictures in the CVS. 

ï The value of pic_struct is equal to 3, 4, 5 or 6 for all pictures in the CVS. 

When fixed_pic_rate_within_cvs_flag is equal to 1, frame doubling is indicated by pic_struct equal to 7, which indicates 

that the frame should be displayed two times consecutively on displays with a frame refresh interval equal to 

DpbOutputElementalInterval[ n ] as given by Equation E-76, and frame tripling is indicated by pic_struct equal to 8, which 

indicates that the frame should be displayed three times consecutively on displays with a frame refresh interval equal to 

DpbOutputElementalInterval[ n ] as given by Equation E-76. 

NOTE 3 ï Frame doubling can be used to facilitate the display, for example, of 25 Hz progressive-scan video on a 50 Hz progressive-

scan display or 30 Hz progressive-scan video on a 60 Hz progressive-scan display. Using frame doubling and frame tripling in 

alternating combination on every other frame can be used to facilitate the display of 24 Hz progressive-scan video on a 60 Hz 

progressive-scan display. 

The nominal vertical and horizontal sampling locations of samples in top and bottom fields for 4:2:0, 4:2:2 and 4:4:4 

chroma formats are shown in Figure D.1, Figure D.2 and Figure D.3, respectively. 

Association indicators for fields (pic_struct equal to 9 through 12) provide hints to associate fields of complementary parity 

together as frames. The parity of a field can be top or bottom, and the parity of two fields is considered complementary 

when the parity of one field is top and the parity of the other field is bottom. 

When frame_field_info_present_flag is equal to 1, it is a requirement of bitstream conformance that the constraints 

specified in the third column of Table D.2 shall apply. 

NOTE 4 ï When frame_field_info_present_flag is equal to 0, then in many cases default values may be inferred or indicated by 

other means. In the absence of other indications of the intended display type of a picture, the decoder should infer the value of 

pic_struct as equal to 0 when frame_field_info_present_flag is equal to 0. 

source_scan_type equal to 1 indicates that the source scan type of the associated picture should be interpreted as 

progressive. source_scan_type equal to 0 indicates that the source scan type of the associated picture should be interpreted 

as interlaced. source_scan_type equal to 2 indicates that the source scan type of the associated picture is unknown or 

unspecified. source_scan_type equal to 3 is reserved for future use by ITU-T | ISO/IEC and shall not be present in 

bitstreams conforming to this version of this Specification. Decoders conforming to this version of this Specification shall 

interpret the value 3 for source_scan_type as equivalent to the value 2. 



 

326 Rec. ITU-T H.265 v8 (08/2021) 

The following applies to the semantics of source_scan_type: 

ï If general_progressive_source_flag is equal to 0 and general_interlaced_source_flag is equal to 1, the value of 

source_scan_type shall be equal to 0 when present, and should be inferred to be equal to 0 when not present. 

ï Otherwise, if general_progressive_source_flag is equal to 1 and general_interlaced_source_flag is equal to 0, the 

value of source_scan_type shall be equal to 1 when present and should be inferred to be equal to 1 when not present. 

ï Otherwise, when general_progressive_source_flag is equal to 0 and general_interlaced_source_flag is equal to 0, the 

value of source_scan_type shall be equal to 2 when present and should be inferred to be equal to 2 when not present. 

duplicate_flag equal to 1 indicates that the current picture is indicated to be a duplicate of a previous picture in output 

order. duplicate_flag equal to 0 indicates that the current picture is not indicated to be a duplicate of a previous picture in 

output order. 

NOTE 5 ï The duplicate_flag should be used to mark coded pictures known to have originated from a repetition process such as 3:2 

pull-down or other such duplication and picture rate interpolation methods. This flag would commonly be used when a video feed 

is encoded as a field sequence in a "transport pass-through" fashion, with known duplicate pictures tagged by setting duplicate_flag 

equal to 1. 

NOTE 6 ï When field_seq_flag is equal to 1 and duplicate_flag is equal to 1, this should be interpreted as an indication that the 

access unit contains a duplicated field of the previous field in output order with the same parity as the current field unless a pairing 

is otherwise indicated by the use of a pic_struct value in the range of 9 to 12, inclusive. 

Table D.2 ï Interpretation of pic_struct  

Value Indicated display of picture Restrictions 

0 (progressive) Frame field_seq_flag shall be equal to 0 

1 Top field field_seq_flag shall be equal to 1 

2 Bottom field field_seq_flag shall be equal to 1 

3 Top field, bottom field, in that order field_seq_flag shall be equal to 0 

4 Bottom field, top field, in that order field_seq_flag shall be equal to 0 

5 Top field, bottom field, top field repeated, in 

that order 

field_seq_flag shall be equal to 0 

6 Bottom field, top field, bottom field 

repeated, in that order 

field_seq_flag shall be equal to 0 

7 Frame doubling field_seq_flag shall be equal to 0 

fixed_pic_rate_within_cvs_flag shall be equal to 1 

8 Frame tripling field_seq_flag shall be equal to 0 

fixed_pic_rate_within_cvs_flag shall be equal to 1 

9 Top field paired with previous bottom field 

in output order 

field_seq_flag shall be equal to 1 

10 Bottom field paired with previous top field 

in output order 

field_seq_flag shall be equal to 1 

11 Top field paired with next bottom field in 

output order 

field_seq_flag shall be equal to 1 

12 Bottom field paired with next top field in 

output order 

field_seq_flag shall be equal to 1 

 



 

  Rec. ITU-T H.265 v8 (08/2021) 327 

 

Figure D.1 ï Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields 

 

 

Figure D.2 ï Nominal vertical and horizontal sampling locations of 4:2:2 samples in top and bottom fields 

 

 

Figure D.3 ï Nominal vertical and horizontal sampling locations of 4:4:4 samples in top and bottom fields 

 

au_cpb_removal_delay_minus1 plus 1 is used to calculate the number of clock ticks between the nominal CPB removal 

times of the access unit associated with the picture timing SEI message and the preceding access unit in decoding order 



 

328 Rec. ITU-T H.265 v8 (08/2021) 

that contained a buffering period SEI message. This value is also used to calculate an earliest possible time of arrival of 

access unit data into the CPB for the HSS. The syntax element is a fixed length code whose length in bits is given by 

au_cpb_removal_delay_length_minus1 + 1. 

NOTE 7 ï The value of au_cpb_removal_delay_length_minus1 that determines the length (in bits) of the syntax element 

au_cpb_removal_delay_minus1 is the value of au_cpb_removal_delay_length_minus1 coded in the VPS or the SPS that is active 

for the coded picture associated with the picture timing SEI message, although the preceding access unit containing a buffering 

period SEI message may be an access unit of a different CVS. 

The variable BpResetFlag of the current picture is derived as follows: 

ï If the current picture is associated with a buffering period SEI message that is applicable to at least one of the operation 

points to which the picture timing SEI message applies, BpResetFlag is set equal to 1. 

ï Otherwise, BpResetFlag is set equal to 0. 

The variables AuCpbRemovalDelayMsb and AuCpbRemovalDelayVal of the current picture are derived as follows: 

ï If the current access unit is the access unit that initializes the HRD, AuCpbRemovalDelayMsb and 

AuCpbRemovalDelayVal are both set equal to 0. 

ï Otherwise, let the picture prevNonDiscardablePic be the previous picture in decoding order that has TemporalId equal 

to 0 that is not a RASL, RADL or SLNR picture, let prevAuCpbRemovalDelayMinus1, 

prevAuCpbRemovalDelayMsb and prevBpResetFlag be set equal to the values of au_cpb_removal_delay_minus1, 

AuCpbRemovalDelayMsb and BpResetFlag, respectively, for the picture prevNonDiscardablePic, and the following 

applies: 

ï AuCpbRemovalDelayMsb is derived as follows: 

if( prevBpResetFlag ) 

 AuCpbRemovalDelayMsb = 0 

else if( au_cpb_removal_delay_minus1  <=  prevAuCpbRemovalDelayMinus1 ) 

 AuCpbRemovalDelayMsb = prevAuCpbRemovalDelayMsb + 2au_cpb_removal_delay_length_minus1 + 1

 (D-1) 

else 

 AuCpbRemovalDelayMsb = prevAuCpbRemovalDelayMsb 

ï AuCpbRemovalDelayVal is derived as follows: 

AuCpbRemovalDelayVal = AuCpbRemovalDelayMsb + au_cpb_removal_delay_minus1 + 1

 (D-2) 

The value of AuCpbRemovalDelayVal shall be in the range of 1 to 232, inclusive. 

pic_dpb_output_delay is used to compute the DPB output time of the picture when SubPicHrdFlag is equal to 0. It 

specifies how many clock ticks to wait after removal of the last decoding unit in an access unit from the CPB before the 

decoded picture is output from the DPB. 

NOTE 8 ï A picture is not removed from the DPB at its output time when it is still marked as "used for short-term reference" or 

"used for long-term reference". 

The length of the syntax element pic_dpb_output_delay is given in bits by dpb_output_delay_length_minus1 + 1. When 

sps_max_dec_pic_buffering_minus1[ minTid ] is equal to 0, where minTid is the minimum of the OpTid values of all 

operation points the picture timing SEI message applies to, pic_dpb_output_delay shall be equal to 0. 

The output time derived from the pic_dpb_output_delay of any picture that is output from an output timing conforming 

decoder shall precede the output time derived from the pic_dpb_output_delay of all pictures in any subsequent CVS in 

decoding order. 

The picture output order established by the values of this syntax element shall be the same order as established by the 

values of PicOrderCntVal. 

For pictures that are not output by the "bumping" process because they precede, in decoding order, an IRAP picture with 

NoRaslOutputFlag equal to 1 that has no_output_of_prior_pics_flag equal to 1 or inferred to be equal to 1, the output times 

derived from pic_dpb_output_delay shall be increasing with increasing value of PicOrderCntVal relative to all pictures 

within the same CVS. 

pic_dpb_output_du_delay is used to compute the DPB output time of the picture when SubPicHrdFlag is equal to 1. It 

specifies how many sub clock ticks to wait after removal of the last decoding unit in an access unit from the CPB before 

the decoded picture is output from the DPB. 



 

  Rec. ITU-T H.265 v8 (08/2021) 329 

The length of the syntax element pic_dpb_output_du_delay is given in bits by dpb_output_delay_du_length_minus1 + 1. 

The output time derived from the pic_dpb_output_du_delay of any picture that is output from an output timing conforming 

decoder shall precede the output time derived from the pic_dpb_output_du_delay of all pictures in any subsequent CVS in 

decoding order. 

The picture output order established by the values of this syntax element shall be the same order as established by the 

values of PicOrderCntVal. 

For pictures that are not output by the "bumping" process because they precede, in decoding order, an IRAP picture with 

NoRaslOutputFlag equal to 1 that has no_output_of_prior_pics_flag equal to 1 or inferred to be equal to 1, the output times 

derived from pic_dpb_output_du_delay shall be increasing with increasing value of PicOrderCntVal relative to all pictures 

within the same CVS. 

For any two pictures in the CVS, the difference between the output times of the two pictures when SubPicHrdFlag is equal 

to 1 shall be identical to the same difference when SubPicHrdFlag is equal to 0. 

num_decoding_units_minus1 plus 1 specifies the number of decoding units in the access unit the picture timing SEI 

message is associated with. The value of num_decoding_units_minus1 shall be in the range of 0 to PicSizeInCtbsY ī 1, 

inclusive. 

du_common_cpb_removal_delay_flag equal to 1 specifies that the syntax element 

du_common_cpb_removal_delay_increment_minus1 is present. du_common_cpb_removal_delay_flag equal to 0 

specifies that the syntax element du_common_cpb_removal_delay_increment_minus1 is not present.  

du_common_cpb_removal_delay_increment_minus1 plus 1 specifies the duration, in units of clock sub-ticks (see 

clause E.3.2), between the nominal CPB removal times of any two consecutive decoding units in decoding order in the 

access unit associated with the picture timing SEI message. This value is also used to calculate an earliest possible time of 

arrival of decoding unit data into the CPB for the HSS, as specified in Annex C or clause F.13. The syntax element is a 

fixed length code whose length in bits is given by du_cpb_removal_delay_increment_length_minus1 + 1. 

num_nalus_in_du_minus1[ i ] plus 1 specifies the number of NAL units in the i-th decoding unit of the access unit the 

picture timing SEI message is associated with. The value of num_nalus_in_du_minus1[ i ] shall be in the range of 0 to 

PicSizeInCtbsY ī 1, inclusive. 

The first decoding unit of the access unit consists of the first num_nalus_in_du_minus1[ 0 ] + 1 consecutive NAL units in 

decoding order in the access unit. The i-th (with i greater than 0) decoding unit of the access unit consists of the 

num_nalus_in_du_minus1[ i ] + 1 consecutive NAL units immediately following the last NAL unit in the previous 

decoding unit of the access unit, in decoding order. There shall be at least one VCL NAL unit in each decoding unit. All 

non-VCL NAL units associated with a VCL NAL unit shall be included in the same decoding unit as the VCL NAL unit. 

du_cpb_removal_delay_increment_minus1[ i ] plus 1 specifies the duration, in units of clock sub-ticks, between the 

nominal CPB removal times of the ( i + 1 )-th decoding unit and the i-th decoding unit, in decoding order, in the access 

unit associated with the picture timing SEI message. This value is also used to calculate an earliest possible time of arrival 

of decoding unit data into the CPB for the HSS, as specified in Annex C or clause F.13. The syntax element is a fixed 

length code whose length in bits is given by du_cpb_removal_delay_increment_length_minus1 + 1. 

D.3.4 Pan-scan rectangle SEI message semantics 

The pan-scan rectangle SEI message syntax elements specify the coordinates of one or more rectangles relative to the 

conformance cropping window specified by the active SPS. Each coordinate is specified in units of one-sixteenth luma 

sample spacing relative to the luma sampling grid. 

pan_scan_rect_id contains an identifying number that may be used to identify the purpose of the one or more pan-scan 

rectangles (for example, to identify the one or more rectangles as the area to be shown on a particular display device or as 

the area that contains a particular actor in the scene). The value of pan_scan_rect_id shall be in the range of 0 to 232 ī 2, 

inclusive. 

Values of pan_scan_rect_id from 0 to 255, inclusive, and from 512 to 231 ī 1, inclusive, may be used as determined by the 

application. Values of pan_scan_rect_id from 256 to 511, inclusive, and from 231 to 232 ī 2, inclusive, are reserved for 

future use by ITU-T | ISO/IEC. Decoders encountering a value of pan_scan_rect_id in the range of 256 to 511, inclusive, 

or in the range of 231 to 232 ī 2, inclusive, shall ignore it. 

pan_scan_rect_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous pan-scan 

rectangle SEI message in output order that applies to the current layer. pan_scan_rect_cancel_flag equal to 0 indicates that 

pan-scan rectangle information follows. 

pan_scan_cnt_minus1 specifies the number of pan-scan rectangles that are specified by the SEI message. 

pan_scan_cnt_minus1 shall be in the range of 0 to 2, inclusive. 



 

330 Rec. ITU-T H.265 v8 (08/2021) 

pan_scan_cnt_minus1 equal to 0 indicates that a single pan-scan rectangle is specified that applies to the decoded pictures 

that are within the persistence scope of the current SEI message. When field_seq_flag is equal to 1, pan_scan_cnt_minus1 

shall be equal to 0. 

pan_scan_cnt_minus1 equal to 1 indicates that two pan-scan rectangles are specified that apply to the decoded pictures 

that are within the persistence scope of the current SEI message and that are associated with picture timing SEI messages 

having pic_struct equal to 3 or 4. The first rectangle applies to the first field of a frame in output order and the second 

rectangle applies to the second field of a frame in output order, where the output order between two fields in one frame is 

as shown in Table D.2 for pic_struct equal to 3 or 4. 

pan_scan_cnt_minus1 equal to 2 indicates that three pan-scan rectangles are specified that apply to the decoded pictures 

that are within the persistence scope of the current SEI message and that are associated with picture timing SEI messages 

having pic_struct equal to 5 or 6. The first rectangle applies to the first field of the frame in output order, the second 

rectangle applies to the second field of the frame in output order, and the third rectangle applies to a repetition of the first 

field as a third field in output order, where the output order of fields in one frame is as shown in Table D.2 for pic_struct 

equal to 5 or 6. 

pan_scan_rect_left_offset[ i ], pan_scan_rect_right_offset[ i ], pan_scan_rect_top_offset[ i ] and 

pan_scan_rect_bottom_offset[ i ], specify, as signed integer quantities in units of one-sixteenth sample spacing relative 

to the luma sampling grid, the location of the i-th pan-scan rectangle. The values of each of these four syntax elements 

shall be in the range of ī231 + 1 to 231 ī 1, inclusive. 

The pan-scan rectangle is specified, in units of one-sixteenth sample spacing relative to a luma sampling grid, as the region 

with horizontal coordinates from 16 *  SubWidthC *  conf_win_left_offset + pan_scan_rect_left_offset[ i ] to 

16 *  ( CtbSizeY *  PicWidthInCtbsY ī SubWidthC *  conf_win_right_offset ) + pan_scan_rect_right_offset[ i ] ī 1 and 

with vertical coordinates from 16 *SubHeightC *  conf_win_top_offset + pan_scan_rect_top_offset[ i ] to 

16 *  ( CtbSizeY *  PicHeightInCtbsY ī SubHeightC *  conf_win_bottom_offset ) + pan_scan_rect_bottom_offset[ i ] ī 1, 

inclusive. The value of 16 *  SubWidthC *  conf_win_left_offset + pan_scan_rect_left_offset[ i ] shall be less than or equal 

to 16 *  ( CtbSizeY *  PicWidthInCtbsY ī SubWidthC *  conf_win_right_offset ) + pan_scan_rect_right_offset[ i ] ī 1 and 

the value of 16 *  SubHeightC *  conf_win_top_offset + pan_scan_rect_top_offset[ i ] shall be less than or equal to 

16 *  ( CtbSizeY *  PicHeightInCtbsY ī SubHeightC *  conf_win_bottom_offset ) + pan_scan_rect_bottom_offset[ i ] ī 1. 

When the pan-scan rectangular area includes samples outside of the conformance cropping window, the region outside of 

the conformance cropping window may be filled with synthesized content (such as black video content or neutral grey 

video content) for display. 

pan_scan_rect_persistence_flag specifies the persistence of the pan-scan rectangle SEI message for the current layer. 

pan_scan_rect_persistence_flag equal to 0 specifies that the pan-scan rectangle information applies to the current decoded 

picture only. 

Let picA be the current picture. pan_scan_rect_persistence_flag equal to 1 specifies that the pan-scan rectangle information 

persists for the current layer in output order until any of the following conditions are true: 

ï A new CLVS of the current layer begins. 

ï The bitstream ends. 

ï A picture picB in the current layer in an access unit containing a pan-scan rectangle SEI message with the same value 

of pan_scan_rect_id and applicable to the current layer is output for which PicOrderCnt( picB ) is greater than 

PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the PicOrderCntVal values of picB and 

picA, respectively, immediately after the invocation of the decoding process for picture order count for picB. 

D.3.5 Filler payload SEI message semantics 

This SEI message contains a series of payloadSize bytes of value 0xFF, which can be discarded. 

ff_byte shall be a byte having the value 0xFF. 

D.3.6 User data registered by Recommendation ITU -T T.35 SEI message semantics 

This SEI message contains user data registered as specified in Recommendation ITU-T T.35, the contents of which are not 

specified in this Specification. 

itu_t_t35_country_code shall be a byte having a value specified as a country code by Annex A of Recommendation ITU-

T T.35. 

itu_t_t35_country_code_extension_byte shall be a byte having a value specified as a country code by Annex B of 

Recommendation ITU-T T.35. 

itu_t_t35_payload_byte shall be a byte containing data registered as specified in Recommendation ITU-T T.35. 



 

  Rec. ITU-T H.265 v8 (08/2021) 331 

The ITU-T T.35 terminal provider code and terminal provider oriented code shall be contained in the first one or more 

bytes of the itu_t_t35_payload_byte, in the format specified by the Administration that issued the terminal provider code. 

Any remaining itu_t_t35_payload_byte data shall be data having syntax and semantics as specified by the entity identified 

by the ITU-T T.35 country code and terminal provider code. 

D.3.7 User data unregistered SEI message semantics 

This SEI message contains unregistered user data identified by a universal unique identifier (UUID), the contents of which 

are not specified in this Specification. 

uuid_iso_iec_11578 shall have a value specified as a UUID according to the procedures of Annex A of ISO/IEC 

11578:1996. 

user_data_payload_byte shall be a byte containing data having syntax and semantics as specified by the UUID generator. 

D.3.8 Recovery point SEI message semantics 

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable 

pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the CVS. When 

the decoding process is started with the access unit in decoding order associated with the recovery point SEI message, all 

decoded pictures at or subsequent to the recovery point in output order specified in this SEI message are indicated to be 

correct or approximately correct in content. Decoded pictures produced by random access at or before the picture associated 

with the recovery point SEI message need not be correct in content until the indicated recovery point, and the operation of 

the decoding process starting at the picture associated with the recovery point SEI message may contain references to 

pictures unavailable in the decoded picture buffer. 

In addition, by use of the broken_link_flag, the recovery point SEI message can indicate to the decoder the location of 

some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process 

was begun at the location of a previous IRAP access unit in decoding order. 

NOTE 1 ï The broken_link_flag can be used by encoders to indicate the location of a point after which the decoding process for the 

decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the pictures 

that were used for reference when the bitstream was originally encoded (e.g., due to a splicing operation performed during the 

generation of the bitstream). 

When random access is performed to start decoding from the access unit associated with the recovery point SEI message, 

the decoder operates as if the associated picture was the first picture in the bitstream in decoding order, and the variables 

prevPicOrderCntLsb and prevPicOrderCntMsb used in derivation of PicOrderCntVal are both set equal to 0. 

NOTE 2 ï When HRD information is present in the bitstream, a buffering period SEI message should be associated with the access 

unit associated with the recovery point SEI message in order to establish initialization of the HRD buffer model after a random 

access. 

Any SPS or PPS RBSP that is referred to by a picture associated with a recovery point SEI message or by any picture 

following such a picture in decoding order shall be available to the decoding process prior to its activation, regardless of 

whether or not the decoding process is started at the beginning of the bitstream or with the access unit, in decoding order, 

that is associated with the recovery point SEI message. 

recovery_poc_cnt specifies the recovery point of decoded pictures in output order. If there is a picture picA that follows 

the current picture (i.e., the picture associated with the current SEI message) in decoding order in the CVS and that has 

PicOrderCntVal equal to the PicOrderCntVal of the current picture plus the value of recovery_poc_cnt, the picture picA 

is referred to as the recovery point picture. Otherwise, the first picture in output order that has PicOrderCntVal greater than 

the PicOrderCntVal of the current picture plus the value of recovery_poc_cnt is referred to as the recovery point picture. 

The recovery point picture shall not precede the current picture in decoding order. All decoded pictures in output order are 

indicated to be correct or approximately correct in content starting at the output order position of the recovery point picture. 

The value of recovery_poc_cnt shall be in the range of īMaxPicOrderCntLsb / 2 to MaxPicOrderCntLsb / 2 ī 1, inclusive. 

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order 

derived by starting the decoding process at the access unit associated with the recovery point SEI message will be an exact 

match to the pictures that would be produced by starting the decoding process at the location of a previous IRAP access 

unit, if any, in the bitstream. The value 0 indicates that the match may not be exact and the value 1 indicates that the match 

will be exact. When exact_match_flag is equal to 1, it is a requirement of bitstream conformance that the decoded pictures 

at and subsequent to the specified recovery point in output order derived by starting the decoding process at the access unit 

associated with the recovery point SEI message shall be an exact match to the pictures that would be produced by starting 

the decoding process at the location of a previous IRAP access unit, if any, in the bitstream. 

NOTE 3 ï When performing random access, decoders should infer all references to unavailable pictures as references to pictures 

containing only intra coding blocks and having sample values given by Y equal to ( 1  <<  ( BitDepthY ī 1 ) ), Cb and Cr both equal 

to ( 1  <<  ( BitDepthC ī 1 ) ) (mid-level grey), regardless of the value of exact_match_flag. 



 

332 Rec. ITU-T H.265 v8 (08/2021) 

When exact_match_flag is equal to 0, the quality of the approximation at the recovery point is chosen by the encoding 

process and is not specified in this Specification. 

broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the recovery 

point SEI message and is assigned further semantics as follows: 

ï If broken_link_flag is equal to 1, pictures produced by starting the decoding process at the location of a previous 

IRAP access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to the 

access unit associated with the recovery point SEI message in decoding order should not be displayed until the 

specified recovery point in output order. 

ï Otherwise (broken_link_flag is equal to 0), no indication is given regarding any potential presence of visual artefacts. 

When the current picture is a BLA picture, the value of broken_link_flag shall be equal to 1. 

Regardless of the value of the broken_link_flag, pictures subsequent to the specified recovery point in output order are 

specified to be correct or approximately correct in content. 

D.3.9 Scene information SEI message semantics 

A scene and a scene transition are herein defined as a set of consecutive pictures in output order. 

NOTE 1 ï Decoded pictures within one scene generally have similar content. The scene information SEI message is used to label 

pictures with scene identifiers and to indicate scene changes. The message specifies how the source pictures for the labelled pictures 

were created. The decoder may use the information to select an appropriate algorithm to conceal transmission errors. For example, 

a specific algorithm may be used to conceal transmission errors that occurred in pictures belonging to a gradual scene transition. 

Furthermore, the scene information SEI message may be used in a manner determined by the application, such as for indexing the 

scenes of a video sequence. 

A scene information SEI message labels all pictures of the current layer, in decoding order, from the coded picture to which 

the SEI message is associated (inclusive) to the coded picture to which the next scene information SEI message applicable 

to the current layer (when present) in decoding order is associated (exclusive) or (otherwise) to the last picture in the CLVS 

(inclusive). These pictures are herein referred to as the target pictures. 

NOTE 2 ï The semantics of the scene information SEI message apply layer-wise. However, the scene information SEI message may 

be contained within a scalable nesting SEI message, which may help in reducing the number of scene information SEI messages, as 

scene changes and transitions apply across layers. 

scene_info_present_flag equal to 0 indicates that the scene or scene transition to which the target pictures belong is 

unspecified. scene_info_present_flag equal to 1 indicates that the target pictures belong to the same scene or scene 

transition. 

prev_scene_id_valid_flag equal to 0 specifies that the scene_id value of the picture preceding the first picture of the target 

pictures in output order is considered unspecified in the semantics of the syntax elements of this SEI message. 

prev_scene_id_valid_flag equal to 1 specifies that the scene_id value of the picture preceding the first picture of the target 

pictures in output order is specified by the previous scene information SEI message in decoding order. When the previous 

scene information SEI message applicable to the current layer is within the same CLVS as the current scene information 

SEI message, prev_scene_id_valid_flag shall be equal to 1. 

NOTE 3 ï When a current scene information SEI message is associated with the first picture, in decoding order, of a CLVS, 

prev_scene_id_valid_flag equal to 1 indicates that the scene_id values of the current scene information SEI message and the previous 

scene information SEI message applicable to the current layer in decoding order can be used to conclude whether their target pictures 

belong to the same scene or to different scenes. 

NOTE 4 ï When CVS B is concatenated to CVS A and CVS A represents a different scene than the scene CVS B represents, it 

should be noticed that the scene_id value specified for the last picture with a particular nuh_layer_id value of CVS A affects the 

semantics of the scene information SEI message associated with that particular nuh_layer_id value and the first picture, in decoding 

order, of CVS B, when the SEI message is present. Hence, as part of such a concatenation operation, the value of 

prev_scene_id_valid_flag should be set equal to 0 in the scene information SEI message associated with the first picture, in decoding 

order, of CVS B, when the SEI message is present. 

scene_id identifies the scene to which the target pictures belong. When the value of scene_transition_type of the target 

pictures is less than 4, and the previous picture in output order is marked with a value of scene_transition_type less than 4, 

and the value of scene_id is the same as the value of scene_id of the previous picture in output order, this indicates that the 

source scene for the target pictures and the source scene for the previous picture (in output order) are considered by the 

encoder to have been the same scene. When the value of scene_transition_type of the target pictures is greater than 3, and 

the previous picture in output order is marked with a value of scene_transition_type less than 4, and the value of scene_id 

is the same as the value of scene_id of the previous picture in output order, this indicates that one of the source scenes for 

the target pictures and the source scene for the previous picture (in output order) are considered by the encoder to have 

been the same scene. When the value of scene_id is not equal to the value of scene_id of the previous picture in output 

order, this indicates that the target pictures and the previous picture (in output order) are considered by the encoder to have 

been from different source scenes. 



 

  Rec. ITU-T H.265 v8 (08/2021) 333 

The value of scene_id shall be in the range of 0 to 232 ī 2, inclusive. 

Values of scene_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 ī 1, inclusive, may be used as 

determined by the application. Values of scene_id in the range of 256 to 511, inclusive, and in the range of 231 to 232 ī 2, 

inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of scene_id in the range of 256 

to 511, inclusive, or in the range of 231 to 232 ī 2, inclusive, shall ignore it. 

NOTE 5 ï When the first picture picA, in decoding order, of the CLVS vidSeqA represents a different scene than the last picture, in 

output order, of the previous CLVS of the same layer and a scene information SEI message is associated with PicA, the scene_id 

value of that scene information SEI message should have a random value within the value ranges constrained above. Subsequent 

scene_id and second_scene_id values may be selected for example by incrementing the initial randomly selected scene_id value. 

Consequently, when concatenating vidSeqA to a CLVS vidSeqB of the same layer, accidental use of the same scene_id values in 

vidSeqA and vidSeqB is unlikely. 

scene_transition_type specifies in which type of a scene transition (if any) the target pictures are involved. The valid 

values of scene_transition_type are specified in Table D.3. 

Table D.3 ï scene_transition_type values 
 

Value Description 

0 No transition 

1 Fade to black 

2 Fade from black 

3 Unspecified transition from or to constant colour 

4 Dissolve 

5 Wipe 

6 Unspecified mixture of two scenes 

 

When scene_transition_type is greater than 3, the target pictures include contents both from the scene labelled by its 

scene_id and the next scene, in output order, which is labelled by second_scene_id (see below). The term "the current 

scene" is used to indicate the scene labelled by scene_id. The term "the next scene" is used to indicate the scene labelled 

by second_scene_id. It is not required for any following picture, in output order, to be labelled with scene_id equal to 

second_scene_id of the current SEI message. 

Scene transition types are specified as follows: 

ï "No transition" specifies that the target pictures are not involved in a gradual scene transition. 

NOTE 6 ï When two consecutive pictures in output order have scene_transition_type equal to 0 and different values of 

scene_id, a scene cut occurred between the two pictures. 

ï "Fade to black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade 

to black scene transition, i.e., the luma samples of the scene gradually approach zero and the chroma samples of the 

scene gradually approach 128. 

NOTE 7 ï When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade to 

black", the later one, in output order, is darker than the previous one. 

ï "Fade from black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a 

fade from black scene transition, i.e., the luma samples of the scene gradually diverge from zero and the chroma 

samples of the scene may gradually diverge from 128.  

NOTE 8 ï When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade 

from black", the later one in output order is lighter than the previous one. 

ï "Dissolve" indicates that the sample values of each target picture (before encoding) were generated by calculating a 

sum of co-located weighted sample values of a picture from the current scene and a picture from the next scene. The 

weight of the current scene gradually decreases from full level to zero level, whereas the weight of the next scene 

gradually increases from zero level to full level. When two pictures are labelled to belong to the same scene transition 

and their scene_transition_type is "Dissolve", the weight of the current scene for the later one, in output order, is less 

than the weight of the current scene for the previous one, and the weight of the next scene for the later one, in output 

order, is greater than the weight of the next scene for the previous one. 

ï "Wipe" indicates that some of the sample values of each target picture (before encoding) were generated by copying 

co-located sample values of a picture in the current scene and the remaining sample values of each target picture 



 

334 Rec. ITU-T H.265 v8 (08/2021) 

(before encoding) were generated by copying co-located sample values of a picture in the next scene. When two 

pictures are labelled to belong to the same scene transition and their scene_transition_type is "Wipe", the number of 

samples copied from the next scene to the later picture in output order is greater than the number of samples copied 

from the next scene to the previous picture. 

second_scene_id identifies the next scene in the gradual scene transition in which the target pictures are involved. The 

value of second_scene_id shall not be equal to the value of scene_id. The value of second_scene_id shall not be equal to 

the value of scene_id in the previous picture in output order. When the next picture in output order is marked with a value 

of scene_transition_type less than 4, and the value of second_scene_id is the same as the value of scene_id of the next 

picture in output order, this indicates that the encoder considers one of the source scenes for the target pictures and the 

source scene for the next picture (in output order) to have been the same scene. When the value of second_scene_id is not 

equal to the value of scene_id or second_scene_id (when present) of the next picture in output order, this indicates that the 

encoder considers the target pictures and the next picture (in output order) to have been from different source scenes. 

When the value of scene_id of a picture is equal to the value of scene_id of the following picture in output order and the 

value of scene_transition_type in both of these pictures is less than 4, this indicates that the encoder considers the two 

pictures to have been from the same source scene. When the values of scene_id, scene_transition_type and 

second_scene_id (when present) of a picture are equal to the values of scene_id, scene_transition_type and 

second_scene_id (respectively) of the following picture in output order and the value of scene_transition_type is greater 

than 0, this indicates that the encoder considers the two pictures to have been from the same source gradual scene transition. 

The value of second_scene_id shall be in the range of 0 to 232 ī 2, inclusive. 

Values of second_scene_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 ī 1, inclusive, may be used as 

determined by the application. Values of second_scene_id in the range of 256 to 511, inclusive, and in the range of 231 

to 232 ī 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of second_scene_id 

in the range of 256 to 511, inclusive, or in the range of 231 to 232 ī 2, inclusive, shall ignore it. 

D.3.10 Picture snapshot SEI message semantics 

The picture snapshot SEI message indicates that the current picture is labelled for use as determined by the application as 

a still-image snapshot of the video content. 

snapshot_id specifies a snapshot identification number. snapshot_id shall be in the range of 0 to 232 ī 2, inclusive. 

Values of snapshot_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 ī 1, inclusive, may be used as 

determined by the application. Values of snapshot_id in the range of 256 to 511, inclusive, and in the range of 231 to 232 ī 2, 

inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of snapshot_id in the range of 

256 to 511, inclusive, or in the range of 231 to 232 ī 2, inclusive, shall ignore it. 

D.3.11 Progressive refinement segment start SEI message semantics 

The progressive refinement segment start SEI message specifies the beginning of a set of consecutive coded pictures in the 

current layer in decoding order that consists of the current picture and a sequence of one or more subsequent pictures in 

the current layer that refine the quality of the current picture, rather than a representation of a continually moving scene. 

Let picA be the current picture. The tagged set of consecutive coded pictures refinementPicSet in the current layer consists 

of, in decoding order, the next picture in the current layer after the current picture in decoding order, when present, followed 

by zero or more pictures in the current layer, including all subsequent pictures in the current layer up to but not including 

any subsequent picture picB in the current layer for which one of the following conditions is true: 

ï The picture picB starts a new CLVS of the current layer. 

ï The value of pic_order_cnt_delta is greater than 0 and the PicOrderCntVal of the picture picB, i.e., 

PicOrderCnt( picB ) is greater than PicOrderCnt( picA ) + pic_order_cnt_delta, where PicOrderCnt( picB ) and 

PicOrderCnt( picA ) are the PicOrderCntVal values of picB and picA, respectively, immediately after the invocation 

of the decoding process for picture order count for picB. 

ï The picture picB is associated with a progressive refinement segment end SEI message that has the same 

progressive_refinement_id as the one in this SEI message and also applies to the current layer is decoded. 

The decoding order of pictures within refinementPicSet should be the same as their output order. 

progressive_refinement_id specifies an identification number for the progressive refinement operation. 

progressive_refinement_id shall be in the range of 0 to 232 ī 2, inclusive. 

Values of progressive_refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 ī 1, inclusive, may 

be used as determined by the application. Values of progressive_refinement_id in the range of 256 to 511, inclusive, and 

in the range of 231 to 232 ī 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of 

progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 231 to 232 ī 2, inclusive, shall ignore it. 



 

  Rec. ITU-T H.265 v8 (08/2021) 335 

pic_order_cnt_delta specifies the last picture in refinementPicSet in decoding order as follows: 

ï If pic_order_cnt_delta is equal to 0, the last picture in refinementPicSet in decoding order is the following picture: 

ï If the CLVS contains one or more pictures in the current layer that follow the current picture in decoding order 

and are associated with a progressive refinement segment end SEI message that has the same 

progressive_refinement_id and also applies to the current layer, the last picture in refinementPicSet in decoding 

order is the first of these pictures in decoding order. 

ï Otherwise, the last picture in refinementPicSet in decoding order is the last picture in the current layer within the 

CLVS in decoding order. 

ï Otherwise, the last picture in refinementPicSet in decoding order is the following picture: 

ï If the CLVS contains one or more pictures in the current layer that follow the current picture in decoding order, 

that are associated with a progressive refinement segment end SEI message with the same 

progressive_refinement_id and applicable to the current layer, and that precede any picture picC in the current 

layer in the CLVS for which PicOrderCnt( picC ) is greater than PicOrderCnt( picA ) + pic_order_cnt_delta, 

where PicOrderCnt( picC ) and PicOrderCnt( picA ) are the PicOrderCntVal of the picC and picA, respectively, 

immediately after the invocation of the decoding process for picture order count for picC, the last picture in 

refinementPicSet in decoding order is the first of these pictures in decoding order. 

ï Otherwise, if the CLVS contains one or more pictures picD in the current layer that follow the current picture in 

decoding order for which PicOrderCnt( picD ) is greater than PicOrderCnt( picA ) + pic_order_cnt_delta, where 

PicOrderCnt( picD ) and PicOrderCnt( picA ) are the PicOrderCntVal values of picD and picA, respectively, 

immediately after the invocation of the decoding process for picture order count for picD, the last picture in 

refinementPicSet in decoding order is the last picture in the current layer that precedes the first of these pictures 

in decoding order. 

ï Otherwise, the last picture in refinementPicSet in decoding order is the last picture in the current layer within the 

CLVS in decoding order. 

The value of pic_order_cnt_delta shall be in the range of 0 to 256, inclusive. 

D.3.12 Progressive refinement segment end SEI message semantics 

The progressive refinement segment end SEI message specifies the end of a set of consecutive coded pictures that has been 

labelled by use of a progressive refinement segment start SEI message as an initial picture followed by a sequence of one 

or more pictures of the refinement of the quality of the initial picture and ending with the current picture. 

progressive_refinement_id specifies an identification number for the progressive refinement operation. 

progressive_refinement_id shall be in the range of 0 to 232 ī 2, inclusive. 

The progressive refinement segment end SEI message specifies the end of any progressive refinement segment previously 

started using a progressive refinement segment start SEI message with the same value of progressive_refinement_id. 

Values of progressive_refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 ī 1, inclusive, may 

be used as determined by the application. Values of progressive_refinement_id in the range of 256 to 511, inclusive, and 

in the range of 231 to 232 ī 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of 

progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 231 to 232 ī 2, inclusive, shall ignore it. 

D.3.13 Film grain characteristics SEI message semantics 

This SEI message provides the decoder with a parameterized model for film grain synthesis. 

NOTE 1 ï For example, an encoder could use the film grain characteristics SEI message to characterize film grain that was present 

in the original source video material and was removed by pre-processing filtering techniques. Synthesis of simulated film grain on 

the decoded images for the display process is optional and does not need to exactly follow the specified semantics of the film grain 

characteristics SEI message. When synthesis of simulated film grain on the decoded images for the display process is performed, 

there is no requirement that the method by which the synthesis is performed be the same as the parameterized model for the film 

grain as provided in the film grain characteristics SEI message. 

NOTE 2 ï The display process is not specified in this Specification. 

NOTE 3 ï SMPTE RDD 5 specifies a film grain simulator based on the information provided in the film grain characteristics SEI 

message. 

The film grain models specified in the film grain characteristics SEI message are expressed for application to decoded 

pictures that have 4:4:4 colour format with luma and chroma bit depths corresponding to the luma and chroma bit depths 

of the film grain model and use the same colour representation domain as the identified film grain model. When the colour 

format of the decoded video is not 4:4:4 or the decoded video uses a different luma or chroma bit depth from that of the 

film grain model or uses a different colour representation domain from that of the identified film grain model, an 

unspecified conversion process is expected to be applied to convert the decoded pictures to the form that is expressed for 

application of the film grain model. 



 

336 Rec. ITU-T H.265 v8 (08/2021) 

NOTE 4 ï Because the use of a specific method is not required for performing the film grain generation function used by the display 

process, a decoder could, if desired, down-convert the model information for chroma in order to simulate film grain for other chroma 

formats (4:2:0 or 4:2:2) rather than up-converting the decoded video (using a method not specified in this Specification) before 

performing film grain generation. 

film_grain_characteristics_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous 

film grain characteristics SEI message in output order that applies to the current layer. 

film_grain_characteristics_cancel_flag equal to 0 indicates that film grain modelling information follows. 

film_grain_model_id identifies the film grain simulation model as specified in Table D.4. The value of 

film_grain_model_id shall be in the range of 0 to 1, inclusive. The values of 2 and 3 for film_grain_model_id are reserved 

for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. 

Decoders shall ignore film grain characteristic SEI messages with film_grain_model_id equal to 2 or 3. 

Table D.4 ï film_grain_model_id values 
 

Value Description 

0 Frequency filtering  

1 Auto-regression 

 

separate_colour_description_present_flag equal to 1 indicates that a distinct combination of luma bit depth, chroma bit 

depth, video full range flag, colour primaries, transfer characteristics, and matrix coefficients for the film grain 

characteristics specified in the SEI message is present in the film grain characteristics SEI message syntax. 

separate_colour_description_present_flag equal to 0 indicates that the combination of luma bit depth, chroma bit depth, 

video full range flag, colour primaries, transfer characteristics, and matrix coefficients for the film grain characteristics 

specified in the SEI message are the same as indicated in the VUI parameters for the CVS. 

NOTE 5 ï When separate_colour_description_present_flag is equal to 1, any of the luma bit depth, chroma bit depth, video full 

range flag, colour primaries, transfer characteristics, and matrix coefficients specified for the film grain characteristics specified in 

the SEI message could differ from those for the pictures in the CVS. 

When VUI parameters are not present for the CVS or the value of colour_description_present_flag is equal to 0, and 

equivalent information to that conveyed when colour_description_present_flag is equal to 1 is not conveyed by external 

means, separate_colour_description_present_flag shall be equal to 1. 

The decoded image Idecoded used in the equations in this clause is in the same colour representation domain as the simulated 

film grain signal. Therefore, when any of these parameters does differ from that for the pictures in the CVS, the decoded 

image Idecoded used in the equations in this clause would be in a different colour representation domain than that for the 

pictures in the CVS. For example, when the value of film_grain_bit_depth_luma_minus8 + 8 is greater than the bit depth 

of the luma component of the pictures in the CVS, the bit depth of Idecoded used in the equations in this clause is also greater 

than the bit depth of the luma component of the pictures in the CVS. In such a case, the decoded image Idecoded corresponding 

to an actual decoded picture would be generated by converting the actual decoded picture to be in the same colour 

representation domain as the simulated film grain signal. The process for converting the actual decoded pictures to the 

4:4:4 colour format with same colour representation domain as the simulated film grain signal is not specified in this 

Specification. 

film_grain_bit_depth_luma_minus8 plus 8 specifies the bit depth used for the luma component of the film grain 

characteristics specified in the SEI message. When film_grain_bit_depth_luma_minus8 is not present in the film grain 

characteristics SEI message, the value of film_grain_bit_depth_luma_minus8 is inferred to be equal to 

bit_depth_luma_minus8. 

The value of filmGrainBitDepth[ 0 ] is derived as follows: 

filmGrainBitDepth[ 0 ] = film_grain_bit_depth_luma_minus8 + 8 (D-3) 

film_grain_bit_depth_chroma_minus8 plus 8 specifies the bit depth used for the Cb and Cr components of the film grain 

characteristics specified in the SEI message. When film_grain_bit_depth_chroma_minus8 is not present in the film grain 

characteristics SEI message, the value of film_grain_bit_depth_chroma_minus8 is inferred to be equal to 

bit_depth_chroma_minus8. 

The value of filmGrainBitDepth[ c ] for c = 1 and 2 is derived as follows: 

filmGrainBitDepth[ c ] = film_grain_bit_depth_chroma_minus8 + 8, with c = 1, 2 (D-4) 

film_grain _full_range_flag has the same semantics as specified in clause E.3.1 for the video_full_range_flag syntax 

element, except as follows: 



 

  Rec. ITU-T H.265 v8 (08/2021) 337 

ï film_grain_full_range_flag specifies the video full range flag of the film grain characteristics specified in the SEI 

message, rather than the video full range flag used for the CVS. 

ï When film_grain_full_range_flag is not present in the film grain characteristics SEI message, the value of 

film_grain_full_range_flag is inferred to be equal to video_full_range_flag. 

film_grain_colour_primaries  has the same semantics as specified in clause E.3.1 for the colour_primaries syntax 

element, except as follows: 

ï film_grain_colour_primaries specifies the colour primaries of the film grain characteristics specified in the SEI 

message, rather than the colour primaries used for the CVS. 

ï When film_grain_colour_primaries is not present in the film grain characteristics SEI message, the value of 

film_grain_colour_primaries is inferred to be equal to colour_primaries. 

film_grain_transfer_characteristics has the same semantics as specified in clause E.3.1 for the transfer_characteristics 

syntax element, except as follows: 

ï film_grain_transfer_characteristics specifies the transfer characteristics of the film grain characteristics specified in 

the SEI message, rather than the transfer characteristics used for the CVS. 

ï When film_grain_transfer_characteristics is not present in the film grain characteristics SEI message, the value of 

film_grain_transfer_characteristics is inferred to be equal to transfer_characteristics. 

film_grain_matrix_coeffs has the same semantics as specified in clause E.3.1 for the matrix_coeffs syntax element, 

except as follows: 

ï film_grain_matrix_coeffs specifies the matrix coefficients of the film grain characteristics specified in the SEI 

message, rather than the matrix coefficients used for the CVS. 

ï When film_grain_matrix_coeffs is not present in the film grain characteristics SEI message, the value of 

film_grain_matrix_coeffs is inferred to be equal to matrix_coeffs. 

ï The values allowed for film_grain_matrix_coeffs are not constrained by the chroma format of the decoded pictures 

that is indicated by the value of chroma_format_idc for the semantics of the VUI parameters. 

blending_mode_id identifies the blending mode used to blend the simulated film grain with the decoded images as 

specified in Table D.5. blending_mode_id shall be in the range of 0 to 1, inclusive. The values of 2 and 3 for 

blending_mode_id are reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to 

this version of this Specification. Decoders shall ignore film grain characteristic SEI messages with blending_mode_id 

equal to 2 or 3. 

Table D.5 ï blending_mode_id values 
 

Value Description 

0 Additive  

1 Multiplicative 

 

Depending on the value of blending_mode_id, the blending mode is specified as follows: 

ï If blending_mode_id is equal to 0, the blending mode is additive as specified by: 

Igrain[ c ][  x ][  y ] = Clip3( 0, ( 1  <<  filmGrainBitDepth[ c ] ) ī 1, Idecoded[ c ][  x ][  y ] + G[ c ][  x ][  y ] )

 (D-5) 

ï Otherwise (blending_mode_id is equal to 1), the blending mode is multiplicative as specified by: 

Igrain[ c ][  x ][  y ] = Clip3( 0, ( 1  <<  filmGrainBitDepth[ c ] ) ī 1, Idecoded[ c ][  x ][  y ] + (D-6) 

  Round( ( Idecoded[ c ][  x ][  y ] *  G[ c ][  x ][  y ] ) ÷ ( ( 1  <<  bitDepth[ c ] ) ī 1 ) ) ) 

where Idecoded[ c ][  x ][  y ] represents the sample value at coordinates x, y of the colour component c of the decoded image 

Idecoded, G[ c ][  x ][  y ] is the simulated film grain value at the same position and colour component, and 

filmGrainBitDepth[ c ] is the number of bits used for each sample in a fixed-length unsigned binary representation of the 

arrays Igrain[ c ][  x ][  y ], Idecoded[ c ][  x ][  y ], and G[ c ][  x ][  y ], where c = 0..2, x = 0..pic_width_in_luma_samples ī 1, 

and y = 0..pic_height_in_luma_samples ī 1. 

log2_scale_factor specifies a scale factor used in the film grain characterization equations. 



 

338 Rec. ITU-T H.265 v8 (08/2021) 

comp_model_present_flag[ c ] equal to 0 indicates that film grain is not modelled on the c-th colour component, where c 

equal to 0 refers to the luma component, c equal to 1 refers to the Cb component, and c equal to 2 refers to the Cr component. 

comp_model_present_flag[ c ] equal to 1 indicates that syntax elements specifying modelling of film grain on colour 

component c are present in the SEI message. 

When separate_colour_description_present_flag is equal to 0 and chroma_format_idc is equal to 0, the value of 

comp_model_present_flag[ 1 ] and comp_model_present_flag[ 2 ] shall be equal to 0. 

num_intensity_intervals_minus1[ c ] plus 1 specifies the number of intensity intervals for which a specific set of model 

values has been estimated.  

NOTE 6 ï The intensity intervals could overlap in order to simulate multi-generational film grain. 

num_model_values_minus1[ c ] plus 1 specifies the number of model values present for each intensity interval in which 

the film grain has been modelled. The value of num_model_values_minus1[ c ] shall be in the range of 0 to 5, inclusive. 

intensity_interval_lower_bound[ c ][  i ] specifies the lower bound of the i-th intensity interval for which the set of model 

values applies. 

intensity_interval_upper_bound[ c ][  i ] specifies the upper bound of the i-th intensity interval for which the set of model 

values applies. 

The variable intensityIntervalIdx[ c ][  x ][  y ][  j ] represents the j-th index to the list of intensity intervals selected for the 

sample value Idecoded[ c ][  x ][  y ] for c = 0..2, x = 0..pic_width_in_luma_samples ī 1, 

y = 0..pic_height_in_luma_samples ī 1, and j = 0..numApplicableIntensityIntervals[ c ][  x ][  y ] ī 1, where 

numApplicableIntensityIntervals[ c ][  x ][  y ] is derived below. 

Depending on the value of film_grain_model_id, the selection of one or more intensity intervals for the sample value 

Idecoded[ c ][  x ][  y ] is specified as follows: 

ï The variable numApplicableIntensityIntervals[ c ][  x ][  y ] is initially set equal to 0. 

ï If film_grain_model_id is equal to 0, the following applies: 

ï The top-left sample location ( xB, yB ) of the current 8x8 block b that contains the sample value 

Idecoded[ c ][  x ][  y ] is derived as ( xB, yB ) = ( x / 8, y / 8 ). 

ï The average value bavg of the current 8x8 block b is derived as follows: 

sum8x8 = 0 

for( i = 0; i  < 8; i++ ) 

 for( j = 0; j < 8; j++ ) 

     sum8x8  +=  Idecoded[ c ][  xB *  8 + i ][  yB *  8 + j ] (D-7) 

bavg = Clip3( 0, 255, 

( sum8x8 + ( 1  <<  ( filmGrainBitDepth[ c ] ī 3 ) ) )  >>  ( filmGrainBitDepth[ c ] ī 2 ) ) 

ï The values of intensityIntervalIdx[ c ][  x ][  y ][  j ] and numApplicableIntensityIntervals[ c ][  x ][  y ] are derived 

as follows: 

for( i = 0, j = 0; i  <=  num_intensity_intervals_minus1[ c ]; i++ ) 

 if(  bavg  >=  intensity_interval_lower_bound[ c ][  i ]   

   &&   bavg  <=  intensity_interval_upper_bound[ c ][  i ] ) {  

  intensityIntervalIdx[ c ][  x ][  y ][  j ] = i (D-8) 

  j++ 

 }  

numApplicableIntensityIntervals[ c ][  x ][  y ] = j 

ï Otherwise (film_grain_model_id is equal to 1), the values of intensityIntervalIdx[ c ][  x ][  y ][  j ] and 

numApplicableIntensityIntervals[ c ][  x ][  y ] are derived as follows: 

I8[ c ][  x ][  y ] = ( filmGrainBitDepth[ c ]  = =  8 ) ? ( Idecoded[ c ][  x ][  y ] : 

  Clip3( 0, 255, ( Idecoded[ c ][  x ][  y ] + 

   ( 1  <<  ( filmGrainBitDepth[ c ] ī 9 ) ) )  >>  ( filmGrainBitDepth[ c ] ī 8 ) ) 

for( i = 0, j = 0; i  <=  num_intensity_intervals_minus1[ c ]; i++ ) 

 if(  I8[ c ][  x ][  y ]  >=  intensity_interval_lower_bound[ c ][  i ]  &&    

   I8[ c ][  x ][  y ]  <=  intensity_interval_upper_bound[ c ][  i ] ) {  (D-9) 

  intensityIntervalIdx[ c ][  x ][  y ][  j ] = i 

  j++ 



 

  Rec. ITU-T H.265 v8 (08/2021) 339 

 }  

numApplicableIntensityIntervals[ c ][  x ][  y ] = j 

Samples that do not fall into any of the defined intervals (i.e., those samples for which the value of 

numApplicableIntensityIntervals[ c ][  x ][  y ] is equal to 0) are not modified by the grain generation function. Samples that 

fall into more than one interval (i.e., those samples for which the value of numApplicableIntensityIntervals[ c ][  x ][  y ] is 

greater than 1) will originate multi-generation grain. Multi-generation grain results from adding the grain computed 

independently for each of the applicable intensity intervals. 

In the equations in the remainder of this clause, the variable sj in each instance of the list comp_model_value[ c ][  sj ] is 

the value of intensityIntervalIdx[ c ][  x ][  y ][  j ] derived for the sample value Idecoded[ c ][  x ][  y ]. 

comp_model_value[ c ][  i ][  j ] specifies the j-th model value present for the colour component c and the i-th intensity 

interval. The set of model values has different meaning depending on the value of film_grain_model_id. 

The value of comp_model_value[ c ][  i ][  j ] is constrained as follows, and could be additionally constrained as specified 

elsewhere in this clause: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  j ] shall be in the range of 0 to 2filmGrainBitDepth[ c ] ī 1, 

inclusive. 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  j ] shall be in the range of 

ī2( filmGrainBitDepth[ c ] ī 1 ) to 2( filmGrainBitDepth[ c ] ī 1 ) ī 1, inclusive. 

Depending on the value of film_grain_model_id, the synthesis of the film grain is modelled as follows: 

ï If film_grain_model_id is equal to 0, a frequency filtering model enables simulating the original film grain for c = 0..2, 

x = 0..pic_width_in_luma_samples ī 1 and y = 0..pic_height_in_luma_samples ī 1 as specified by: 

G[ c ][  x ][  y ] = ( comp_model_value[ c ][  sj ][  0 ] * Q[  c ][  x ][  y ] + comp_model_value[ c ][  sj ][  5 ] *  

   G[ c ī 1 ][ x ][  y ] )  >>  log2_scale_factor (D-10) 

 where Q[ c ] is a two-dimensional random process generated by filtering 16x16 blocks gaussRv with random variable 

elements gaussRvij generated with a normalized Gaussian distribution (independent and identically distributed 

Gaussian random variable samples with zero mean and unity variance) and the value of an element G[ c ī 1 ][ x ][  y ] 

used in the right-hand side of the equation is inferred to be equal to 0 when c ī 1 is less than 0. 

NOTE 7 ï A normalized Gaussian random variable can be generated from two independent, uniformly distributed random 

variables over the interval from 0 to 1 (and not equal to 0), denoted as uRv0 and uRv1, using the Box-Muller transformation 

specified by: 

gaussRvi,j = Sqrt( ī2 *  Ln( uRv0 ) ) *  Cos( 2 *   ́*  uRv1 ) (D-11) 

where p is Archimedes' constant 3.141 592 653 589 793.... 

 The band-pass filtering of blocks gaussRv can be performed in the discrete cosine transform (DCT) domain as follows: 

for( y = 0; y < 16; y++ ) 

 for( x = 0; x < 16; x++ ) 

  if(  ( x < comp_model_value[ c ][  sj ][  3 ]  &&   y < comp_model_value[ c ][  sj ][  4 ] )  | | (D-12) 

    x > comp_model_value[ c ][  sj ][  1 ]  | |  y > comp_model_value[ c ][  sj ][  2 ] ) 

   gaussRv[ x ][  y ] = 0 
filteredRv = IDCT16x16( gaussRv ) 

 where IDCT16x16( z ) refers to a unitary inverse discrete cosine transformation (IDCT) operating on a 16x16 matrix 

argument z as specified by: 

IDCT16x16( z ) = r * z * rT  (D-13) 

 where the superscript T indicates a matrix transposition and r is the 16x16 matrix with elements rij specified by: 

Òȟ = 
         ȩ  Ḋ   

 zCos 
i *  2 * j + 1   * ˊ

32
  (D-14) 

 where p is Archimedes' constant 3.141 592 653 589 793.... 

 Q[ c ] is formed by the frequency-filtered blocks filteredRv. 



 

340 Rec. ITU-T H.265 v8 (08/2021) 

NOTE 8 ï Coded model values are based on blocks of size 16x16, but a decoder implementation could use other block sizes. 

For example, decoders implementing the IDCT on 8x8 blocks could down-convert by a factor of two the set of coded model 

values comp_model_value[ c ][  sj ][  i ] for i equal to 1..4. 

NOTE 9 ï To reduce the degree of visible blocks that can result from mosaicking the frequency-filtered blocks filteredRv, 

decoders could apply a low-pass filter to the boundaries between frequency-filtered blocks. 

ï Otherwise (film_grain_model_id is equal to 1), an auto-regression model enables simulating the original film grain 

for c = 0..2, x = 0..pic_width_in_luma_samples ī 1, and y = 0..pic_height_in_luma_samples ī 1 as specified by: 

G[ c ][  x ][  y ] = ( comp_model_value[ c ][  sj ][  0 ] * n[  c ][  x ][  y ] + 

comp_model_value[ c ][  sj ][  1 ] * ( G[ c ][  x ī 1 ][  y ] + ( ( comp_model_value[ c ][  sj ][  4 ] * 

G[ c ][  x ][  y ī 1 ] )  >> 

  log2_scale_factor ) ) + 

comp_model_value[ c ][  sj ][  3 ] * ( ( ( comp_model_value[ c ][  sj ][  4 ] * G[  c ][  x ī 1 ][  y ī 1 ] )  

>> 

  log2_scale_factor ) + G[ c ][  x + 1 ][  y ī 1 ] ) + 

comp_model_value[ c ][  sj ][  5 ] * ( G[ c ][  x ī 2 ][  y ] + 

  ( ( comp_model_value[ c ][  sj ][  4 ] * comp_model_value[ c ][  sj ][  4 ] * G[  c ][  x ][  y ī 2 ] )  >> 

   ( 2 * log2_scale_factor ) ) ) + 

 comp_model_value[ c ][  sj ][  2 ] * G[  c ī 1 ][ x ][  y ] )  >>  log2_scale_factor (D-15) 

 where n[ c ][  x ][  y ] is a random variable with normalized Gaussian distribution (independent and identically 

distributed Gaussian random variable samples with zero mean and unity variance for each value of c, x, and y) and 

the value of an element G[ c ][  x ][  y ] used in the right-hand side of the equation is inferred to be equal to 0 when any 

of the following conditions are true: 

ï x is less than 0, 

ï y is less than 0, 

ï c is less than 0. 

comp_model_value[ c ][  i ][  0 ] provides the first model value for the model as specified by film_grain_model_id. 

comp_model_value[ c ][  i ][  0 ] corresponds to the standard deviation of the Gaussian noise term in the generation 

functions specified in Equations D-10 through D-15. 

comp_model_value[ c ][  i ][  1 ] provides the second model value for the model as specified by film_grain_model_id. When 

film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  1 ] shall be greater than or equal to 0 and less than 16. 

When not present in the film grain characteristics SEI message, comp_model_value[ c ][  i ][  1 ] is inferred as follows: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  1 ] is inferred to be equal to 8. 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  1 ] is inferred to be equal to 0. 

comp_model_value[ c ][  i ][  1 ] is interpreted as follows: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  1 ] indicates the horizontal high cut frequency to 

be used to filter the DCT of a block of 16x16 random values. 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  1 ] indicates the first order spatial 

correlation for neighbouring samples at positions ( x ī 1, y ) and ( x, y ī 1 ). 

comp_model_value[ c ][  i ][  2 ] provides the third model value for the model as specified by film_grain_model_id. When 

film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  2 ] shall be greater than or equal to 0 and less than 16. 

When not present in the film grain characteristics SEI message, comp_model_value[ c ][  i ][  2 ] is inferred as follows: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  2 ] is inferred to be equal to 

comp_model_value[ c ][  i ][  1 ] 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  2 ] is inferred to be equal to 0. 

comp_model_value[ c ][  i ][  2 ] is interpreted as follows: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  2 ] indicates the vertical high cut frequency to be 

used to filter the DCT of a block of 16x16 random values. 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  2 ] indicates the colour correlation 

between consecutive colour components. 



 

  Rec. ITU-T H.265 v8 (08/2021) 341 

comp_model_value[ c ][  i ][  3 ] provides the fourth model value for the model as specified by film_grain_model_id. When 

film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  3 ] shall be greater than or equal to 0 and less than or equal 

to comp_model_value[ c ][  i ][  1 ]. 

When not present in the film grain characteristics SEI message, comp_model_value[ c ][  i ][  3 ] is inferred to be equal to 0. 

comp_model_value[ c ][  i ][  3 ] is interpreted as follows: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  3 ] indicates the horizontal low cut frequency to be 

used to filter the DCT of a block of 16x16 random values. 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  3 ] indicates the first order spatial 

correlation for neighbouring samples at positions ( x ī 1, y ī 1 ) and ( x + 1, y ī 1 ). 

comp_model_value[ c ][  i ][  4 ] provides the fifth model value for the model as specified by film_grain_model_id. When 

film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  4 ] shall be greater than or equal to 0 and less than or equal 

to comp_model_value[ c ][  i ][  2 ]. 

When not present in the film grain characteristics SEI message, comp_model_value[ c ][  i ][  4 ] is inferred to be equal to 

film_grain_model_id. 

comp_model_value[ c ][  i ][  4 ] is interpreted as follows: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  4 ] indicates the vertical low cut frequency to be 

used to filter the DCT of a block of 16x16 random values. 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  4 ] indicates the aspect ratio of the 

modelled grain. 

comp_model_value[ c ][  i ][  5 ] provides the sixth model value for the model as specified by film_grain_model_id. 

When not present in the film grain characteristics SEI message, comp_model_value[ c ][  i ][  5 ] is inferred to be equal to 0. 

comp_model_value[ c ][  i ][  5 ] is interpreted as follows: 

ï If film_grain_model_id is equal to 0, comp_model_value[ c ][  i ][  5 ] indicates the colour correlation between 

consecutive colour components. 

ï Otherwise (film_grain_model_id is equal to 1), comp_model_value[ c ][  i ][  5 ] indicates the second order spatial 

correlation for neighbouring samples at positions ( x, y ī 2 ) and ( x ī 2, y ). 

film_grain_characteristics_persistence_flag specifies the persistence of the film grain characteristics SEI message for 

the current layer. 

film_grain_characteristics_persistence_flag equal to 0 specifies that the film grain characteristics SEI message applies to 

the current decoded picture only. 

Let picA be the current picture. film_grain_characteristics_persistence_flag equal to 1 specifies that the film grain 

characteristics SEI message persists for the current layer in output order until any of the following conditions are true: 

ï A new CLVS of the current layer begins. 

ï The bitstream ends. 

ï A picture picB in the current layer in an access unit containing a film grain characteristics SEI message that is 

applicable to the current layer is output for which PicOrderCnt( picB ) is greater than PicOrderCnt( picA ), where 

PicOrderCnt( picB ) and PicOrderCnt( picA ) are the PicOrderCntVal values of picB and picA, respectively, 

immediately after the invocation of the decoding process for picture order count for picB. 

D.3.14 Post-filter hint SEI message semantics 

This SEI message provides the coefficients of a post-filter or correlation information for the design of a post-filter for 

potential use in post-processing of the current picture after it is decoded and output to obtain improved displayed quality. 

filter_hint_size_y specifies the vertical size of the filter coefficient or correlation array. The value of filter_hint_size_y 

shall be in the range of 1 to 15, inclusive. 

filter_hint_size_x specifies the horizontal size of the filter coefficient or correlation array. The value of filter_hint_size_x 

shall be in the range of 1 to 15, inclusive. 

filter_hint_type identifies the type of the transmitted filter hints as specified in Table D.6. The value of filter_hint_type 

shall be in the range of 0 to 2, inclusive. The value of filter_hint_type equal to 3 is reserved for future use by 

ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders shall 

ignore post-filter hint SEI messages having filter_hint_type equal to 3. 



 

342 Rec. ITU-T H.265 v8 (08/2021) 

Table D.6 ï filter_hint_type values 
 

Value Description 

0 Coefficients of a 2D-FIR filter  

1 Coefficients of two 1D-FIR filters 

2 Cross-correlation matrix 

 

filter_hint_value [ cIdx ][  cy ][  cx ] specifies a filter coefficient or an element of a cross-correlation matrix between the 

original and the decoded signal with 16-bit precision. The value of filter_hint_value[ cIdx ][  cy ][  cx ] shall be in the range 

of ī231 + 1 to 231 ī 1, inclusive. cIdx specifies the related colour component, cy represents a counter in vertical direction 

and cx represents a counter in horizontal direction. Depending on the value of filter_hint_type, the following applies: 

ï If filter_hint_type is equal to 0, the coefficients of a 2-dimensional finite impulse response (FIR) filter with the size of 

filter_hint_size_y *  filter_hint_size_x are transmitted. 

ï Otherwise, if filter_hint_type is equal to 1, the filter coefficients of two 1-dimensional FIR filters are transmitted. In 

this case, filter_hint_size_y shall be equal to 2. The index cy equal to 0 specifies the filter coefficients of the horizontal 

filter and cy equal to 1 specifies the filter coefficients of the vertical filter. In the filtering process, the horizontal filter 

is applied first and the result is filtered by the vertical filter. 

ï Otherwise (filter_hint_type is equal to 2), the transmitted hints specify a cross-correlation matrix between the original 

signal s and the decoded signal sǋ. 

NOTE 1 ï The normalized cross-correlation matrix for a related colour component identified by cIdx with the size of 

filter_hint_size_y *  filter_hint_size_x is defined as follows: 

ää
-

=

-

=
+

-+-+¡
-

=

1h

0m

1w

0n
2bitDepth8

OffsetX)cxnOffsetY,cy(ms*n)s(m,
w*h*1)(2

1
cx)cy,dx,t_value(cIfilter_hin  (D-16) 

where s denotes array of samples of the colour component cIdx of the original picture, sǋ denotes corresponding array of the 

decoded picture, h denotes the vertical height of the related colour component, w denotes the horizontal width of the related 

colour component, bitDepth denotes the bit depth of the colour component, OffsetY is equal to ( filter_hint_size_y  >>  1 ), 

OffsetX is equal to ( filter_hint_size_x  >>  1 ), 0  <=  cy < filter_hint_size_y and 0  <=  cx < filter_hint_size_x. 

NOTE 2 ï A decoder can derive a Wiener post-filter from the cross-correlation matrix of original and decoded signal and the 

auto-correlation matrix of the decoded signal. 

D.3.15 Tone mapping information SEI message semantics 

This SEI message provides information to enable remapping of the colour samples of the output decoded pictures for 

customization to particular display environments. The remapping process maps coded sample values in the RGB colour 

space (specified in Annex E) to target sample values. The mappings are expressed either in the luma or RGB colour space 

domain and should be applied to the luma component or to each RGB component produced by colour space conversion of 

the decoded image accordingly. 

tone_map_id contains an identifying number that may be used to identify the purpose of the tone mapping model. The 

value of tone_map_id shall be in the range of 0 to 232 ī 2, inclusive. 

Values of tone_map_id from 0 to 255, inclusive, and from 512 to 231 ī 1, inclusive, may be used as determined by the 

application. Values of tone_map_id from 256 to 511, inclusive, and from 231 to 232 ī 2, inclusive, are reserved for future 

use by ITU-T | ISO/IEC. Decoders encountering a value of tone_map_id in the range of 256 to 511, inclusive, or in the 

range of 231 to 232 ī 2, inclusive, shall ignore it. 

NOTE 1 ï The tone_map_id can be used to support tone mapping operations that are suitable for different display scenarios. For 

example, different values of tone_map_id may correspond to different display bit depths. 

tone_map_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous tone mapping 

information SEI message in output order that applies to the current layer. tone_map_cancel_flag equal to 0 indicates that 

tone mapping information follows. 

tone_map_persistence_flag specifies the persistence of the tone mapping information SEI message. 

tone_map_persistence_flag equal to 0 specifies that the tone mapping information applies to the current decoded picture 

only. 



 

  Rec. ITU-T H.265 v8 (08/2021) 343 

Let picA be the current picture. tone_map_persistence_flag equal to 1 specifies that the tone mapping information persists 

for the current layer in output order until any of the following conditions are true: 

ï A new CLVS of the current layer begins. 

ï A picture picB in the current layer in an access unit containing a tone mapping information SEI message with the 

same value of tone_map_id and applicable to the current layer is output for which PicOrderCnt( picB ) is greater than 

PicOrderCnt( picA ), where PicOrderCnt( picB ) and PicOrderCnt( picA ) are the PicOrderCntVal values of picB and 

picA, respectively, immediately after the invocation of the decoding process for picture order count for picB. 

coded_data_bit_depth specifies the BitDepthY for interpretation of the luma component of the associated pictures for 

purposes of interpretation of the tone mapping information SEI message. When tone mapping information SEI messages 

are present that have coded_data_bit_depth that is not equal to BitDepthY, these refer to the hypothetical result of a 

transcoding operation performed to convert the coded video to the BitDepthY corresponding to the value of 

coded_data_bit_depth. 

The value of coded_data_bit_depth shall be in the range of 8 to 14, inclusive. Values of coded_data_bit_depth from 0 to 7 

and from 15 to 255 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all tone mapping SEI messages 

that contain a coded_data_bit_depth in the range of 0 to 7, inclusive, or in the range of 15 to 255, inclusive, and bitstreams 

shall not contain such values. 

target_bit_depth specifies the bit depth of the output of the dynamic range mapping function (or tone mapping function) 

described by the tone mapping information SEI message. The tone mapping function specified with a particular 

target_bit_depth is suggested to be reasonable for all display bit depths that are less than or equal to the target_bit_depth. 

The value of target_bit_depth shall be in the range of 1 to 16, inclusive. Values of target_bit_depth equal to 0 and in the 

range of 17 to 255, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all tone mapping SEI 

messages that contain a value of target_bit_depth equal to 0 or in the range of 17 to 255, inclusive, and bitstreams shall not 

contain such values. 

tone_map_model_id specifies the model utilized for mapping the coded data into the target_bit_depth range. Values 

greater than 4 are reserved for future use by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this 

version of this Specification. Decoders shall ignore all tone mapping SEI messages that contain a value of 

tone_map_model_id greater than 4 and bitstreams shall not contain such values. 

NOTE 2 ï A tone_map_model_id of 0 corresponds to a linear mapping with clipping; a tone_map_model_id of 1 corresponds to a 

sigmoidal mapping; a tone_map_model_id of 2 corresponds to a user-defined table mapping, and a tone_map_model_id of 3 

corresponds to a piece-wise linear mapping, tone_map_model_id of 4 corresponds to luminance dynamic range information. 

min_value specifies the RGB sample value that maps to the minimum value in the bit depth indicated by target_bit_depth. 

It is used in combination with the max_value parameter. All sample values in the decoded picture that are less than or 

equal to min_value, after conversion to RGB as necessary, are mapped to this minimum value in the target_bit_depth 

representation. 

max_value specifies the RGB sample value that maps to the maximum value in the bit depth indicated by target_bit_depth. 

It is used in combination with the min_value parameter. All sample values in the decoded picture that are greater than or 

equal to max_value, after conversion to RGB as necessary, are mapped to this maximum value in the target_bit_depth 

representation. 

When present, max_value shall be greater than or equal to min_value. 

sigmoid_midpoint specifies the RGB sample value of the coded data that are mapped to the centre point of the 

target_bit_depth representation. It is used in combination with the sigmoid_width parameter. 

sigmoid_width specifies the distance between two coded data values that approximately correspond to the 5% and 95% 

values of the target_bit_depth representation, respectively. It is used in combination with the sigmoid_midpoint parameter 

and is interpreted according to the following function: 

  (D-17) 

where f( i ) denotes the function that maps an RGB sample value i from the coded data to a resulting RGB sample value in 

the target_bit_depth representation. 

start_of_coded_interval[ i ] specifies the beginning point of an interval in the coded data such that all RGB sample values 

that are greater than or equal to start_of_coded_interval[ i ] and less than start_of_coded_interval[ i + 1 ] are mapped to i 

ö
ö
ö
ö
ö

÷

õ

æ
æ
æ
æ
æ

ç

å

öö
÷

õ
ææ
ç

å --
+

-
=

dthsigmoid_wi

dpointsigmoid_mii
if

_depthtarget_bit

)(*6
exp1

12
Round)(



 

344 Rec. ITU-T H.265 v8 (08/2021) 

in the target bit depth representation. The value of start_of_coded_interval[ 2target_bit_depth ] is equal to 2coded_data_bit_depth. The 

number of bits used for the representation of the start_of_coded_interval is ( ( coded_data_bit_depth + 7 )  >>  3 )  <<  3. 

num_pivots specifies the number of pivot points in the piece-wise linear mapping function without counting the two 

default end points, (0, 0) and ( 2coded_data_bit_depth ī 1, 2target_bit_depth ī 1 ). 

coded_pivot_value[ i ] specifies the value in the coded_data_bit_depth corresponding to the i-th pivot point. The number 

of bits used for the representation of the coded_pivot_value is ( ( coded_data_bit_depth + 7 )  >>  3 )  <<  3. 

target_pivot_value[ i ] specifies the value in the reference target_bit_depth corresponding to the i-th pivot point. The 

number of bits used for the representation of the target_pivot_value is ( ( target_bit_depth + 7 )  >>  3 )  <<  3. 

camera_iso_speed_idc indicates the camera ISO speed for daylight illumination as specified in ISO 12232, interpreted as 

specified in Table D.7. When camera_iso_speed_idc indicates EXTENDED_ISO, the ISO speed is indicated by 

camera_iso_speed_value. 

camera_iso_speed_value indicates the camera ISO speed for daylight illumination as specified in ISO 12232 when 

camera_iso_speed_idc indicates EXTENDED_ISO. The value of camera_iso_speed_value shall not be equal to 0. 

exposure_idx_idc indicates the exposure index setting of the camera as specified in ISO 12232, interpreted as specified 

in Table D.7. When exposure_idx_idc indicates EXTENDED_ISO, the exposure index is indicated by 

exposure_idx_value. 

The values of camera_iso_speed_idc and exposure_idx_idc in the range of 31 to 254, inclusive, are reserved for future use 

by ITU-T | ISO/IEC and shall not be present in bitstreams conforming to this version of this Specification. Decoders 

conforming to this version of this Specification shall ignore tone mapping SEI messages that contain these values. 

exposure_idx_value indicates the exposure index setting of the camera as specified in ISO 12232 when exposure_idx_idc 

indicates EXTENDED_ISO. The value of exposure_idx_value shall not be equal to 0. 



 

  Rec. ITU-T H.265 v8 (08/2021) 345 

Table D.7 ï Interpretation of camera_iso_speed_idc and exposure_idx_idc 

camera_iso_speed_idc or 

exposure_idx_idc 

Indicated value 

0 Unspecified 

1 10 

2 12 

3 16 

4 20 

5 25 

6 32 

7 40 

8 50 

9 64 

10 80 

11 100 

12 125 

13 160 

14 200 

15 250 

16 320 

17 400 

18 500 

19 640 

20 800 

21 1 000 

22 1 250 

23 1 600 

24 2 000 

25 2 500 

26 3 200 

27 4 000 

28 5 000 

29 6 400 

30 8 000 

31..254 Reserved 

255 EXTENDED_ISO 

 

exposure_compensation_value_sign_flag, when applicable as specified below, specifies the sign of the variable 

ExposureCompensationValue that indicates the exposure compensation value setting used for the process of image 

production. 

exposure_compensation_value_numerator, when applicable as specified below, specifies the numerator of the variable 

ExposureCompensationValue that indicates the exposure compensation value setting used for the process of image 

production. 

exposure_compensation_value_denom_idc, when not equal to 0, specifies the denominator of the variable 

ExposureCompensationValue that indicates the exposure compensation value setting used for the process of image 

production. 



 

346 Rec. ITU-T H.265 v8 (08/2021) 

When exposure_compensation_value_denom_idc is present and not equal to 0, the variable ExposureCompensationValue 

is derived from exposure_compensation_value_sign_flag, exposure_compensation_value_numerator and 

exposure_compensation_value_denom_idc. exposure_compensation_value_sign_flag equal to 0 indicates that the 

ExposureCompensationValue is positive. exposure_compensation_value_sign_flag equal to 1 indicates that the 

ExposureCompensationValue is negative. When ExposureCompensationValue is positive, the image is indicated to have 

been further sensitized through the process of production, relative to the recommended exposure index of the camera as 

specified in ISO 12232. When ExposureCompensationValue is negative, the image is indicated to have been further 

desensitized through the process of production, relative to the recommended exposure index of the camera as specified in 

ISO 12232. 

When exposure_compensation_value_denom_idc is present and not equal to 0, the variable ExposureCompensationValue 

is derived as follows: 

ExposureCompensationValue = ( 1 ī 2 * exposure_compensation_value_sign_flag ) * 

  exposure_compensation_value_numerator ÷ 

  exposure_compensation_value_denom_idc 

 (D-18) 

The value of ExposureCompensationValue is interpreted in units of exposure steps such that an increase of 1 in 

ExposureCompensationValue corresponds to a doubling of exposure in units of lux-seconds. For example, the exposure 

compensation value equal to +1÷2 at the production stage may be indicated by setting 

exposure_compensation_value_sign_flag to 0, exposure_compensation_value_numerator to 1 and 

exposure_compensation_value_denom_idc to 2. 

When exposure_compensation_value_denom_idc is present and equal to 0, the exposure compensation value is indicated 

as unknown or unspecified. 

ref_screen_luminance_white indicates the reference screen brightness setting for the extended white level used for image 

production process in units of candelas per square metre. 

extended_range_white_level indicates the luminance dynamic range for extended dynamic-range display of the 

associated pictures, after conversion to the linear light domain for display, expressed as an integer percentage relative to 

the nominal white level. The value of extended_range_white_level should be greater than or equal to 100. 

nominal_black_level_code_value indicates the luma sample value of the associated decoded pictures to which the 

nominal black level is assigned. For example, when coded_data_bit_depth is equal to 8, video_full_range_flag is equal 

to 0, and matrix_coeffs is equal to 1, nominal_black_level_code_value should be equal to 16. 

nominal_white_level_code_value indicates the luma sample value of the associated decoded pictures to which the 

nominal white level is assigned. For example, when coded_data_bit_depth is equal to 8, video_full_range_flag is equal 

to 0 and matrix_coeffs is equal to 1, nominal_white_level_code_value should be equal to 235. When present, the value of 

nominal_white_level_code_value shall be greater than nominal_black_level_code_value. 

extended_white_level_code_value indicates the luma sample value of the associated decoded pictures to which the white 

level associated with an extended dynamic range is assigned. When present, the value of extended_white_level_code_value 

shall be greater than or equal to nominal_white_level_code_value. 

D.3.16 Frame packing arrangement SEI message semantics 

This SEI message informs the decoder that the output cropped decoded picture contains samples of multiple distinct 

spatially packed constituent frames that are packed into one frame, or that the output cropped decoded pictures in output 

order form a temporal interleaving of alternating first and second constituent frames, using an indicated frame packing 

arrangement scheme. This information can be used by the decoder to appropriately rearrange the samples and process the 

samples of the constituent frames appropriately for display or other purposes (which are outside the scope of this 

Specification). 

This SEI message may be associated with pictures that are either frames (when field_seq_flag is equal to 0) or fields (when 

field_seq_flag is equal to 1). The frame packing arrangement of the samples is specified in terms of the sampling structure 

of a frame in order to define a frame packing arrangement structure that is invariant with respect to whether a picture is a 

single field of such a packed frame or is a complete packed frame. 

When general_non_packed_constraint_flag is equal to 1 for a CVS, there shall be no frame packing arrangement SEI 

messages in the CVS. 

frame_packing_arrangement_id contains an identifying number that may be used to identify the usage of the frame 

packing arrangement SEI message. The value of frame_packing_arrangement_id shall be in the range of 0 to 232 ī 2, 

inclusive. 
























































































































































































































































































































































































































































































































































































































































































































