
 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 2]

RTMP Commands Messages

draft-rtmpcommandmessages-01.txt

Copyright Notice

Copyright (c) 2009 Adobe Systems Incorporated. All rights reserved.

Abstract

This document describes the different types of messages and commands
that are exchanged between the server and the client to communicate
with each other.

Table of Contents

1. Introduction...4
2. Definitions..4
3. Types of messages..5

3.1. Command message...5
3.2. Data message..5
3.3. Shared object message.....................................5
3.4. Audio message...8
3.5. Video message...8
3.6. Aggregate message...8
3.7. User Control message......................................9

4. Types of commands...11
4.1. NetConnection commands...................................11

4.1.1. connect...12
4.1.2. Call..18
4.1.3. createStream..19

4.2. NetStream commands.......................................20
4.2.1. play..21
4.2.2. play2...26
4.2.3. deleteStream..29
4.2.4. receiveAudio..29
4.2.5. receiveVideo..30
4.2.6. Publish...31
4.2.7. seek..31
4.2.8. pause...32

5. Message exchange example......................................33
5.1. Publish recorded video...................................33
5.2. Broadcasting a shared object message.....................35
5.3. Publish MetaData from recorded stream....................36

6. References..36

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 3]

6.1. Normative References.....................................36
6.2. Informative References...................................37

7. Acknowledgments...37

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 4]

1. Introduction

The different types of messages that are exchanged between the server
and the client include audio messages for sending the audio data,
video messages for sending video data, data messages for sending any
user data, shared object messages, and command messages. Shared
objects messages provide a general purpose way to manage distributed
data among multiple clients and a server.
Command messages carry the AMF encoded commands between the client
and the server. A client or a server can request Remote Procedure
Calls (RPC) over streams that are communicated using the command
messages to the peer.

2. Definitions

Message stream:
A logical channel of communication in which messages flow.

Message stream ID:

Each message has an ID associated with it to identify the message
stream to which it belongs.

Remote Procedure Calls (RPC)

A request that allows a client or a server to call a subroutine or
procedure at the peer end.

Metadata

A description about the data. The metadata of a movie includes the
movie title, duration, date of creation, and so on.

Application instance
The instance of the application at the server with which the
clients connect by sending the connect request.

Action Message Format (AMF)
A compact binary format that is used to serialize ActionScript
object graphs. Formats Specifications:
AMF0(http://opensource.adobe.com/wiki/download/attachments/1114283/
amf0_spec_121207.pdf?version=1) and
AMF3(http://opensource.adobe.com/wiki/download/attachments/1114283/
amf3_spec_05_05_08.pdf?version=1).

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 5]

3. Types of messages

The server and the client send messages over the network to
communicate with each other. The messages can be of any type which
includes audio messages, video messages, command messages, shared
object messages, data messages, and user control messages.

3.1. Command message

Command messages carry the AMF-encoded commands between the client
and the server. These messages have been assigned message type value
of 20 for AMF0 encoding and message type value of 17 for AMF3
encoding. These messages are sent to perform some operations like
connect, createStream, publish, play, pause on the peer. Command
messages like onstatus, result etc. are used to inform the sender
about the status of the requested commands. A command message
consists of command name, transaction ID, and command object that
contains related parameters. A client or a server can request Remote
Procedure Calls (RPC) over streams that are communicated using the
command messages to the peer.

3.2. Data message

The client or the server sends this message to send Metadata or any
user data to the peer. Metadata includes details about the
data(audio, video etc.) like creation time, duration, theme and so
on. These messages have been assigned message type value of 18 for
AMF0 and message type value of 15 for AMF3.

3.3. Shared object message

A shared object is a Flash object (a collection of name value pairs)
that are in synchronization across multiple clients, instances, and
so on. The message types kMsgContainer=19 for AMF0 and
kMsgContainerEx=16 for AMF3 are reserved for shared object events.
Each message can contain multiple events.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 6]

+------+------+-------+-----+-----+------+-----+ - +-----+------+-----+
Header	Shared	Current	Flags	Event	Event	Event		Event	Event	Event
	Object	Version		Type	data	data		Type	data	data
	Name				length				length	
+------+------+-------+-----+-----+------+-----+ - +-----+------+-----+
 | |
 |<- >|
 | AMF Shared Object Message body |

Figure 1 The shared object message format

The following event types are supported:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 7]

+---------------+--+
| Event | Description |
+---------------+--+
| Use(=1) | The client sends this event to inform the server |
| | about the creation of a named shared object. |
+---------------+--+
| Release(=2) | The client sends this event to the server when |
| | the shared object is deleted on the client side. |
+---------------+--+
Request Change	The client sends this event to request that the
(=3)	change the value associated with a named
	parameter of the shared object.
+---------------+--+	
Change (=4)	The server sends this event to notify all
	clients, except the client originating the
	request, of a change in the value of a named
	parameter.
+---------------+--+	
Success (=5)	The server sends this event to the requesting
	client in response to RequestChange event if the
	request is accepted.
+---------------+--+	
SendMessage	The client sends this event to the server to
(=6)	broadcast a message. On receiving this event,
	the server broadcasts a message to all the
	clients, including the sender.
+---------------+--+	
Status (=7)	The server sends this event to notify clients
	about error conditions.
+---------------+--+	
Clear (=8)	The server sends this event to the client to
	clear a shared object. The server also sends
	this event in response to Use event that the
	client sends on connect.
+---------------+--+	
Remove (=9)	The server sends this event to have the client
	delete a slot.
+---------------+--+	
Request Remove	The client sends this event to have the client
(=10)	delete a slot.
+---------------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 8]

| Use Success | The server sends this event to the client on a |
| (=11) | successful connection. |
+---------------+---+

3.4. Audio message

The client or the server sends this message to send audio data to the
peer. The message type value of 8 is reserved for audio messages.

3.5. Video message

The client or the server sends this message to send video data to the
peer. The message type value of 9 is reserved for video messages.
These messages are large and can delay the sending of other type of
messages. To avoid such a situation, the video message is assigned
the lowest priority.

3.6. Aggregate message

An aggregate message is a single message that contains a list of sub-
messages. The message type value of 22 is reserved for aggregate
messages.

 +---------+-------------------------+
 | Header | Aggregate Message body |
 +---------+-------------------------+

Figure 2 The aggregate message format

+--------+-------+---------+--------+-------+---------+ - - - -
|Header 0|Message|Back |Header 1|Message|Back |
| |Data 0 |Pointer 0| |Data 1 |Pointer 1|
+--------+-------+---------+--------+-------+---------+ - - - -

Figure 3 The aggregate message body format

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 9]

The back pointer contains the size of the previous message including
its header. It is included to match the format of FLV file and is
used for backward seek.

Using aggregate messages has several performance benefits:

o The chunk stream can send at most a single complete message
within a chunk. Therefore, increasing the chunk size and using
the aggregate message reduces the number of chunks sent.

o The sub-messages can be stored contiguously in memory. It is
more efficient when making system calls to send the data on
the network.

3.7. User Control message

The client or the server sends this message to notify the peer about
the user control events. For information about the message format,
refer to the User Control Messages section in the RTMP Message
Foramts draft.

The following user control event types are supported:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 10]

+---------------+--+
| Event | Description |
+---------------+--+
Stream Begin	The server sends this event to notify the client
(=0)	that a stream has become functional and can be
	used for communication. By default, this event
	is sent on ID 0 after the application connect
	command is successfully received from the
	client. The event data is 4-byte and represents
	the stream ID of the stream that became
	functional.
+---------------+--+	
Stream EOF	The server sends this event to notify the client
(=1)	that the playback of data is over as requested
	on this stream. No more data is sent without
	issuing additional commands. The client discards
	the messages received for the stream. The
	4 bytes of event data represent the ID of the
	stream on which playback has ended.
+---------------+--+	
StreamDry	The server sends this event to notify the client
(=2)	that there is no more data on the stream. If the
	server does not detect any message for a time
	period, it can notify the subscribed clients
	that the stream is dry. The 4 bytes of event
	data represent the stream ID of the dry stream.
+---------------+--+	
SetBuffer	The client sends this event to inform the server
Length (=3)	of the buffer size (in milliseconds) that is
	used to buffer any data coming over a stream.
	This event is sent before the server starts
	processing the stream. The first 4 bytes of the
	event data represent the stream ID and the next
	4 bytes represent the buffer length, in
	milliseconds.
+---------------+--+	
StreamIs	The server sends this event to notify the client
Recorded (=4)	that the stream is a recorded stream. The
	4 bytes event data represent the stream ID of
	the recorded stream.
+---------------+--+	
PingRequest	The server sends this event to test whether the
(=6)	client is reachable. Event data is a 4-byte
	timestamp, representing the local server time
	when the server dispatched the command. The
	client responds with kMsgPingResponse on
	receiving kMsgPingRequest.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 11]

+---------------+--+
PingResponse	The client sends this event to the server in
(=7)	response to the ping request. The event data is
	a 4-byte timestamp, which was received with the
	kMsgPingRequest request.

+-----------------+--+

4. Types of commands

The client and the server exchange commands which are AMF encoded.
The sender sends a command message that consists of command name,
transaction ID, and command object that contains related parameters.
For example, the connect command contains ‘app’ parameter, which
tells the server application name the client is connected to. The
receiver processes the command and sends back the response with the
same transaction ID. The response string is either _result, _error,
or a method name, for example, verifyClient or contactExternalServer.

A command string of _result or _error signals a response. The
transaction ID indicates the outstanding command to which the
response refers. It is identical to the tag in IMAP and many other
protocols. The method name in the command string indicates that the
sender is trying to run a method on the receiver end.

The following class objects are used to send various commands:

o NetConnection – An object that is a higher-level representation
of connection between the server and the client.

o NetStream – An object that represents the channel over which
audio streams, video streams and other related data are sent.
We also send commands like play , pause etc. which control the
flow of the data.

4.1. NetConnection commands

The NetConnection manages a two-way connection between a client
application and the server. In addition, it provides support for
asynchronous remote method calls.

The following commands can be sent on the NetConnection :

o connect

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 12]

o call

o close

o createStream

4.1.1. connect

The client sends the connect command to the server to request
connection to a server application instance.

The command structure from the client to the server is as follows:

+----------------+---------+---------------------------------------+
| Field Name | Type | Description |
+--------------- +---------+---------------------------------------+
| Command Name | String | Name of the command. Set to “connect”.|
+----------------+---------+---------------------------------------+
| Transaction ID | Number | Always set to 1. |
+----------------+---------+---------------------------------------+
| Command Object | Object | Command information object which has |
| | | the name-value pairs. |
+----------------+---------+---------------------------------------+
| Optional User | Object | Any optional information |
| Arguements | | |
+----------------+---------+---------------------------------------+

Following is the description of the name-value pairs used in Command
Object of the connect command.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 13]

+-----------+--------+-----------------------------+---------------+
| Property | Type | Description | Example Value |
+-----------+--------+-----------------------------+---------------+
| app | String | The Server application name | testapp |
| | | the client is connected to. | |
+-----------+--------+-----------------------------+---------------+
flashver	String	Flash Player version. It is	FMSc/1.0
		the same string as returned	
		by the ApplicationScript	
		getversion () function.	
+-----------+--------+-----------------------------+---------------+			
swfUrl	String	URL of the source SWF file	file://C:/
		making the connection.	FlvPlayer.swf
+-----------+--------+-----------------------------+---------------+			
tcUrl	String	URL of the Server.	rtmp://local
		It has the following format.	host:1935/test
		protocol://servername:port/	app/instance1
		appName/appInstance	
+-----------+--------+-----------------------------+---------------+			
fpad	Boolean	True if proxy is being used.	true or false
+-----------+--------+-----------------------------+---------------+			
audioCodecs	Number	Indicates what audio codecs	SUPPORT_SND
		the client supports.	_MP3
+-----------+--------+-----------------------------+---------------+			
videoCodecs	Number	Indicates what video codecs	SUPPORT_VID
		are supported.	_SORENSON
+-----------+--------+-----------------------------+---------------+			
pageUrl	String	URL of the web page from	http://
		where the SWF file was	somehost/
		loaded.	sample.html
+-----------+--------+-----------------------------+----------------+			
object	Number	AMF encoding method.	kAMF3
Encoding			
+-----------+--------+-----------------------------+----------------+

Values for the audio codecs property:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 14]

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NONE | Raw sound, no compression | 0x0001 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_ADPCM | ADPCM compression | 0x0002 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_MP3 | mp3 compression | 0x0004 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_INTEL | Not used | 0x0008 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_UNUSED | Not used | 0x0010 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NELLY8 | NellyMoser at 8-kHz | 0x0020 |
| | compression | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NELLY | NellyMoser compression | 0x0040 |
| | (5, 11, 22, and 44 kHz) | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_G711A | G711A sound compression | 0x0080 |
| | (Flash Media Server only) | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_G711U | G711U sound compression | 0x0100 |
| | (Flash Media Server only) | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NELLY16 | NellyMouser at 16-kHz | 0x0200 |
| | compression | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_AAC | Advanced audio coding | 0x0400 |
| | (AAC) codec | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_SPEEX | Speex Audio | 0x0800 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_ALL | All RTMP-supported audio | 0x0FFF |
| | codecs | |
+----------------------+----------------------------+--------------+

Values for the videoCodecs Property:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 15]

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_UNUSED | Obsolete value | 0x0001 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_JPEG | Obsolete value | 0x0002 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_SORENSON | Sorenson Flash video | 0x0004 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_HOMEBREW | V1 screen sharing | 0x0008 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_VP6 (On2)| On2 video (Flash 8+) | 0x0010 |
+----------------------+----------------------------+--------------+
SUPPORT_VID_VP6ALPHA	On2 video with alpha	0x0020
(On2 with alpha	channel	
channel)		
+----------------------+----------------------------+--------------+		
SUPPORT_VID_HOMEBREWV	Screen sharing version 2	0x0040
(screensharing v2)	(Flash 8+)	
+----------------------+----------------------------+--------------+		
SUPPORT_VID_H264	H264 video	0x0080
+----------------------+----------------------------+--------------+		
SUPPORT_VID_ALL	All RTMP-supported video	0x00FF
	codecs	
+----------------------+----------------------------+--------------+

Values for the video function property:

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
SUPPORT_VID_CLIENT	Indicates that the client	1
_SEEK	can seek frame-accurate	
	on the client	
+----------------------+----------------------------+--------------+

Values for the object encoding property:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 16]

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
kAMF0	AMF0 object encoding	0
	supported by Flash 6 and	
	later	
+----------------------+----------------------------+--------------+		
kAMF3	AMF3 encoding from	3
	Flash 9 (AS3)	
+----------------------+----------------------------+--------------+
The command structure from server to client is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | _result or _error; indicates whether |
| | | the response is result or error. |
+--------------+----------+--+
Transaction	Number	Transaction ID is 1 for call connect
ID		responses
+--------------+----------+--+		
Properties	Object	Name-value pairs that describe the
		properties(fmsver etc.) of the
		connection.
+--------------+----------+--+		
Information	Object	Name-value pairs that describe the
		response from
		‘level’, ‘description’ are names of few
		among such information.
+--------------+----------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 17]

+--+
| |
| +--------------+ +-------------+ |
	Client			Server	
+------+-------+	+------+------+				
	Handshaking done				
	----------- Command Message(connect) ------->				
	<------- Window Acknowledgement Size --------				
	<----------- Set Peer Bandwidth -------------				
	-------- Window Acknowledgement Size ------->				
	<------ User Control Message(StreamBegin) ---				
	<------------ Command Message ---------------				
	(_result- connect response)				
+--+

Figure 4 Message flow in the connect command

The message flow during the execution of the command is:

o Client sends the connect command to the server to request to
connect with the server application instance.

o After receiving the connect command, the server sends the
protocol message ‘Window Acknowledgement Size’ to the client.
The server also connects to the application mentioned in the
connect command.

o The server sends the protocol message ‘Set Peer Bandwidth’ to
the client.

o The client sends the protocol message ‘Window Acknowledgement
Size’ to the server after processing the protocol message ‘Set
Peer Bandwidth’.

o The server sends an another protocol message of type User
Control Message(StreamBegin) to the client.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 18]

o The server sends the result command message informing the
client of the connection status (success/fail). The command
specifies the transaction ID (always equal to 1 for the connect
command). The message also specifies the properties, such as
Flash Media Server version (string), capabilities (number) In
addition it specificies other connection response related
information like level(string), code(string), description
(string), objectencoding (number)etc.

4.1.2. Call

The call method of the NetConnection object runs remote procedure
calls (RPC) at the receiving end. The called RPC name is passed as a
parameter to the call command.

The command structure from the sender to the receiver is as follows:

+--------------+----------+--+
|Field Name | Type | Description |
+--------------+----------+--+
| Procedure | String | Name of the remote procedure that is |
| Name | | called. |
+--------------+----------+--+
Transaction	Number	If a response is expected we give a
		transaction Id. Else we pass a value of
ID		0
+--------------+----------+--+		
Command	Object	If there exists any command info this
Object		is set, else this is set to null type.
+--------------+----------+--+		
Optional	Object	Any optional arguments to be provided
Arguements		
+--------------+----------+--+

The command structure of the response is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 19]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command. |
| | | |
+--------------+----------+--+
| Transaction | Number | ID of the command, to which the |
| ID | | response belongs to |
+--------------+----------+--+
| Command | Object | If there exists any command info this |
| Object | | is set, else this is set to null type. |
+--------------+----------+--+
| Response | Object | Response from the method that was |
| | | called. |
+--+

4.1.3. createStream

The client sends this command to the server to create a logical
channel for message communication The publishing of audio, video, and
metadata is carried out over stream channel created using the
createStream command.

NetConnection is the default communication channel, which has a
stream ID 0. Protocol and a few command messages, including
createStream, use the default communication channel.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command. Set to |
| | | “createStream”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID of the command. |
| ID | | |
+--------------+----------+--+
| Command | Object | If there exists any command info this |
| Object | | is set, else this is set to null type. |
+--------------+----------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 20]

The command structure from server to client is as follows:
+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | _result or _error; indicates whether |
| | | the response is result or error. |
+--------------+----------+--+
| Transaction | Number | ID of the command that response belongs|
| ID | | to. |
+--------------+----------+--+
| Command | Object | If there exists any command info this |
| Object | | is set, else this is set to null type. |
+--------------+----------+--+
| Stream | Number | The return value is either a stream ID |
| ID | | or an error information object. |
+--------------+----------+--+

4.2. NetStream commands

The NetStream defines the channel through which the streaming audio,
video, and data messages can flow over the NetConnection that
connects the client to the server. A NetConnection object can support
multiple NetStreams for multiple data streams.

The following commands can be sent on the NetStream :

o play

o play2

o deleteStream

o closeStream

o receiveAudio

o receiveVideo

o publish

o seek

o pause

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 21]

4.2.1. play

The client sends this command to the server to play a stream. A
playlist can also be created using this command multiple times.

If you want to create a dynamic playlist that switches among
different live or recorded streams, call play more than once and pass
false for reset each time. Conversely, if you want to play the
specified stream immediately, clearing any other streams that are
queued for play, pass true for reset.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 22]

+--------------+----------+---+
| Field Name | Type | Description |
+--------------+----------+---+
| Command Name | String | Name of the command. Set to “play”. |
+--------------+----------+---+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+---+
| Command | Null | Command information does not exist. |
| Object | | Set to null type. |
+--------------+----------+---+
| Stream Name | String | Name of the stream to play. |

		To play video (FLV) files, specify the
		name of the stream without a file
		extension (for example, "sample"). To
		play back MP3 or ID3 tags, you must
		precede the stream name with mp3:
		(for example, "mp3:sample". To play
		H.264/AAC files, you must precede the
		stream name with mp4: and specify the
		file extension. For example, to play the
		file sample.m4v,specify "mp4:sample.m4v"

| | | |
+--------------+----------+---+
Start	Number	An optional parameter that specifies
		the start time in seconds. The default
		value is -2, which means the subscriber
		first tries to play the live stream
		specified in the Stream Name field. If a
		live stream of that name is not found,it
		plays the recorded stream specified in
		the Stream Name field. If you pass -1
		in the Start field, only the live stream
		specified in the Stream Name field is
		played. If you pass 0 or a positive
		number in the Start field, a recorded
		stream specified in the Stream Name
		field is played beginning from the time
		specified in the Start field. If no
		recorded stream is found, the next item
		in the playlist is played.
+--------------+----------+---+		
Duration	Number	An optional parameter that specifies the
		duration of playback in seconds. The
		default value is -1. The -1 value means

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 23]

		a live stream is played until it is no
		longer available or a recorded stream is
		played until it ends. If u pass 0, it
		plays the single frame since the time
		specified in the Start field from the
		beginning of a recorded stream. It is
		assumed that the value specified in
		the Start field is equal to or greater
		than 0. If you pass a positive number,
		it plays a live stream for
		the time period specified in the
		Duration field. After that it becomes
		available or plays a recorded stream
		for the time specified in the Duration
		field. (If a stream ends before the
		time specified in the Duration field,
		playback ends when the stream ends.)
		If you pass a negative number other
		than -1 in the Duration field, it
		interprets the value as if it were -1.
+--------------+----------+---+		
Reset	Boolean	An optional Boolean value or number
		that specifies whether to flush any
		previous playlist.
+--------------+----------+---+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 24]

The command structure from the server to the client is as follows:
+--------------+----------+---+
| Field Name | Type | Description |
+--------------+----------+---+
Command Name	String	Name of the command. If the play
		command is successful, the command
		name is set to onStatus.
+--------------+----------+---+		
Description	String	If the play command is successful, the
		client receives OnStatus message from
		server which is NetStream.Play.Start.
		If the specified stream is not found ,
		NetStream.Play.StreamNotFound is
		received.
+--------------+----------+---+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 25]

+---+
| +-------------+ +----------+ |
	Play Client			Server	
+------+------+	+-----+----+				
	Handshaking and Application				
	connect done				
---+----	------Command Message(createStream) ----->				
Create					
Stream					
---+----	<---------- Command Message --------------				
	(_result- createStream response)				
---+----	------ Command Message (play) ----------->				
		<------------ SetChunkSize --------------			
		<---- User Control (StreamIsRecorded) ----			
Play					
		<---- UserControl (StreamBegin) ----------			
		<--Command Message(onStatus-play reset) --			
		<--Command Message(onStatus-play start) --			
		<-------------Audio Message---------------			
		<-------------Video Message---------------			
Keep receiving audio and video stream till finishes					

+---+

Figure 5 Message flow in the play command

The message flow during the execution of the command is:

o The client sends the play command after receiving result of the
createStream command as success from the server.

o On receiving the play command, the server sends a protocol
message to set the chunk size.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 26]

o The server sends another protocol message (user control)
specifying the event ‘StreamIsRecorded’ and the stream ID in
that message. The message carries the event type in the first 2
bytes and the stream ID in the last 4 bytes.

o The server sends another protocol message (user control)
specifying the event ‘StreamBegin’, to indicate beginning of
the streaming to the client.

o The server sends OnStatus command messages NetStream.Play.Start
& NetStream.Play.Reset if the play command sent by the client
is successful. NetStream.Play.Reset is sent by the server only
if the play command sent by the client has set the reset flag.
If the stream to be played is not found, the Server sends the
onStatus message NetStream.Play.StreamNotFound.

After this, the server sends audio and video data, which the
client plays.

4.2.2. play2

Unlike the play command, play2 can switch to a different bit rate
stream without changing the timeline of the content played. The
server maintains multiple files for all supported bitrates that the
client can request in play2.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 27]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “play2”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
Start Time	Object	A AMF encoded object that stores a
		number value. The value in this field
		specifies the beginning position of
		the stream, in seconds. If 0 is passed
		in the Start Time field, the stream is
		played from the current timeline.
+--------------+----------+--+		
oldStreamName	Object	A AMF encoded object that stores a
		string value. Its value is a string
		containing the stream name parameter
		and the old stream name.
+--------------+----------+--+		
Stream Name	Object	A AMF encoded object that stores a
		string value. It stores the name of the
		stream that is played.
+--------------+----------+--+		
Duration	Object	A AMF encoded object that stores a
		number value. The value stored in it
		specifies the total duration of
		playing the stream.
+--------------+----------+--+		
Transition	Object	A AMF encoded object that stores a
		string value. Its value defines the
		playlist transition mode (switch or.
		swap mode)switch:Performs multi-bitrate
		streaming by switching 1-bit rate
		version of a stream to another.
		swap: Replaces the value in
		oldStreamName with the value in
		streamName, and stores the remaining
		playlist queue as is. However, in this
		case, the server does not make any
		assumptions about the content of the
		streams and treats them like different
		content. Hence, it either switches at
		the stream boundary or never.
+--------------+----------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 28]

The message flow for the command is shown in the following
illustration.

+--+
| +--------------+ +-------------+ |
	Play2 Client			Server	
+--------+-----+	+------+------+				
	Handshaking and Application				
	connect done				
---+----	---- Command Message(createStream) --->				
Create					
Stream					
---+----	<---- Command Message (_result) -------				
---+----	------ Command Message (play) -------->				
		<------------ SetChunkSize ------------			
		<--- UserControl (StreamIsRecorded)----			
Play					
		<------- UserControl (StreamBegin)-----			
		<--Command Message(onStatus-playstart)-			
		<---------- Audio Message -------------			
		<---------- Video Message -------------			
---+----	-------- Command Message(play2) ------>				
		<------- Audio Message (new rate) -----			
Play2					
		<------- Video Message (new rate) -----			
	Keep receiving audio and video stream till finishes				

+--+

Figure 1 Message flow in the play2 command

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 29]

4.2.3. deleteStream

NetStream sends the deleteStream command when the NetStream object is
getting destroyed.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to |
| | | “deleteStream”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Stream ID | Number | The ID of the stream that is destroyed |
| | | on the server. |
+--------------+----------+--+
The server does not send any response.

4.2.4. receiveAudio

NetStream sends the receiveAudio message to inform the server whether
to send or not to send the audio to the client.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 30]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to |
| | | “receiveAudio”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Bool Flag | Boolean | true or false to indicate whether to |
| | | receive audio or not. |
+--------------+----------+--+
The server does not send any response.

4.2.5. receiveVideo

NetStream sends the receiveVideo message to inform the server whether
to send the video to the client or not.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to |
| | | “receiveVideo”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Bool Flag | Boolean | true or false to indicate whether to |
| | | receive video or not. |
+--------------+----------+--+
The server does not send any response.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 31]

4.2.6. Publish

The client sends the publish command to publish a named stream to the
server. Using this name, any client can play this stream and receive
the published audio, video, and data messages.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “publish”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Publishing | String | Name with which the stream is |
| Name | | published. |
+--------------+----------+--+
| Publishing | String | Type of publishing. Set to “live”, |
| Type | | “record”, or “append”. |

		record: The stream is published and the
		data is recorded to a new file.The file
		is stored on the server in a
		subdirectory within the directory that
		contains the server application. If the
		file already exists, it is overwritten.
		append: The stream is published and the
		data is appended to a file. If no file
		is found, it is created.
		live: Live data is published without
		recording it in a file.
 +--------------+----------+--+

The server responds with the OnStatus command to mark the beginning
of publish.

4.2.7. seek

The client sends the seek command to seek the offset (in
milliseconds) within a media file or playlist.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 32]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “seek”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | There is no command information object |
| Object | | for this command. Set to null type. |
+--------------+----------+--+
| milliSeconds | Number | Number of milliseconds to seek into |
| | | the playlist. |
+--------------+----------+--+
The server sends a status message NetStream.Seek.Notify when seek is
successful. In failure, it returns an _error message.

4.2.8. pause

The client sends the pause command to tell the server to pause or
start playing.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 33]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “pause”. |
+--------------+----------+--+
| Transaction | Number | There is no transaction ID for this |
| ID | | command. Set to 0. |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
|Pause/Unpause | Boolean | true or false, to indicate pausing or |
| Flag | | resuming play |
+--------------+----------+--+
milliSeconds	Number	Number of milliseconds at which the
		the stream is paused or play resumed.
		This is the current stream time at the
		Client when stream was paused. When the
		playback is resumed, the server will
		only send messages with timestamps
		greater than this value.

 +--------------+----------+--+
The server sends a status message NetStream.Pause.Notify when the
stream is paused. NetStream.Unpause.Notify is sent when a stream in
un-paused. In failure, it returns an _error message.

5. Message exchange example

Here are a few examples to explain message exchange using RTMP.

5.1. Publish recorded video

The example illustrates how a publisher can publish a stream and then
stream the video to the server. Other clients can subscribe to this
published stream and play the video.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 34]

+---+
| +--------------------+ +-----------+ |
	Publisher Client			Server	
+----------+---------+	+-----+-----+				
	Handshaking Done				
---+----	----- Command Message(connect) ----->				
		<----- Window Acknowledge Size ------			
Connect					
		<-------Set Peer BandWidth ----------			
		------ Window Acknowledge Size ----->			
		<------User Control(StreamBegin)-----			
---+----	<---------Command Message -----------				
	(_result- connect response)				
---+----	--- Command Message(createStream)--->				
Create					
Stream					
 ---+---- |<------- Command Message ------------| |
	(_result- createStream response)			
---+----	---- Command Message(publish) ------>			
		<------User Control(StreamBegin)-----		
		-----Data Message (Metadata)-------->		
Publishing		------------ Audio Data ------------>		
Content				
		------------ SetChunkSize ---------->		
		<----------Command Message ----------		
		(_result- publish result)		
		------------- Video Data ----------->		
	Until the stream is complete			
+---+

Figure 1 Message flow in publishing a video stream

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 35]

5.2. Broadcasting a shared object message

The example illustrates the messages that are exchanged during the
creation and changing of shared object. It also illustrates the
process of shared object message broadcasting.

+--+
| +----------+ +----------+ |
	Client			Server	
+-----+----+	+-----+----+				
	Handshaking and Application				
	connect done				
Create and ---+----	---- Shared Object Event(Use)---->				
connect					
Shared Object					
---+----	<---- Shared Object Event---------				

 | | (UseSuccess,Clear) | | |
| | | |
| ---+---- |------ Shared Object Event ------>| |
|Shared object | | (RequestChange) | |
|Set Property | | | |
| ---+---- |<------ Shared Object Event ------| |
| | (Success) | |
| | | |
| ---+---- |------- Shared Object Event ----->| |
| Shared object| | (SendMessage) | |
| Message | | | |
| Broadcast ---+---- |<------- Shared Object Event -----| |
| | (SendMessage) | |
| | | |
| | | |
| |
+--+

Figure 1 Shared object message broadcast

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 36]

5.3. Publish MetaData from recorded stream

This example describes the message exchange for publishing metadata.

+--+
| +------------------+ +---------+ |
	Publisher Client			FMS	
+---------+--------+	+----+----+				
	Handshaking and Application				
	connect done				
---+---	---Command Messsage(createStream) -->				
Create					
Stream					
 ---+--- |<---------Command Message------------| |
	(_result - command response)		
---+---	---- Command Message(publish) ------>		
Publishing			
metadata		<------ UserControl(StreamBegin)-----	
from file			
		-----Data Message (Metadata) ------->	

 +--+
Figure 2 Publishing metadata

6. References

6.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Crocker, D. and Overell, P.(Editors), "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, Internet Mail Consortium and
Demon Internet Ltd., November 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2234] Crocker, D. and Overell, P.(Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 37]

6.2. Informative References

[3] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in TCP
and Its Effect on Busy Servers", Proc. Infocom 1999 pp. 1573-
1583.

[Fab1999] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in
TCP and Its Effect on Busy Servers", Proc. Infocom 1999 pp.
1573-1583.

7. Acknowledgments

Address:

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704

